
VOLUME 84, NUMBER 11 P H Y S I C A L R E V I E W L E T T E R S 13 MARCH 2000
Finite-Element Theory of Transport in Ferromagnet–Normal Metal Systems

Arne Brataas,* Yu. V. Nazarov, and Gerrit E. W. Bauer
Department of Applied Physics and Delft Institute of Microelectronics and Submicrontechnology, Delft University of Technology,

Lorentzweg 1, 2628 CJ Delft, The Netherlands
(Received 4 June 1999)

We formulate a theory of spin dependent transport in an electronic circuit involving ferromagnetic
elements with noncollinear magnetization which is based on the conservation of spin and charge current.
The theory considerably simplifies the calculation of the transport properties of complicated ferromag-
net–normal metal systems. We illustrate the theory by considering a novel three-terminal device.

PACS numbers: 72.10.Bg, 75.70.Pa
Electron transport in hybrid systems involving ferro-
magnetic and normal metals has been shown to exhibit
new phenomena due to the interplay between spin and
charge. The giant magnetoresistance (GMR) effect in
metallic magnetic multilayers is a result of spin dependent
scattering [1]. The manganese oxides exhibit a colossal
magnetoresistance [2] due to a ferromagnetic phase
transition. The dependence of the current on the relative
angle between the magnetization directions has been
reported in transport through tunnel junctions between
ferromagnetic reservoirs [3]. Transport involving ferro-
magnets with noncollinear magnetizations has also been
studied theoretically in Ref. [4]

Johnson and Silsbee demonstrated that spin dependent
effects are also important in systems with more than two
terminals [5]. Their ferromagnetic-normal-ferromagnetic
(F-N-F ) device manifests a transistor effect that depends
on the relative orientation of the magnetization directions.
Recently, another three-terminal spin electronics device
was realized; a ferromagnetic single-electron transistor [6].
In this case the current depends on the relative orientation
of the magnetization of the source, the island and the drain,
and of the electrostatic potential of the island tuned by a
gate voltage [7].

These examples illustrate that devices with ferromag-
netic order deserve a thorough theoretical investigation.
Inspired by the circuit theory of Andreev reflection [8],
we present a finite-element theory for transport in hybrid
ferromagnetic–normal metal systems based on the conser-
vation of charge and spin current. We demonstrate that
spin transport can be understood in terms of four general-
ized conductances for each contact between a ferromagnet
and a normal metal. The relations between these conduc-
tance parameters and the microscopic details of the con-
tacts are derived and calculated for diffuse, tunnel, and
ballistic contacts. Finally, we illustrate the theory by com-
puting the current through a novel three-terminal device.

Let us first explain the basic idea of the finite-element
theory of spin transport. The system can be divided into
(normal or ferromagnetic) “nodes,” where each node is
characterized by the appropriate generalization of the dis-
tribution function, viz. a 2 3 2 distribution matrix in spin
0031-9007�00�84(11)�2481(4)$15.00
space. The nodes are connected to each other and to the
reservoirs by “contacts” which limit the total conductance
but are arbitrary otherwise. The charge and spin current
through the contacts is related to the distribution matri-
ces of the adjacent nodes. Provided these relations are
known, we can solve for the 2 3 2 distribution matrices in
the nodes under the constraint of conservation of spin and
charge current in each node and thus determine the trans-
port properties of the system. These macroscopic relations
for each contact can be found in terms of the microscopic
scattering matrices in the spirit of the Landauer-Büttiker
formalism [9]. The scattering matrices can be calculated
using different models such as a two-spin band model or
realistic band structures and for various contacts, e.g., bal-
listic or diffuse wires or tunnel junctions. Phase coherent
scattering as in resonant tunneling devices and effects like
the Coulomb blockade can be included, in principle, by
calling the double barrier a “contact” with complex scatter-
ing properties, but these complications will be disregarded
in the following.

