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FINITE ELEMENT SUPERCONVERGENCE
ON SHISHKIN MESH

FOR 2-D CONVECTION-DIFFUSION PROBLEMS

ZHIMIN ZHANG

Abstract. In this work, the bilinear finite element method on a Shishkin mesh
for convection-diffusion problems is analyzed in the two-dimensional setting.
A superconvergence rate O(N−2 ln2 N + εN−1.5 lnN) in a discrete ε-weighted
energy norm is established under certain regularity assumptions. This conver-
gence rate is uniformly valid with respect to the singular perturbation param-
eter ε. Numerical tests indicate that the rate O(N−2 ln2 N) is sharp for the
boundary layer terms. As a by-product, an ε-uniform convergence of the same
order is obtained for the L2-norm. Furthermore, under the same regularity

assumption, an ε-uniform convergence of order N−3/2 ln5/2 N + εN−1 ln1/2N
in the L∞ norm is proved for some mesh points in the boundary layer region.

1. Introduction

There has been extensive research in numerical solutions of singular perturbation
problems because of the practical importance of these problems (for example, the
Navier-Stokes equations at high Reynolds number). One of the typical behaviors
of singularly perturbed problems is the boundary layer phenomenon: the solution
varies rapidly within very thin layer regions near the boundary.

Most of the traditional numerical methods fail to catch the rapid change of
the solution in boundary layers, and this failure in turn pollutes the numerical
approximation on the whole domain. See [18] and [22].

Many methods have been developed to overcome the numerical difficulty caused
by boundary layers. The reader is referred to three 1996 books [13, 14, 16] for the
significant progress that has been made in this field, and articles [2, 4, 7, 8, 11, 12,
15, 18, 19, 20, 21, 24, 25] for more information.

A realistic approach in practice may be starting with a certain up-winding
scheme, such as the streamline-diffusion method, followed by an adaptive proce-
dure to refine the mesh, eventually resolving the boundary layer, and maybe locat-
ing some possible internal layers. Then a question arises naturally: Is there any
superconvergence phenomenon when the boundary layer is successfully resolved?
The current work intends to answer this question for a specific situation.
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1148 ZHIMIN ZHANG

We shall analyze the standard finite element method combined with one kind
of local refinement strategy, namely, the Shishkin mesh. Roughly speaking, the
Shishkin mesh is a piecewise uniform mesh with an anisotropic mesh of high ratio
in the boundary layer region. The analysis in this paper shows that superconver-
gence is uniformly valid with respect to the singular perturbation parameter for the
bilinear finite element method with the Shishkin mesh for our model problem. This
finding is consistent with the symmetry theory [17] in the finite element supercon-
vergence, since for a piecewise uniform mesh there are indeed many symmetries.
However, we are not able to apply the symmetry theory directly to convection-
diffusion equations because of the use of highly anisotropic meshes. For general
theory and new developments of finite element superconvergence, the reader is re-
ferred to the recent books [1], [9], [23], and the conference proceedings [6].

Recently, Li and Wheeler have obtained a superconvergence result for the low-
est Raviart-Thomas rectangular element in approximating singularly perturbed
reaction-diffusion equations in a mixed formulation [8]. By a local postprocess-
ing, the authors are able to prove an O(N−2) convergence rate for the gradient.
However, we have not seen any superconvergence result for convection-diffusion
equations (which is more difficult) in the displacement formulation. In the current
work, we consider the standard finite element method for a convection-diffusion
model problem,

− ε∆u+ ~β · ∇u+ cu = f in Ω = (0, 1)× (0, 1),(1.1)
u = 0 on ∂Ω,(1.2)

where ε is a small positive number, ~β(x, y) = (β1(x, y), β2(x, y)) ≥ (α, α) > (0, 0),
c(x, y) ≥ 0 for all (x, y) ∈ Ω̄, and

(1.3) c(x, y)− 1
2

div~β(x, y) ≥ c0 > 0

with constants α and c0. We assume that ~β, c, and f are sufficiently smooth. These
assumptions guarantee that (1.1)–(1.2) has a unique solution in H2(Ω)∩H1

0 (Ω) for
all f ∈ L2(Ω). Note that when ε is sufficiently small, condition (1.3) can be ensured
by the other hypotheses and a transformation u = et(x+y)v with a positive constant
t that satisfies

c(x, y) + (β1(x, y) + β2(x, y))t− 2εt2 − 1
2

div~β(x, y) ≥ c0.

Indeed, it is the case in which ε is very small that we are interested in.
With the above assumption, the solution of (1.1)–(1.2) typically has boundary

layers of width O(ε ln 1
ε ) at the outflow boundary x = 1 and y = 1. With some

further assumptions, it is possible to characterize the boundary layers more precisely
(see the regularity result in the next section).

Our main concern here is superconvergence in a discrete ε-weighted energy norm
‖·‖ε,N (see (2.6)) in the presence of exponential boundary layers. We shall establish
an error bound of order N−2 ln2N+εN−3/2 in the discrete ε-weighted energy norm
under certain regularity assumptions. For the one-dimensional case, see a recent
work of the author [24]. As a consequence of the superconvergence result, we obtain
convergence of the same order in the L2-norm and pointwise convergence of order
N−3/2 ln5/2N+ εN−1 ln1/2N at some mesh points inside the boundary layer under
the same regularity assumption. These results are all uniformly valid with respect
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FINITE ELEMENT SUPERCONVERGENCE 1149

to ε. Furthermore, numerical tests indicate that the estimate N−2 ln2N is sharp.
It is worth pointing out that the error bounds obtained here are different from the
error bounds obtained by Zhou [25] in that the Sobolev norms (‖u‖2 or ‖u‖3) of
the solution do not appear in the bounding constants.

Recently, Melenk and Schwab have done some work on the p and the hp finite
element methods for singularly perturbed problems in the two-dimensional setting.
Their mesh design follows earlier work of Schwab and Suri in the one-dimensional
reaction-diffusion problem [19], namely, the mesh size κεp in the exponential bound-
ary layer region is adopted. Here p is the polynomial degree in the finite element
space and κ is a user-supplied constant. In [11], a robust exponential convergence
rate is established for the reaction-diffusion equation under the analytic assumption
on the input data. In [2], similar results are obtained for the dominant components
(the smooth part and the layer part) of convection-diffusion problems. So far, a
complete regularity analysis on the convection-diffusion equation seems lacking, al-
though the counterpart results for reaction-diffusion problems are relatively rich
[3, 5, 12].

Here is the outline of the article. After this brief introduction we introduce the
method in Section 2. Section 3 serves as a preliminary to the analysis. In Section 4,
we establish all ingredients for the proof of our main theorems, and in Section 5, we
present and prove the main theorems. Finally, some numerical results are presented
in Section 6. Throughout the article, the standard notation for the Sobolev spaces
and norms will be used; and generic constants C,Ci are independent of ε and N .
An index will be attached to indicate an inner product or a norm on a subdomain,
for example, (·, ·)Ωx and ‖ · ‖Ωy .

2. The finite element method on a Shishkin mesh

The regularity result. Regularity is a very complicated issue, and most of
the known results are for reaction-diffusion equations. See [3], [5], [12], and [16].
Regarding convection-diffusion equations, the reader is referred to [20] and [10].
Here we adopt the result from the latter.

Define the operator Li, i = 0, 1, by

Liv :=
∂v

∂y

∂i

∂xi

(
β2

β1

)
+ v

∂i

∂xi

(
c

β1

)
.

Lemma 2.1. Let ~β and c be smooth, and let f ∈ C4,1(Ω̄) satisfy the compatibility
conditions

f(0, 0) = f(0, 1) = f(1, 0) = f(1, 1) = 0,
and (

f

β1

)
y

(0, 0) =
(
f

β2

)
x

(0, 0),((
f

β1

)
x

− L0

(
f

β1

))
y

(0, 0) =
(
f

β2

)
xx

(0, 0),((
f

β1

)
xx

− L0

((
f

β1

)
x

− L0

(
f

β1

))
− 2L1

(
f

β1

))
y

(0, 0) =
(
f

β2

)
xxx

(0, 0),

(
β2

(
f

β2

)
xx

)
(0, 0) =

(
β1

(
f

β1

)
yy

)
(0, 0).
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Then the boundary problem (1.1)–(1.2) has a classical solution u ∈ C3,1(Ω) which
can be decomposed into

u = ū+ w0 + w1 + w2,

where for all (x, y) ∈ Ω we have

(2.1)
∣∣∣∣ ∂i+j ū∂xi∂yj

(x, y)
∣∣∣∣ ≤ C

for 0 ≤ i+ j ≤ 2 and∣∣∣∣∂i+jw1

∂xi∂yj
(x, y)

∣∣∣∣ ≤ Cε−ie−α(1−x)/ε,(2.2) ∣∣∣∣∂i+jw2

∂xi∂yj
(x, y)

∣∣∣∣ ≤ Cε−je−α(1−y)/ε,(2.3) ∣∣∣∣∂i+jw0

∂xi∂yj
(x, y)

∣∣∣∣ ≤ Cε−(i+j)e−α(1−x)/εe−α(1−y)/ε(2.4)

for 0 ≤ i+ j ≤ 3. Here the constant C depends on various norms of ~β, c and f .

See [10, Theorem 5.1] for details. Note that when

∂i+jf

∂xi∂yj
(0, 0) = 0, 1 ≤ i+ j ≤ 3,

then the last four compatibility conditions of Lemma 2.1 are satisfied.
The Shishkin mesh. Define the transition parameter

τ = min(
1
2
,
κ

α
ε lnN)

with κ = 2.5, and divide Ω into four subdomains

Ω0 = (0, 1− τ)2, Ωx = (1− τ, 1)× (0, 1− τ),

Ωy = (0, 1− τ) × (1− τ, 1), Ωxy = (1− τ, 1)2.

Each subdomain is then decomposed into N ×N (N ≥ 2) uniform rectangles (see
Figure 1). Therefore, there are (2N + 1)2 nodes (xi, yj), i, j = 0, 1, 2, . . . , 2N , and
4N2 elements

Ωij = (xi−1, xi)× (yj−1, yj), j = 1, 2, . . . , 2N.

We denote

H =
1− τ
N

, h =
τ

N
.

In the later analysis, we assume that τ =
2.5
α
ε lnN , since otherwise N−1 is much

less than ε and the traditional finite element analysis can be applied. For small
ε, the Shishkin mesh is highly graded with ratio of H/h = O(ε−1). It is neither
regular nor quasi-uniform.

The parameter τ is selected so as to deal with the singular behavior of the
boundary layer functions w1, w2, and w0. In the boundary layer region, the small
mesh size compensates for the sharp change of the solution. We see that

h

ε
=

2.5
α

lnN
N

.
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Ω0 Ωx

Ωy Ωxy

?

L

S

S S

Figure 1. The Shishkin mesh

Outside the boundary layer, the exponential decay of w1, w2, and w0 dominate:∫ 1−τ

0

e−α(1−x)/εdx ≤ ε

α
e−ατ/ε =

ε

α
elnN−2.5

=
ε

αN2.5
.

In the analysis, these facts are used repeatedly.

Remark 2.1. In the literature, κ = 2 is widely used in determining the transition
point for the Shishkin mesh. Our numerical results reveal the same convergent rates
for κ = 1.5, κ = 2, and κ = 2.5. However, κ = 2 has a better error distribution than
the other nearby numbers (see Section 6). For technical reasons, we use κ = 2.5 in
our analysis.

Variational formulation. The weak formulation of the model problem (1.1)–
(1.2) reads: Find u ∈ H1

0 (Ω) such that

Bε(u, v) = f(v), ∀v ∈ H1
0 (Ω),

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1152 ZHIMIN ZHANG

where

Bε(u, v) = ε(∇u,∇v) + (~β · ∇u, v) + (cu, v), f(v) = (f, v) =
∫

Ω

fvdxdy.

We define an energy norm ‖ · ‖ε by

‖v‖2ε = ε‖∇v‖2 + ‖v‖2 = |v|2ε + ‖v‖2,

where ‖ · ‖ is the L2-norm. We have, from integration by parts and applying (1.3),

(2.5) Bε(v, v) = ε(∇v,∇v) + ((c− 1
2

div~β)v, v) ≥ |v|2ε + c0‖v‖2 ≥ min(1, c0)‖v‖2ε .

Let V Nε ⊂ H1
0 (Ω) be the C0 bilinear finite element space on the Shishkin mesh;

we look for uN ∈ V Nε such that

Bε(uN , v) = f(v), ∀v ∈ V Nε .

We define a discrete energy norm ‖ · ‖ε,N by

(2.6) ‖v‖2ε,N = |v|2ε,N + ‖v‖2

with

|v|2ε,N = ε
∑
K

4hK~K |∇v(xK , yK)|2.

Here K = (xK − hK , xK + hK)× (yK − ~K , yK + ~K) is an element (see Figure 2).
For the Shishkin mesh, 2hK , 2~K are either h or H .

Main task and difficulties. The main task is to establish the approximability
of the bilinear finite element space to functions with exponential terms of arbitrarily
large parameters in the energy norm as well as in the discrete energy norm (2.6).
There are two difficulties: (i) The bilinear form Bε does not satisfy the uniform
stability

|Bε(u, v)| ≤ C‖u‖ε‖v‖ε

for a constant C independent of ε, although it does satisfy the coercivity condition
(2.5). (ii) The bilinear interpolant uI of the solution u cannot be uniformly bounded
by u in either the L2-norm or the H1-norm as

‖uI‖ ≤ C‖u‖, ‖∇uI‖ ≤ C‖∇u‖.

for a constant C independent of ε. However, all the error bounds must be ε-uniform.
The standard finite element analysis cannot produce the expected result, and the
situation is further complicated by the superconvergent consideration. In this work
we shall use a different framework to overcome these difficulties. Furthermore,
integral identities developed in the 90’s (see the Appendix) are used to prove su-
perconvergence. The analysis is very delicate.
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(xK , yK)
hK

~K

l4 l2

l1

l3

Figure 2. Geometry of the element K

3. Preliminaries

On an individual rectangular element K (see Figure 2), v ∈ V Nε is defined as

v(xK + hKξ, yK + ~Kη) =
vK1
4

(1− ξ)(1 − η) +
vK2
4

(1 + ξ)(1 − η)

+
vK3
4

(1 + ξ)(1 + η) +
vK4
4

(1− ξ)(1 + η) = v̂(ξ, η), (ξ, η) ∈ K̂ = [−1, 1]2,

where

vK1 = v(xK − hK , yK − ~K), vK2 = v(xK + hK , yK − ~K),

vK3 = v(xK + hK , yK + ~K), vK4 = v(xK − hK , yK + ~K).

As a preliminary, we first introduce some inequalities for v ∈ V Nε that will be
used in the analysis. Their proofs are straightforward calculations, and hence are
omitted. There are general results for most of these inequalities; however, the
results here provide specific information about the bounding constants which may
not appear elsewhere.

Imbedding inequalities:

(3.1)

(∫
lK2

+
∫
lK4

)
v2dy ≤ 9

hK

∫
K

v2dxdy,

(∫
lK1

+
∫
lK3

)
v2dx ≤ 9

~K

∫
K

v2dxdy.

Inverse inequalities:∫
K

(
∂v

∂x

)2

dxdy ≤ 9
h2
K

∫
K

v2dxdy,

∫
K

(
∂v

∂y

)2

dxdy ≤ 9
~2
K

∫
K

v2dxdy;(3.2)

∫
K

(
∂2v

∂x∂y

)2

dxdy ≤ 3
2~2
K

∫
K

(
∂v

∂x

)2

dxdy, or ≤ 3
2h2

K

∫
K

(
∂v

∂y

)2

dxdy.

(3.3)

Stability inequality:

(3.4) ‖v‖ε,N ≤ ‖v‖ε.
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Discrete inequalities:∫
K

v2dxdy ≤ hK~K [(vK1 )2 + (vK2 )2 + (vK3 )2 + (vK4 )2],(3.5) ∫
K

|∇v|2dxdy ≤
(
H

h
+
h

H

)
[(vK1 )2 + (vK2 )2 + (vK3 )2 + (vK4 )2].(3.6)

In this article, we shall frequently use the bilinear interpolation wI of a given
function w. We start from two identities which again can be derived through simple
calculation. When w ∈ W 1

∞(Ω),

∂wI

∂x
(xK , yK) =

1
4hK

∫ xK+hK

xK−hK

(
∂w

∂x
(x, yK − ~K) +

∂w

∂x
(x, yK + ~K)

)
dx,(3.7)

∂wI

∂y
(xK , yK) =

1
4~K

∫ yK+~K

yK−~K

(
∂w

∂y
(xK + hK , y) +

∂w

∂y
(xK − hK , y)

)
dy;(3.8)

and if w ∈W 3
∞(Ω), we have

∂

∂x
(wI − w)(xK , yK)

=
1

4hK

∫ hK

−hK

[(
t2

2
∂3w

∂x3
− t~K

∂3w

∂x2∂y
+
~2
K

2
∂3w

∂x∂y2

)
(xK + s1t, yK − s1~K)

+
(
t2

2
∂3w

∂x3
+ t~K

∂3w

∂x2∂y
+
~2
K

2
∂3w

∂x∂y2

)
(xK + s2t, yK + s2~K)

]
dt,(3.9)

∂

∂y
(wI − w)(xK , yK)

=
1

4~K

∫ ~K

−~K

[(
h2
K

2
∂3w

∂x2∂y
− hKt

∂3w

∂x∂y2
+
t2

2
∂3w

∂y3

)
(xK − s3hK , yK + s3t)

+
(
h2
K

2
∂3w

∂x2∂y
+ hK

∂3w

∂x∂y2
+
t2

2
∂3w

∂y3

)
(xK + s4hK , yK + s4t)

]
dt,(3.10)

where 0 < si < 1 for i = 1, 2, 3, 4. Also,

(3.11) ‖w − wI‖2K ≤ C(‖h2
K

∂2w

∂x2
‖2K + ‖hK~K

∂2w

∂x∂y
‖2K + ‖~2

K

∂2w

∂y2
‖2K),

where C is a constant independent of hK , ~K , and w.
Finally, we list some inequalities regarding the exponential boundary layer func-

tions which will be frequently used in the next section.