The device depicted in Fig. 1 will serve to illustrate our
approach. Several contacts attach a normal metal node to
(ferromagnetic or normal) metallic reservoirs. We assume
that the resistances of the contacts are much larger than the
resistance of the node. This is fulfilled when the area of
the contact is sufficiently smaller than the cross section of
the node or when the contacts are in the tunneling regime.
The current through the system and the distribution ma-
trix in the node are determined by the properties of the
contacts. The reservoirs are supposed to be large and in
local equilibrium with a chemical potential ma , where the
subscript a labels the reservoirs. The energy dependent
distribution matrix in the (ferromagnetic) reservoir is then
diagonal in spin space f̂F

a �e� � 1̂f�e, ma�, where the caret
denotes a 2 3 2 matrix in spin space, 1̂ is the unit matrix,
and f�e, ma� is the Fermi-Dirac distribution function. The
direction of the magnetization is denoted by the unit vec-
tor ma . When the chemical potentials of the reservoirs
are not identical, the normal metal node is not in equilib-
rium, and there can be a spin accumulation on the normal
metal node. The distribution is therefore represented by
a 2 3 2 matrix in spin space f̂N �e�, which allows a spin
© 2000 The American Physical Society 2481
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FIG. 1. A normal node connected to ferromagnetic reservoirs
characterized by the chemical potentials ma and the magnetiza-
tion vector ma . The distribution matrix in the normal node f̂N

can be found from the Kirchoff rules for the spin currents îa .

accumulation with arbitrary direction of the spins. The
normal metal node is considered to be large and chaotic
either because of impurity scattering inside the node or
because of scattering at irregularities of its boundary. The
distribution matrix inside the node is therefore isotropic in
momentum space and depends only on the energy of the
particle.

The current through a contact is determined by its scat-
tering matrix, the Fermi-Dirac distribution function of the
adjacent ferromagnetic reservoir and the 2 3 2 nonequilib-
rium distribution matrix in the normal node. The current
is evaluated close to the contact on the normal side. The
2 3 2 current in spin space per energy interval at energy
e leaving the node is

h
e2 î �

X
nm

�r̂nmf̂N �r̂nm�� 1 t̂nmf̂F�t̂nm���

2 Mf̂N , (1)

where M is the number of propagating channels, r̂nm�e�
is the reflection matrix for an electron coming from the
normal metal in mode m being reflected to mode n, and
t̂nm�e� is the transmission matrix for an electron from the
ferromagnet in mode m transmitted to the normal metal in
mode n. The total current is obtained by integrating over
the energies, Î �

R
de î�e�. The current in the contact is

thus completely determined by the scattering matrix of the
contact, and the distribution matrices.

The 2 3 2 nonequilibrium distribution matrix in the
node in the stationary state is uniquely determined by cur-
rent conservation

X
a

îa �

µ
≠f̂N

≠t

∂
rel

, (2)

where a labels different contacts and the term on the
right-hand side describes spin relaxation in the normal
node. The right-hand side of Eq. (2) can be set to zero
when the spin current in the node is conserved, i.e.,
when an electron spends much less time on the node than
the spin-flip relaxation time tsf. If the size of the node
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in the transport direction is smaller than the spin-flip
diffusion length lsf �

p
Dtsf, where D is the diffusion

coefficient, then the spin relaxation in the node can be
introduced as �≠f̂N�≠t�rel � �1̂ Tr� f̂N ��2 2 f̂N ��tsf. If
the size of the node in the transport direction is larger
than lsf the simplest finite-element transport theory fails
and we have to use a more complicated description with
a spatially dependent spin distribution function [10].
Equation (2) gives the 2 3 2 distribution matrix of the
node in terms of Fermi-Dirac distribution functions of the
reservoirs. These distribution functions are determined by
voltages of the reservoirs. Those voltages are either set
by voltage sources or determined by conventional circuit
theory.

We will now demonstrate that the relation (1) between
the current and the distributions has a general parame-
trized form. Spin-flip processes in the contacts are dis-
regarded, so that the reflection matrix for an incoming
electron from the normal metal can be written as r̂nm �P

s ûsrnm
s , where s � ", #, rnm

s are the spin dependent re-
flection coefficients in the basis where the spin quantiza-
tion axis is parallel to the magnetization in the ferromag-
net, û" � �1̂ 1 ŝ ? m��2, û# � �1̂ 2 ŝ ? m��2, and ŝ is
a vector of Pauli matrices. Similarly, for the transmission
matrix t̂nm�t̂nm�� �

P
s ûsjtnm

s j2 , where tnm
s are the spin

dependent transmission coefficients. Using the unitarity
of the scattering matrix, we find that the general form of
the relation (1) reads

î � G"û"� f̂F 2 f̂N �û" 1 G#û#� f̂F 2 f̂N �û#

2 G"#û"f̂N û# 2 �G"#��û#f̂N û", (3)

where we have introduced the spin dependent conduc-
tances Gs

Gs �
e2

h

∑
M 2

X
nm

jrnm
s j2

∏
� 3D

e2

h

X
nm

jtnm
s j2 (4)

and the mixing conductance

G"# �
e2

h

∑
M 2

X
nm

rnm
" �rnm

# ��

∏
. (5)