2hKe−2α(1−xK)/ε <

∫ xK+hK

xK−hK
e−2α(1−x)/εdx;(3.12)

2~Ke−2α(1−yK)/ε <

∫ yK+~K

yK−~K
e−2α(1−y)/εdy;(3.13)

‖e−α(1−x)/ε‖2Ω + ‖e−α(1−y)/ε‖2Ω
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=
∫

Ω

(e−2α(1−x)/ε + e−2α(1−y)/ε)dxdy <
ε

α
;(3.14)

‖e−α(1−x)/ε‖2Ω0∪Ωy + ‖e−α(1−y)/ε‖2Ω0∪Ωx

=
∫

Ω0∪Ωy

e−2α(1−x)/εdxdy +
∫

Ω0∪Ωx

e−2α(1−y)/εdxdy <
ε

α

1
N5

;(3.15)

h

2N∑
i=N+1

e−2α(1−xi)/ε <
ε

α
;(3.16)

H
N∑
i=1

e−2α(1−xi)/ε <
( ε
α

+ 2H
) 1
N5

.(3.17)

Note that the order N−5 is due to the choice κ = 2.5.

4. Analysis

This is the section where all ingredients for the proof of our main theorems in
Section 5 will be established. All results are uniformly valid for ε ∈ (0, 1] andN ≥ 2.
We only consider the case when τ < 1/2 as mentioned earlier, since otherwise the
traditional analysis will do the work.

We shall treat the singular terms w = w0 + w1 + w2 and the regular term ū
separately. It is worthwhile to point out that the superconvergence analysis of the
regular term ū does not follow from the general result of the counterpart regular
problem (ε = 1) in the literature. Indeed, the large mesh ratio between boundary
layer elements and non-boundary layer elements breaks the crucial assumption that
the mesh should be “almost” uniform in the traditional superconvergence analysis.

In dealing with the singular terms, we utilize the exponential decay property
outside the boundary layer region and estimate the interpolation error inside the
boundary layer regions. By the symmetric nature of the problem, we only provide
a detailed proof for w1, omit the proof of w2 (from symmetry, the proof will be the
same as for w1 by exchanging the indices x and y), and sketch the proof for w0 (the
proof of w0 shares many features with that of w1).

Theorem 4.1. Let w = w0 +w1 +w2 satisfy the regularity (2.2)–(2.4). Then there
is a constant C, independent of N and ε, such that

ε
∑
K⊂Ω

4hK~K |∇(w − wI)(xK , yK)|2 ≤ C
(

lnN
N

)4

.

Proof. Based on the boundary layer behavior of w1, we separate the discussion into
the cases of Ωx ∪ Ωxy and Ω0 ∪ Ωy.

(a) K ⊂ Ωx ∪ Ωxy. Applying the regularity result (2.2) to (3.9) and (3.10), we
derive

|∇(w1 − wI1)(xK , yK)|

≤ Ce−α(1−xK−hK)/ε

(
h2
K

2
(ε−3 + ε−2) + hK~K(ε−2 + ε−1) +

~2
K

2
(ε−1 + 1)

)
≤ Ce−α(1−xK−hK)/ε

(
h2
Kε
−3 + 2hK~Kε−2 + ~2

Kε
−1
)
.
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Adding all elements on Ωx ∪ Ωxy yields

ε
∑

K⊂Ωx∪Ωxy

4hK~K |∇(w1 − wI1)(xK , yK)|2

≤ Cε

2N∑
j=1

~j
2N∑

i=N+1

he−2α(1−xi)/ε (h2ε−3 + 2hHε−2 + H2ε−1
)2

≤ C

α

((
h

ε

)2

+ 2
h

ε
H +H2

)2

=
C

α

(
h

ε
+ H

)4

≤ C1

(
lnN
N

)4

.(4.1)

Here we have used (3.16).
(b) K ∈ Ω0 ∪ Ωy. By the regularity (2.2), we have

4hK~K |∇w1(xK , yK)|2 ≤ C4hK~K(ε−2 + 1)e−2α(1−xK)/ε

< C(ε−2 + 1)
∫
K

e−2α(1−x)/εdxdy.(4.2)

Here we have used (3.12). Summing up all elements on Ω0 ∪ Ωy yields

ε
∑

K⊂Ω0∪Ωy

4hK~K |∇w1(xK , yK)|2

≤ C(ε−1 + ε)
∫ 1

0

dy

∫ 1−τ

0

e−2α(1−x)/εdx ≤ C

2α
(1 + ε2)

1
N5

.(4.3)

The argument for wI1 is more involved. We first use (3.7) and the regularity of w1

to derive ∣∣∣∣∂wI1∂x
(xK , yK)

∣∣∣∣ ≤ ε−1

2hK

∫ xK+hK

xK−hK
e−α(1−x)/εdx

≤ Cε−1

√
2hK

(∫ xK+hK

xK−hK
e−2α(1−x)/εdx

)1/2

,

and therefore,

ε
∑

K⊂Ω0∪Ωy

4hK~K
∣∣∣∣∂wI1∂x

(xK , yK)
∣∣∣∣2

≤ Cε−1
∑

K⊂Ω0∪Ωy

2~K
∫ xK+hK

xK−hK
e−2α(1−x)/εdx

= Cε−1
2N∑
j=1

~j
∫ 1−τ

0

e−2α(1−x)/εdx ≤ C

αN5
.(4.4)

Next, using (3.8), we find that∣∣∣∣∂wI1∂y
(xK , yK)

∣∣∣∣ ≤ C

2
(e−α(1−xK+hK)/ε + e−α(1−xK−hK)/ε)

≤ Ce−α(1−xK−hK)/ε.
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Summing up, we obtain

ε
∑

K⊂Ω0∪Ωy

4hK~K |
∂wI1
∂y

(xK , yK)|2

≤ Cε

2N∑
j=1

~j
N∑
i=1

He−2α(1−xi)/ε ≤ C ε

N5

( ε
α

+ 2H
)
.(4.5)

Here we used (3.17). Combining (4.4) and (4.5) with (4.3), we get

ε
∑

K⊂Ω0∪Ωy

4hK~K |∇(w1 − wI1)(xK , yK)|2 ≤ C

N5
.

This, combined with (4.1), establishes the conclusion for w1. The argument for w2

is similar.
The proof for w0 is separated into the cases of Ωxy (where we estimate the

interpolation error) and Ω\Ωxy (where the exponential decay property is utilized).
(a′) K ⊂ Ωxy (where hK = ~K = h/2). We apply the identities (3.9) and (3.10)

to w0 and recall (2.4) to derive

4hK~K |∇(w0 − wI0)(xK , yK)|2

≤ Ch6ε−6e−2α(1−xK−hK)/εe−2α(1−yK−~K)/ε

= Ch6ε−6e2αh/εe−2α(1−xK)/εe−2α(1−yK)/ε.

Note that e2αh/ε = N
√
N5 is a bounded number. Summing up and using (3.12) and

(3.13), we have

ε
∑

K⊂Ωxy

4hK~K |∇(w0 − wI0)(xK , yK)|2

≤ Ch4ε−5

∫ 1

1−τ
e−2α(1−x)/εdx

∫ 1

1−τ
e−2α(1−y)/εdy

≤ C

4α2
h4ε−3 ≤ C1ε

(
lnN
N

)4

.(4.6)

(b′) K ⊂ Ω \ Ωxy. By the regularity (2.4),

4hK~K |∇w0(xK , yK)|2

≤ C4hK~Kε−2e−2α(1−xK)/εe−2α(1−yK)/ε

≤ Cε−2

∫ xK+hK

xK−hK
e−2α(1−x)/εdx

∫ yK+~K

yK−~K
e−2α(1−y)/εdy

= Cε−2

∫
K

e−2α(1−x)/εe−2α(1−y)/εdxdy.
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Here we used (3.12) and (3.13). Summing up, we have

ε
∑

K⊂Ω\Ωxy

4hK~K |∇w0(xK , yK)|2

= ε

 ∑
K⊂Ω0∪Ωx

+
∑
K⊂Ωy

 4hK~K |∇w0(xK , yK)|2

≤ Cε−1

(∫ 1

0

dx

∫ 1−τ

0

dy +
∫ 1−τ

0

dx

∫ 1

1−τ
dy

)
e−2α(1−x)/εe−2α(1−y)/ε

≤ Cε

2α2

1
N5

.(4.7)

Next, we consider ∇wI0 . It is suffice to discuss K ⊂ Ω0 ∪Ωy, since the situation on
Ωx is the same as on Ωy. Applying (3.7) to w0 and following the same argument
as for w1 in (b), we have

(4.8) ε
∑

K⊂Ω0∪Ωy

4hK~K
∣∣∣∣∂wI0∂x

(xK , yK)
∣∣∣∣2 ≤ C

N5
.

Now, we apply (3.8) to w0 and use the regularity to obtain∣∣∣∣∂wI0∂y
(xK , yK)

∣∣∣∣ ≤ Cε−1

2~K

∫ yK+~K

yK−~K
e−α(1−xK−hK)/εe−α(1−y)/εdy

≤ Cε−1

√
2~K

e−α(1−xK−hK)/ε

(∫ yK+~K

yK−~K
e−2α(1−y)/εdy

)1/2

.

In the last step, we used Hölder’s inequality. Summing up, we have

ε
∑

K⊂Ω0∪Ωy

4hK~K
∣∣∣∣∂wI0∂y

(xK , yK)
∣∣∣∣2

≤ Cε−1
∑

K⊂Ω0∪Ωy

∫ yK+~K

yK−~K
e−2α(1−y)/εdyhKe

−2α(1−xK−hK)/ε

= Cε−1

∫ 1

0

e−2α(1−y)/εdy
N∑
i=1

He−2α(1−xi)/ε

≤ C

α

(
ε

α
+

2
N

)
1
N5

.(4.9)

Here we have used (3.17). Combining (4.8) and (4.9) yields

ε
∑

K⊂Ω0∪Ωy

4hK~K |∇wI0(xK , yK)|2 ≤ C

N5
.

As we mentioned earlier, the argument for Ωx is the same as that of Ωy, and hence

ε
∑

K⊂Ω\Ωxy

4hK~K |∇wI0(xK , yK)|2 ≤ C

N5
.
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Recalling (4.7), we get

ε
∑

K⊂Ω\Ωxy

4hK~K |∇(w0 − wI0)(xK , yK)|2 ≤ C

N5
,

which, combined with the estimate in (a′), establishes the assertion for w0. �

In the proof of our next theorem, a layer region adjacent to the transition line
but outside the boundary layer is used (see Figure 1):

S = {(x, y) ∈ Ω0 | x ≥ 1− τ −H, or y ≥ 1− τ −H}.

Theorem 4.2. Let w = w0 +w1 +w2 satisfy the regularity (2.2)–(2.4). Then there
is a constant C, independent of N and ε, such that

‖w − wI‖Ω\Ω0 ≤ C
√
ε

(
lnN
N

)2

;(4.10)

‖w‖Ω0 + ‖wI‖Ω0\S ≤ C
√
εN−2.5;(4.11)

‖wI‖S ≤ C

N3
.(4.12)

Proof. By the regularity assumption (2.2), we derive

‖∂
2w1

∂x2
‖2Ωx∪Ωxy ≤ Cε

−4

∫ 1

0

dy

∫ 1

1−τ
e−2α(1−x)/εdx ≤ C

2α
ε−3;

and similarly,

‖ ∂
2w1

∂x∂y
‖2Ωx∪Ωxy ≤

C

2α
ε−1, ‖∂

2w1

∂y2
‖2Ωx∪Ωxy ≤

C

2α
ε.

Adding all elements over Ωx ∪ Ωxy on both sides of (3.11) yields

(4.13) ‖w1 − wI1‖2Ωx∪Ωxy ≤
Cε

2α
(h4ε−4 + 2h2ε−2H2 +H4) ≤ C1ε

(
lnN
N

)4

.

Furthermore,

‖w1‖2Ω0∪Ωy ≤ C
∫ 1

0

dy

∫ 1−τ

0

e−2α(1−x)/εdx ≤ C

2α
ε

N5
;(4.14)

‖wI1‖2Ωy ≤ C
N∑
i=1

He−2α(1−xi)/ε
2N∑

j=N+1

~j ≤ C1(ε+N−1)
τ

N5
.(4.15)

Here we used (3.17). Clearly,

‖w − wI‖Ωy ≤ ‖w‖Ωy + ‖wI‖Ωy ≤ C
√
ε

N2.5
.

Recall (4.13), and we have established (4.10) for w1. Next,

‖wI1‖2Ω0\S ≤ C
N−1∑
i=0

N−1∑
j=0

H2e−2α(1−xi)/ε

≤ C

∫ 1−τ

0

∫ 1−τ

0

e−2α(1−x)/εdxdy ≤ Cε

N5
,
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which, combined with (4.14), proves (4.11) for w1. Finally,

‖wI1‖2S =
∑
K⊂S

‖wI1‖2K ≤ CNH2e−2ατ/ε ≤ C

N6
,

which establishes (4.12) for w1.
The estimate for w2 is the same. The estimate for w0 will be separated into the

four cases Ωxy, Ωx ∪ Ωy, Ω0 \ S, and S. For example, we have

‖w0 − wI0‖2Ωxy ≤ C1h
4|w0|22,Ωxy

≤ C2h
4ε−4

∫ 1

1−τ

∫ 1

1−τ
e−2α(1−x)/εe−2α(1−y)/εdxdy

≤ C2

4α2
h4ε−2 ≤ C3ε

2

(
lnN
N

)4

;(4.16)

‖w0‖2Ω\Ωxy ≤ C
∫

Ω\Ωxy
e−2α(1−x)/εe−2α(1−y)/εdxdy ≤ C

2α2

ε2

N5
.

‖wI0‖2Ωx∪Ωy ≤ C

 N∑
i=1

He−2α(1−xi)/ε
2N∑

j=N+1

~j

+
N∑
j=1

He−2α(1−yj)/ε
2N∑

i=N+1

hi


≤ C

( ε
α

+ 2H
) τ

N5
.(4.17)

The rest of the argument is the same as for w1. �

Before the proof of the next two theorems, we introduce two integral identities
from [9]: ∫

K

∂

∂x
(w − wI)∂v

∂x
dxdy

=
∫
K

∂3w

∂x∂y2
F (y)

(
∂v

∂x
− 2

3
(y − yK)

∂2v

∂x∂y

)
dxdy,(4.18) ∫

K

∂

∂y
(w − wI)∂v

∂y
dxdy

=
∫
K

∂3w

∂x2∂y
E(x)

(
∂v

∂y
− 2

3
(x− xK)

∂2v

∂x∂y

)
dxdy,(4.19)

where

F (y) =
(y − yK)2 − ~2

K

2
, E(x) =

(x− xK)2 − h2
K

2
.

The proof is provided in the Appendix, for the readers’ convenience.

Theorem 4.3. Let w = w0 +w1 +w2 satisfy the regularity (2.2)–(2.4). Then there
is a constant C, independent of N and ε, such that

|ε(∇(w − wI),∇v)| ≤ C
(
√
ε

(
lnN
N

)2

+
1
N2

+
ε

N1.5

)
‖v‖ε, ∀v ∈ V Nε .
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Proof. (a) K ⊂ Ωx ∪ Ωxy. Recall the regularity (2.2), apply the identity (4.18) to
w1, and we have

ε|
∫
K

∂

∂x
(w1 − wI1)

∂v

∂x
dxdy|

≤ C

∫
K

e−α(1−x)/ε|F (y)|
(
|∂v
∂x
|+ 2

3
|y − yK ||

∂2v

∂x∂y
|
)
dxdy.

Using |F (y)| ≤ H2/8 and the inverse inequality (see (3.2))

‖(y − yK)
∂2v

∂x∂y
‖K ≤ ‖

∂v

∂x
‖K ,

we then obtain

ε|
∫
K

∂

∂x
(w1 − wI1)

∂v

∂x
dxdy| ≤ CH2‖e−α(1−x)/ε‖K‖

∂v

∂x
‖K .

Summing over K ⊂ Ωx ∪Ωxy and applying the Cauchy-Schwarz inequality, we get

(4.20) ε|
∫

Ωx∪Ωxy

∂

∂x
(w1 − wI1)

∂v

∂x
dxdy| ≤ C

N2
‖e−α(1−x)/ε‖‖∂v

∂x
‖ ≤ C√

2αN2
‖v‖ε.

In order to estimate in the y-direction, we use the identity (4.19) and the regu-
larity (2.2) to derive

|
∫
K

∂

∂y
(w1 − wI1)

∂v

∂y
dxdy|

≤ Cε−2

∫
K

e−α(1−x)/ε|E(x)|(|∂v
∂y
|+ 2

3
|x− xK ||

∂2v

∂x∂y
|)dxdy

≤ C

4
ε−2h2‖e−α(1−x)/ε‖K‖

∂v

∂y
‖K .

Here we have used the fact that |E(x)| ≤ h2/8 and the inverse inequality

‖(x− xK)
∂2v

∂x∂y
‖K ≤ ‖

∂v

∂y
‖K .

Summing up all K ⊂ Ωx ∪ Ωxy and applying the Cauchy-Schwarz inequality, we
have

|ε
∫

Ωx∪Ωxy

∂

∂y
(w1 − wI1)

∂v

∂y
dxdy|

≤ Cε−1h2‖e−α(1−x)/ε‖‖∂v
∂y
‖ ≤ C1ε

(
lnN
N

)2

‖v‖ε,(4.21)

which, combined with (4.20), proves

|ε
∫

Ωx∪Ωxy

|∇(w1 − wI1)∇vdxdy| ≤ C
(
ε

(
lnN
N

)2

+
1
N2

)
‖v‖ε.

(b) K ⊂ Ω0 ∪ Ωy. From the regularity of w1 we obtain

‖∂w1

∂x
‖2Ω0∪Ωy ≤ Cε

−2‖e−α(1−x)/ε‖2Ω0∪Ωy ≤
C

εN5
.
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On the other hand, apply the inverse inequality (3.2) to wI0 , recall estimates (4.11),
(4.12), and (4.15) for ‖wI0‖Ω0∪Ωy in Theorem 4.2, and we have∑

K⊂Ω0∪Ωy

‖∂w
I
1

∂x
‖2K ≤

9
H2

∑
K⊂Ω0∪Ωy

‖wI1‖2K ≤ C
(

ε

N3
+

1
N4

)
.

Furthermore,

‖ ∂
∂y

(w1 − wI1)‖2Ω0∪Ωy ≤ C
∑

K⊂Ω0∪Ωy

(
h2
K‖

∂2w1

∂x∂y
‖2K + ~2

K‖
∂2w1

∂y2
‖2K
)

≤ C
∑

K⊂Ω0∪Ωy

H2ε−2‖e−α(1−x)/ε‖2K

≤ C

N2ε2
‖e−α(1−x)/ε‖2Ω0∪Ωy ≤

C

N7ε
.

Altogether, we have (note that
2
√
ε

N2
≤ 1
N2.5

+
ε

N1.5
),∣∣∣∣∣ε

∫
Ω0∪Ωy

∇(w1 − wI1)∇vdxdy
∣∣∣∣∣

≤ ε

(
‖∂w1

∂x
‖Ω0∪Ωy + ‖∂w

I
1

∂x
‖Ω0∪Ωy

)
‖∂v
∂x
‖+ ε‖ ∂

∂y
(w1 − wI1)‖Ω0∪Ωy‖

∂v

∂y
‖

≤ C

(
1

N2.5
+

ε

N1.5

)
‖v‖ε,

which, combined with the estimate in (a), proves the assertion for w1. The argument
for w2 is similar. Now we consider w0.

(a′) When K ⊂ Ωy ∪ Ωxy, apply the identity (4.18) to w0, recall the regularity
(2.4), and we have

ε|
∫
K

∂

∂x
(w0 − wI0)

∂v

∂x
dxdy|

≤ Cε−2

∫
K

e−α(1−x)/εe−α(1−y)/ε|F (y)|
(
|∂v
∂x
|+ 2

3
|y − yK ||

∂2v

∂x∂y
|
)
dxdy

≤ C

4
ε−2h2‖e−α(1−x)/εe−α(1−y)/ε‖K‖

∂v

∂x
‖K .

We have used the inverse inequality and the fact |F (y)| ≤ h2/8. Summing over
K ⊂ Ωy ∪ Ωxy and applying the Cauchy-Schwarz inequality, we derive

ε|
∫

Ωy∪Ωxy

∂

∂x
(w0 − wI0)

∂v

∂x
dxdy|

≤ C

(
lnN
N

)2

‖e−α(1−x)/εe−α(1−y)/ε‖‖∂v
∂x
‖

≤ C

2α
√
ε

(
lnN
N

)2

‖v‖ε.(4.22)

(b′1) When K ⊂ Ωx, from the regularity of w0 we get

‖∂w0

∂x
‖Ωx ≤ Cε−1‖e−α(1−x)/εe−α(1−y)/ε‖Ωx ≤

C

N2.5
.
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We notice that on an element K,
∣∣∣∣∂wI0∂x

∣∣∣∣ is less than the maximum value of
∣∣∣∣∂w0

∂x

∣∣∣∣
on K. Therefore, by (3.16) and (3.17), we have

‖∂w
I
0

∂x
‖2Ωx ≤ Cε−2

N∑
j=1

2N∑
i=N+1

e−2α(1−xi)/εe−2α(1−yj)/εHh

≤ C
ε−1

N5
(ε +N−1),

or

‖∂w
I
0

∂x
‖Ωx ≤ C

(
1

N2.5
+

1
ε1/2N3

)
.

Therefore,

‖ ∂
∂x

(w0 − wI0)‖Ωx ≤ ‖
∂w0

∂x
‖Ωx + ‖∂w

I
0

∂x
‖Ωx ≤ C

(
1

N2.5
+

1
ε1/2N3

)
.

(b′2) When K ⊂ Ω0, from the regularity of w0 we get

‖∂w0

∂x
‖Ω0 ≤ Cε−1‖e−α(1−x)/εe−α(1−y)/ε‖Ω0 ≤

C

N5
.

On the other hand, by the inverse inequality (3.2) and (3.17)

‖∂w
I
0

∂x
‖Ω0 ≤ 3

H
‖wI0‖Ω0

≤ CN

 N∑
i,j=1

e−2α(1−xi)/εe−2α(1−yj)/εH2

1/2

≤ C

N4
(ε +N−1).

Altogether, we have

‖ ∂
∂x

(w0 − wI0)‖Ω0∪Ωx ≤ C
(

1
N2.5

+
1

ε1/2N3
+

ε

N2

)
.

Hence,

ε|
∫

Ω0∪Ωx

∂

∂x
(w0 − wI0)

∂v

∂x
dxdy| ≤ C

(
ε1/2

N2.5
+

1
N3

+
ε1.5

N2

)
‖v‖ε.

This, together with the estimate in (a′), proves

ε|
∫

Ω

∂

∂x
(w0 − wI0)

∂v

∂x
dxdy| ≤ C

(
√
ε

(
lnN
N

)2

+
1
N3

)
‖v‖ε.

The argument for the y-direction is the same. Hence, the assertion is established
for w0. �

Theorem 4.4. Let ū ∈ W 3
∞(Ω) be such that the norm ‖ū‖3,∞ is bounded uniformly

with respect to ε. Then there exists a constant C, independent of ε and N , such
that

(4.23) |(~β · ∇(ū − ūI), v)| ≤ C ln1/2N

N2
‖v‖ε, ∀v ∈ V Nε .
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Proof. Define ΠN ~β, the discrete L2-projection of ~β, by

~βK = ΠN ~β|K =
1

4hK~K

∫
K

~βdxdy.

We see that ΠN ~β is a piecewise constant vector function. It is a standard result
that

(4.24) ‖~β −ΠN ~β‖∞ ≤ CH‖~β‖1,∞.
Now we decompose

(~β · ∇(ū − ūI), v)

= ((~β −ΠN ~β) · ∇(ū− ūI), v) + (ΠN ~β · ∇(ū− ūI), v).(4.25)

For the first term on the right-hand side of (4.25), we have, from the standard
approximation theory and (4.24),

(4.26) |((~β −ΠN ~β) · ∇(ū − ūI), v)| ≤ CH2‖~β‖1,∞|ū|2‖v‖.
For the second term on the right-hand side of (4.25), we write

(ΠN ~β · ∇(ū− ūI), v) =
∑
K

βK1

∫
K

∂

∂x
(ū− ūI)vdxdy

+
∑
K

βK2

∫
K

∂

∂y
(ū− ūI)vdxdy.(4.27)

We only estimate the first term on the right-hand side of (4.27), since the argument
for the second term is similar. Toward this end, we need another integral identity
from [9]:

(4.28)
∫
K

∂

∂x
(ū− ūI)vdxdy =

∫
K

R(ū, v)dxdy +
h2
K

3

(∫
lK2

−
∫
lK4

)
∂2ū

∂x2
vdy,

where

R(ū, v) =
1
3
E(x)(x − xK)

∂3ū

∂x3

∂v

∂x
− h2

K

3
∂3ū

∂x3
v + F (y)

∂3ū

∂x∂y2

·
[
v − (x− xK)

∂v

∂x
− 2

3
(y − yK)

∂v

∂y
+

2
3

(x − xK)(y − yK)
∂2v

∂x∂y

]
.

Again, the proof is provided in the Appendix, (0.10). Through the inverse inequal-
ities (3.2), (3.3) and |E(x)|, |F (y)| ≤ H2/8, we are able to estimate the integral on
K and hence to obtain

(4.29)

∣∣∣∣∣∑
K

βK1

∫
K

R(ū, v)dxdy

∣∣∣∣∣ ≤ CH2
∑
K

|ū|3,K‖v‖0,K ≤ CH2|ū|3‖v‖.

In order to estimate the integral on the vertical edges, we rewrite∑
K

βK1 h
2
K

(∫
lK2

−
∫
lK4

)
∂2ū

∂x2
vdy =

∑
l∈E0

y

(h2
l−β

l−
1 − h2

l+β
l+
1 )
∫
l

∂2ū

∂x2
vdy,

where E0
y is the set of all interior vertical element edges, and the index l− (l+)

indicates function values or element sizes on the left (right) of l. We further express

h2
l−β

l−
1 − h2

l+β
l+
1 = β

l−
1 (h2

l− − h
2
l+) + h2

l+(βl−1 − β
l+
1 ).
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Recall that we are using the piecewise uniform mesh; therefore h2
l−
−h2

l+
= H2−H2

(or h2 − h2) for most of the edges except on the transition line

L = {(1− τ, y) : 0 ≤ y ≤ 1},
where h2

l−
− h2

l+
= H2 − h2. Hence,

∑
K

βK1 h
2
K

(∫
lK2

−
∫
lK4

)
∂2ū

∂x2
vdy

=
∑
l∈L

β
l−
1 (H2 − h2)

∫
l

∂2ū

∂x2
vdy +

∑
l∈E0

y

h2
l+(βl−1 − β

l+
1 )
∫
l

∂2ū

∂x2
vdy

= I + II.(4.30)

The estimate of II is straightforward:

|II| ≤
∑
l∈E0

y

h2
l+C

′H‖β1‖1,∞‖ū‖2,l‖v‖0,l

≤ C
∑
l∈E0

y

h2
l+Hh

−1
l−
‖ū‖3,Kl‖v‖0,Kl ≤ CH2‖ū‖3‖v‖.(4.31)

Here we have used the imbedding inequalities

‖ū‖2,l ≤
C√
hl−
‖ū‖3,Kl , ‖v‖0,l ≤

3√
hl−
‖v‖0,Kl .

Note that H ≥ hl− ≥ hl+ ≥ h. For I we have

|I| ≤ ‖β1‖∞H2
∑
l∈L

∣∣∣∣∫
l

∂2ū

∂x2
vdy

∣∣∣∣
= ‖β1‖∞H2

2N∑
j=1

∣∣∣∣∣
∫ yj

yj−1

(
∂2ū

∂x2
v

)
(1− τ, y)dy

∣∣∣∣∣
= ‖β1‖∞H2

2N∑
j=1

∣∣∣∣∣
∫ yj

yj−1

2N∑
i=N+1

∫ xi

xi−1

∂

∂x

(
∂2ū

∂x2
v

)
dxdy

∣∣∣∣∣
≤ C

N2

2N∑
j=1

2N∑
i=N+1

∫
Ωij

∣∣∣∣∂3ū

∂x3
v +

∂2ū

∂x2

∂v

∂x

∣∣∣∣ dxdy
≤ C‖ū‖3,∞

N2

∫
Ωx∪Ωxy

∣∣∣∣v +
∂v

∂x

∣∣∣∣ dxdy
≤ C‖ū‖3,∞

N2

(∫
Ωx∪Ωxy

∣∣∣∣v +
∂v

∂x

∣∣∣∣2 dxdy
)1/2(∫

Ωx∪Ωxy

dxdy

)1/2

≤ C‖ū‖3,∞
N2

‖v‖1τ1/2 ≤ C̄ ln1/2N

N2
‖v‖ε.(4.32)

Substituting the estimates for I and II into (4.32), we obtain∣∣∣∣∣∑
K

βK1 h
2
K

(∫
lK2

−
∫
lK4

)
∂2ū

∂x2
vdy

∣∣∣∣∣ ≤ C
√

lnN
N2

‖ū‖3,∞‖v‖ε.
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This, combined with (4.29), finishes the estimate for the first term on the right-hand
side of (4.27). The estimate of the second term on the right-hand side of (4.27) is
similar. Hence, the proof of the theorem is completed. �

5. Main results

Before introducing main theorems, we rewrite the bilinear form for R ∈ H1
0 (Ω):

Bε(R, v) = ε(∇R,∇v) + (~β · ∇R, v) + (cR, v)

= ε(∇R,∇v)− (R, ~β · ∇v) + (R, (c−∇ · ~β)v).(5.1)

We shall use whichever of these two expressions is more convenient.
Again, all results in this section are valid for ε ∈ (0, 1] and N ≥ 2, as mentioned

in Section 4. We shall not repeat this statement in each theorem.

Theorem 5.1. Let u be the solution of (1.1)–(1.2) that satisfies the regularity
(2.1)–(2.4), and let uI ∈ V Nε be the bilinear interpolation of u on the Shishkin
mesh. Then there is a constant C, independent of ε and N , such that

(5.2) |Bε(u− uI , v)| ≤ C
((

lnN
N

)2

+
1
N

)
‖v‖ε, ∀v ∈ V Nε ;

in addition, if |ū|3,∞ is bounded by a constant independent of ε, then

(5.3) |Bε(u− uI , v)| ≤ C
((

lnN
N

)2

+
ε

N1.5

)
‖v‖ε.

Proof. In light of Theorems 4.3 and 4.2, for any v ∈ V Nε we have

|ε(∇(w − wI),∇v)| ≤ C

(
√
ε

(
lnN
N

)2

+
1
N2

+
ε

N1.5

)
‖v‖ε,

|(w − wI , (c−∇ · ~β)v)| ≤ ‖w − wI‖‖(c−∇ · ~β)v‖

≤ C

(
√
ε

(
lnN
N

)2

+
1
N3

)
‖v‖,

|(w − wI , ~β · ∇v)Ω\S | ≤ ‖w − wI‖Ω\S‖~β · ∇v‖

≤ C
√
ε

(
lnN
N

)2

|v|1 ≤ C
(

lnN
N

)2

‖v‖ε,

|(w − wI , ~β · ∇v)S | ≤ 2‖w‖S,∞
∑
K⊂S

∫
K

|β · ∇v|

≤ C

N2.5

∑
K⊂S

‖v‖K ≤
C1

N2.5
‖v‖SN1/2 ≤ C1

N2
‖v‖.

Here, we have used the inverse inequality for K ⊂ S:∫
K

|β · ∇v| ≤ C
(∫

K

|∇v|2
)1/2

|K|1/2 ≤ CN‖v‖KN−1 = C‖v‖K .

Setting R = w − wI in (5.1), we have

(5.4) |Bε(w − wI , v)| ≤ C
((

lnN
N

)2

+
ε

N1.5

)
‖v‖ε, ∀v ∈ V Nε .
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For ū, if the stronger regularity condition |ū|3,∞ ≤ C holds, we use (4.18), (4.19),
and the inverse inequality (3.2) to derive

|ε(∇(ū − ūI),∇v)| ≤ 3ε
∑
K

(
h2
K‖

∂3ū

∂x2∂y
‖+ ~2

K‖
∂3ū

∂x∂y2
‖
)
‖∇v‖ ≤ C ε

N2
|v|1.

By Theorem 4.4, we have

|(~β · ∇(ū − ūI), v)| ≤ C ln1/2N

N2
‖v‖ε.

Furthermore, standard approximation theory gives us

|(ū − ūI , cv)| ≤ C

N2
|ū|2‖v‖.

Hence, we have

(5.5) |Bε(ū − ūI , v)| ≤ C

N2
(ε|v|1 + ‖v‖) +

C ln1/2N

N2
‖v‖ε ≤

C1 ln1/2N

N2
‖v‖ε.

The estimate (5.3) follows from (5.4)–(5.5). If ū satisfies only (2.1), then

|(~β · ∇(ū − ūI), v)| ≤ C

N
‖ū‖2,Ω‖v‖,

and we obtain (5.2). �
Theorem 5.2. Let u be the solution of (1.1)–(1.2) that satisfies the regularity
(2.1)–(2.4), and let uI ∈ V Nε be the bilinear interpolation of u on the Shishkin
mesh. Then there is a constant C, independent of ε and N , such that

(5.6) ‖u− uI‖ε,N ≤ C
((

lnN
N

)2

+
√
ε

N

)
;

in addition, if |ū|3,∞ has a bound independent of ε, then

(5.7) ‖u− uI‖ε,N ≤ C
(

lnN
N

)2

.

Proof. From Theorems 4.1 and 4.2, we have

‖w − wI‖ε,N ≤ C
(

lnN
N

)2

.

Applying (3.9) to ū when |ū|3,∞ ≤ C yields∣∣∣∣ ∂∂x(ū− ūI)(xK , yK)
∣∣∣∣ ≤ C

2hK

∫ hK

−hK
(t2/2 + |t|~K + ~2

K/2)dt

= C(h2
K/6 + hK~K/2 + ~2

K/2).

Similarly, ∣∣∣∣ ∂∂y (ū− ūI)(xK , yK)
∣∣∣∣ ≤ C(h2

K/2 + hK~K/2 + ~2
K/6).

Therefore,

|ū − ūI |ε,N ≤ C
√
ε

N2
.

Furthermore, the standard approximation gives

‖ū− ūI‖ ≤ C

N2
.
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The estimate (5.7) is then established by summing up the analysis for w and ū.
When ū only satisfies (2.1), (5.6) is obtained. �

Remark 5.1. Theorem 5.2 states that the interpolation uI is superconvergent to u
in the discrete ε-weighted energy norm if ū satisfies a stronger regularity condition.
This fact will be combined with Theorem 5.1 to establish the main result of this
paper, which is stated in the following theorem.

Theorem 5.3. Let uN ∈ V Nε be the finite element approximation of the solution u
of (1.1)–(1.2) that satisfies the regularity (2.1)–(2.4). Then there is a constant C,
independent of ε and N , such that

(5.8) ‖u− uN‖ ≤ ‖u− uN‖ε,N ≤ C
((

lnN
N

)2

+
1
N

)
;

in addition, if |ū|3,∞ has a bound independent of ε, then

(5.9) ‖u− uN‖ ≤ ‖u− uN‖ε,N ≤ C
((

lnN
N

)2

+
ε

N1.5

)
.

Proof. When ū satisfies the stronger regularity assumption |ū|3,∞ ≤ C, we have,
by recalling the coercivity (2.5) and Theorem 5.1,

C1‖uN − uI‖2ε ≤ Bε(uN − uI , uN − uI)

= Bε(u− uI , uN − uI) ≤ C
((

lnN
N

)2

+
ε

N1.5

)
‖uN − uI‖ε.

Canceling ‖uN − uI‖ε on both sides yields

‖uN − uI‖ε ≤ C
((

lnN
N

)2

+
ε

N1.5

)
.

Finally, applying the triangle inequality, Theorem 5.2, and the stability inequality
(3.4), we derive

‖u− uN‖ε,N ≤ ‖u− uI‖ε,N + ‖uI − uN‖ε,N

≤ C

(
lnN
N

)2

+ ‖uI − uN‖ε ≤ C
((

lnN
N

)2

+
ε

N1.5

)
.

The error bound will include N−1 when ū satisfies only (2.1). �

Remark 5.2. Under the stronger regularity assumption, the error bound

‖u− uN‖ε,N ≤ C
((

lnN
N

)2

+
ε

N1.5

)
is a superconvergent result. Note that the optimal error bound for the bilinear
interpolation uI is

‖u− uI‖ε ≤ C
lnN
N

.

In the proof, we have also obtained

‖uI − uN‖ε ≤ C
((

lnN
N

)2

+
ε

N1.5

)
,
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which means that the finite element solution and the bilinear interpolation are
“superclose” in the ε-weighted energy norm. This is the same as in problems without
boundary layers.

Theorem 5.4. Let uN ∈ V Nε be the finite element approximation of the solution
u of (1.1)–(1.2) that satisfies the regularity (2.1)–(2.4). Then for the mesh point
(xm, yn) ∈ Ω̄x ∪ Ω̄y, we have

(5.10) |(u− uN )(xm, yn)| ≤ C
(

ln5/2N

N3/2
+

ln1/2 N

N1/2

)
;

if, in addition, |ū|3,∞ has a bound independent of ε, then

(5.11) |(u − uN)(xm, yn)| ≤ C
(

ln5/2N

N3/2
+
ε ln1/2N

N

)
,

where C is a constant independent of ε and N .

Proof. Define the Green’s function G by

Bε(v,G) = v(xm, yn) ∀v ∈ V Nε .

Then we have

(u− uN )(xm, yn) = (uI − uN)(xm, yn) = Bε(uI − uN , G) = Bε(uI − u,G).

When |ū|3,∞ ≤ C, by Theorem 5.1, we derive

|(u− uN )(xm, yn)| ≤ C
((

lnN
N2

)2

+
ε

N1.5

)
‖G‖ε ≤ C

(
ln5/2 N

N3/2
+
ε ln1/2 N

N

)
.

Here we have used the inequality

‖G‖ε ≤ CN1/2 ln1/2 N,

which is proved by Stynes and O’Riordan [21] under the conditions xm ≥ 1− τ and
yn ≤ 1− τ (or xm ≤ 1− τ and yn ≥ 1− τ).

When ū satisfies only (2.1), the second term changes to N−1/2 ln1/2N . �

Remark 5.3. When ε2 < 1/N , which is not a real restriction in practice, the error
bounds N−2 ln2N in (5.9) and N−3/2 ln5/2 N in (5.11) will be the dominant terms.
Numerical tests show that the first error bound is optimal (in the sense that the
logarithmic term is not removable), while the second error bound is off by N1/2.

6. Numerical results

The purpose of this section is to demonstrate that the error estimate for ap-
proximating the boundary layer terms is sharp. In order to do so, we design a
special case which isolates the boundary layer behavior. Specifically, we choose
~β(x, y) = (1, 1), c(x, y) = 0, and

f(x, y) = (x+ y)(1 − e−(1−x)/εe−(1−y)/ε) + (x − y)(e−(1−y)/ε − e−(1−x)/ε).

The exact solution is

u(x, y) = xy(1− e−(1−x)/ε)(1 − e−(1−y)/ε),
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Figure 3. Error distri-
bution of the Shishkin
mesh, ε = .001, N = 16,
κ = 2

Figure 4. Error distri-
bution of the Shishkin
mesh, ε = .001, N = 16,
κ = 2

Figure 5. Error distri-
bution of the Shishkin
mesh, ε = .001, N = 16,
κ = 2.5

Figure 6. Error distri-
bution of the Shishkin
mesh, ε = .001, N = 16,
κ = 2.5

which has a decomposition u = ū+ w0 + w1 + w2 with

ū(x, y) = xy ∈ V Nε , w0(x, y) = xye−(1−x)/εe−(1−y)/ε,

w1(x, y) = −xye−(1−x)/ε, w2(x, y) = −xye−(1−y)/ε.

By Theorem 5.3, the error in the discrete ε-weighted energy norm is of order
N−2 ln2N . In all numerical testing cases, errors are calculated in the discrete
maximum norm

|u− uN |∞,N = max
1≤i,j≤2N−1

|(u − uN)(xi, yj)|

and in the discrete ε-weighted semi-energy norm |u−uN |ε,N , which is the dominant
term in the discrete ε-weighted energy norm ‖u − uN‖ε,N . The computation was
performed by Matlab 5 on a DEC AlphaStation 200 4/166. Tables 1–3 list the
errors for ε = .01, .001, .0001 and N= 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, for the cases
κ = 1.5, 2, 2.5. These data are plotted on log-log chart in Figures 7–12, where
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Figure 7. Error: dis-
crete ε-weighted semi-
energy norm, κ = 2
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Figure 8. Error: dis-
crete max norm, κ = 2
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Figure 9. Error: dis-
crete ε-weighted semi-
energy norm, κ = 2.5
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Figure 10. Error: dis-
crete max norm, κ = 2.5

d represents ε. In all cases, an O(N−2 ln2N) convergent rate is clearly shown for
|u− uN |ε,N . This confirms that the theoretical error bound (5.9) is sharp.

In the cases κ = 2, 2.5, convergence is insensitive to ε in the way that the error
curves in the discrete ε-weighted semi-energy norm are almost identical for different
d. In the case κ = 1.5 we can see a slight dependence of the curves on d, and this
dependence is more significant in the discrete maximum norm (see Figure 12). We
see that convergent rates in the discrete maximum norm are almost the same as in
the discrete ε-weighted semi-energy norm. In this aspect, our theoretical estimates
in Theorem 5.4 are not optimal; in particular, the error bound (5.11) is off by N1/2.

As far as the discrete ε-weighted semi-energy norm and the discrete maximum
norm are concerned, κ = 2 is slightly better than κ = 2.5. We see that N = 48 for
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Figure 11. Error: dis-
crete ε-weighted semi-
energy norm, κ = 1.5
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Figure 12. Error: the
discrete max norm, κ =
1.5

κ = 2 is comparable with N = 64 for κ = 2.5. However, their error distributions
are different. The errors (u − uN)(xi, yj) at the grid points are plotted in Figures
3–6 with ε = .001 and N = 16 for κ = 2, κ = 2.5, respectively. Figures 3 and 5
are viewed in the flow direction, while Figures 4 and 6 are viewed against the flow
direction. We see that for κ = 2, the error is “balanced” while for κ = 2.5 the error
is more or less “one-sided” in the sense u− uN is usually less than zero.

Remark 6.1. We have tested different values of ~β(x, y) and c(x, y). They behave
similarly to the special choice ~β(x, y) = (1, 1) and c(x, y) = 0 as long as β1 6= 0 and
β2 6= 0. Numerical experiments will behave in a similar way for variable coefficients
when there is no internal layer formed.

Table 1. Error in the discrete norms, κ = 1.5

ε = 10−2 ε = 10−3 ε = 10−4

N |u− uN |ε,N |u− uN |∞,N |u− uN |ε,N |u− uN |∞,N |u− uN |ε,N |u− uN |∞,N
3 .069544 .211103 .058631 .277140 .057017 .285969

4 .054962 .143948 .049951 .182544 .049092 .187561

6 .032918 .077483 .028302 .105042 .027127 .109253

8 .022644 .048558 .019461 .070840 .018132 .074072

12 .012576 .023374 .011722 .039897 .010387 .042289

16 .007769 .013011 .008193 .026247 .007022 .028198

24 .003576 .005048 .004847 .014280 .004069 .015761

32 .001984 .002339 .003275 .009130 .002780 .010366

48 .000896 .000688 .001841 .004734 .001633 .005699

64 .000539 .000408 .001208 .002904 .001113 .003709
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Table 2. Error in the discrete norms, κ = 2

ε = 10−2 ε = 10−3 ε = 10−4

N |u− uN |ε,N |u− uN |∞,N |u− uN |ε,N |u− uN |∞,N |u− uN |ε,N |u− uN |∞,N
3 .041926 .103412 .036897 .132076 .036193 .135697

4 .035659 .062306 .035387 .077390 .035291 .079156

6 .022102 .028332 .022249 .038271 .022211 .039622

8 .015747 .015601 .016005 .022974 .016004 .023912

12 .009561 .007428 .009767 .010876 .009808 .011487

16 .006579 .005227 .006721 .006288 .006773 .006742

24 .003791 .003023 .003860 .003068 .003903 .003188

32 .002527 .002019 .002566 .002039 .002591 .002042

48 .001400 .001120 .001416 .001131 .001423 .001132

64 .000910 .000727 .000917 .000733 .000919 .000734

Table 3. Error in the discrete norms, κ = 2.5

ε = 10−2 ε = 10−3 ε = 10−4

N |u− uN |ε,N |u− uN |∞,N |u− uN |ε,N |u− uN |∞,N |u− uN |ε,N |u− uN |∞,N
3 .041284 .049963 .039916 .063262 .039749 .064889

4 .039952 .033921 .040671 .034539 .040743 .034975

6 .028965 .025464 .029407 .025703 .029470 .025745

8 .022022 .018959 .022273 .019080 .022329 .019095

12 .014126 .011754 .014197 .011889 .014240 .011903

16 .009959 .008182 .009975 .008236 .010007 .008242

24 .005855 .004745 .005849 .004779 .005864 .004783

32 .003929 .003168 .003922 .003193 .003929 .003195

48 .002185 .001753 .002180 .001769 .002182 .001771

64 .001420 .001136 .001417 .001147 .001417 .001148

Appendix

Proof of (4.18) and (4.19) (see Figure 2). In order to simplify the notation, we use
indices like ux, uxy, · · · to represent the partial derivatives and omit the dxdy from
the integration. We express∫

K

(w − wI)xvx

= [vx − (y − yK)vxy ]
∫
K

(w − wI)x + vxy

∫
K

(w − wI)x(y − yK).(0.1)

Note that vxy and
vx(x, y)− (y − yK)vxy = vx(xK , yK)

are constants.
(a) For the first term on the right-hand side of (0.1), we have, by inserting

F ′′(y) = 1,∫
K

(w − wI)x =
∫
K

F ′′(y)(w − wI)x

=

(∫
lK1

−
∫
lK3

)
F ′(y)(w − wI)xdx−

∫
K

F ′(y)(w − wI)xy.
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Observe that F ′(yK + ~K) = ~K is a constant on lK1 , and we have

(0.2)
∫
lK1

F ′(y)(w − wI)xdx = ~K(w − wI)(x, yK + ~K)|xK+hK
xK−hK = 0,

since wI is the bilinear interpolation of w. Similarly,∫
lK3

F ′(y)(w − wI)xdx = 0.

Therefore,∫
K

(w − wI)x = −
∫
K

F ′(y)(w − wI)xy

= −
(∫

lK1

−
∫
lK3

)
F (y)(w − wI)xy +

∫
K

F (y)(w − wI)xyy

=
∫
K

F (y)wxyy,(0.3)

since F (y) = 0 on lK1 ∪ lK3 and wIxyy = 0 in K.
(b) For the second term on the right-hand side of (0.1), we have, by inserting

y − yK = (F 2(y))′′′/6,∫
K

(w − wI)x(y − yK) =
1
6

∫
K

(F 2(y))′′′(w − wI)x

=
1
6

(∫
lK1

−
∫
lK3

)
(F 2(y))′′(w − wI)xdx −

1
6

∫
K

(F 2(y))′′(w − wI)xy.

Since
(F 2(y))′′ = 2F ′(y)2 + 2F (y)F ′′(y) = 2~2

K

is a constant on lK1 ∪ lK3 , following the same argument as in (0.2), we derive(∫
lK1

−
∫
lK3

)
(F 2(y))′′(w − wI)xdx = 0.

Hence, ∫
K

(w − wI)x(y − yK) = −1
6

∫
K

(F 2(y))′′(w − wI)xy

= −1
6

(∫
lK1

−
∫
lK3

)
(F 2(y))′(w − wI)xydx+

1
6

∫
K

(F 2(y))′(w − wI)xyy

=
1
3

∫
K

F (y)(y − yK)wxyy.(0.4)

Note that (F 2(y))′ = 0 on lK1 ∪ lK3 .
Substituting (0.3) and (0.4) into (0.1) yields∫

K

(w − wI)xvx =
∫
K

wxyyF (y)[vx − (y − yK)vxy +
1
3

(y − yK)vxy]

=
∫
K

wxyyF (y)[vx −
2
3

(y − yK)vxy].

This finishes the proof of (4.18). The proof of (4.19) is similar. �
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Proof of (4.28). Using the Taylor expansion of v on K, we express∫
K

(w − wI)xv =
∫
K

(w − wI)x[v(xK , yK) + (x− xK)v(xK , yK)

+(y − yK)vy(xK , yK) + (x− xK)(y − yK)vxy].(0.5)

Using x− xK = E′(x), we derive∫
K

(w − wI)x(x− xK) =
∫
K

(w − wI)xE′(x)

=

(∫
lK2

−
∫
lK4

)
(w − wI)xE(x)dy −

∫
K

(w − wI)xxE(x)

= −
∫
K

wxxE(x),(0.6)

since E(x) = 0 on lK2 ∪ lK4 and wIxx = 0 in K. In addition, using y − yK = F ′(y),
we have ∫

K

(w − wI)x(x− xK)(y − yK) =
∫
K

(w − wI)xE′(x)F ′(y)

=

(∫
lK2

−
∫
lK4

)
(w − wI)xE(x)F ′(y)dy −

∫
K

(w − wI)xxE(x)F ′(y)

= −
(∫

lK1

−
∫
lK3

)
wxxE(x)F (y)dx +

∫
K

wxxyE(x)F (y),(0.7)

since F (y) = 0 on lK1 ∪ lK3 .
Applying (0.3), (0.6), (0.4), and (0.7) to the terms on the right-hand side of

(0.5), respectively, we have∫
K

(w − wI)xv =
∫
K

F (y)wxyyv(xK , yK)−
∫
K

E(x)wxxvx(xK , yK)

+
1
3

∫
K

F (y)(y − yK)wxyyvy(xK , yK) +
∫
K

E(x)F (y)wxxyvxy.(0.8)

Further, for the second term on the right-hand side of (0.8), we use the identity

E(x) =
1
6
E2(x)′′ − 1

3
h2
K

to derive ∫
K

E(x)wxxvx(xK , yK) =
∫
K

E(x)wxx[vx − (y − yK)vxy]

=
∫
K

[
1
6
E2(x)′′ − 1

3
h2
K ]wxxvx −

∫
K

E(x)F ′(y)wxxvxy

= − 1
6

∫
K

E2(x)′wxxxvx −
h2
K

3

(∫
lK2

−
∫
lK4

)
wxxvdy +

h2
K

3

∫
K

wxxxv

+
∫
K

E(x)F (y)wxxyvxy.(0.9)
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Finally, substituting

v(xK , yK) = v(x, y)− (x− xK)v(x, y)− (y − yK)vy(x, y) + (x− xK)(y − yK)vxy,

vy(xK , yK) = vy(x, y)− (x − xK)vxy,

and (0.9) into (0.8), we derive∫
K

(w − wI)xv

=
∫
K

(
F (y)wxyy[v − (x− xK)vx −

2
3

(y − yK)vy +
2
3

(x − xK)(y − yK)vxy ]

+
1
3
E(x)(x − xK)wxxxvx −

h2
K

3
wxxxv

)
+
h2
K

3

(∫
lK2

−
∫
lK4

)
wxxvdy,(0.10)

which is (4.28). �
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