We thus see that the relation between the current through
a contact and the distribution in the ferromagnetic reser-
voir and the normal metal node is determined by four con-
ductances, the two real spin conductances (G", G#) and
the real and imaginary parts of the mixing conductance
G"#. These contact-specific parameters can be obtained by
microscopic theory or from experiments. The spin con-
ductances G" and G# have been used in descriptions of
spin transport for a long time [1]. The mixing conduc-
tance is a new concept which is relevant for transport be-
tween noncollinear ferromagnets. The mixing conductance
rotates spins around the magnetization axis of the ferro-
magnet. Note that although the mixing conductance is a
complex number, the 2 3 2 current in spin space is Her-
mitian and, consequently, the current and the spin current
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in Eq. (3) are real numbers. Generally we can show that
ReG"# $ �G" 1 G#��2. Below, we present explicit results
for the conductances when the contacts are in the diffuse,
tunneling, and ballistic regimes.

For a diffuse contact, Eq. (3) can quite generally be
found by the Green function technique developed in
Ref. [11]. Here we use a much simpler approach based
on the diffusion equation. On the normal metal side of the
contact the boundary condition to the diffusion equation
is set by the distribution matrix in the node f̂N . On the
ferromagnet side of the contact the boundary condition is
set by the equilibrium distribution function in the reservoir
fF 1̂. In a ferromagnetic metal, transport of spins non-
collinear to the local magnetization leads to a relaxation
of the spins since electrons with different spins are not
coherent. This causes an additional resistance, which as
other interface related excess resistances, is assumed to be
small compared to the diffuse bulk resistance. Sufficiently
far from the ferromagnet-normal metal interface the
distribution function of the electronic states in the ferro-
magnet can always be represented by two components.
Only the spin current parallel to the magnetization of the
ferromagnet is conserved. We denote the cross section of
the contact A, the length of the ferromagnetic part of the
contact LF , the length of the normal part of the contact
LN , the (spin dependent) resistivity in the ferromagnet
rFs, the resistivity in the normal metal rN , so that the
(spin dependent) conductance of the ferromagnetic part of
the contact is GDFs � A��rFsLF� and the conductance
of the normal part of the contact is GDN � A��rNLN �.
Solving the diffusion equation =2f̂ � 0 on the normal
and ferromagnetic side with the boundary conditions
above, we find the current through a diffuse contact:

îD � GD"û"� f̂F 2 f̂N �û" 1 GD#û#� f̂F 2 f̂N �û#

2 GDN �û"f̂N û# 1 û#f̂N û"� , (6)

where the total spin dependent conductance is 1�GDs �
1�GDFs 1 1�GDN . This result can be understood as a
specific case of the generic Eq. (3) with G" � GD", G# �
GD#, and G"# � GDN . The mixing conductance in the
diffuse limit therefore depends on the conductance of the
normal part of the contact only, which is a consequence of
the relaxation of spins noncollinear to the magnetization
direction in the ferromagnet.

For a ballistic contact, we use a simple semiclassical
model proposed in Ref. [12]. In this model the channels
are either completely reflected or transmitted, with N " and
N # being the number of transmitted channels for different
spin directions. Substituting this in (1) we find that the
spin conductance GB" � �e2�h�N ", GB# � �e2�h�N # and
the mixed conductance is determined by the lowest number
of reflected channels, GB"# � max�GB", GB#� and is real.

For a tunneling contact we can expand Eq. (1) in
terms of the small transmission. We find that ReGT"# �
�GT " 1 GT #��2, where GT " and GT # are the tunneling
conductances. The imaginary part of GT "# can be shown
to be of the same order of magnitude as GT " and GT # but
it is not universal.

We will now illustrate the theory by computing the cur-
rent through the three-terminal device shown in Fig. 2. A
normal metal node �N� is connected to three ferromag-
netic reservoirs (F1, F2, and F3) by arbitrary contacts pa-
rametrized by our spin conductances. A source-drain bias
voltage V applied between reservoirs 1 and 2 causes an
electric current I between the same reservoirs. The charge
flow into reservoir 3 is adjusted to zero by the chemical po-
tential m3. Still, the magnetization direction m3 influences
the current between reservoir 1 and 2. We assume that spin
relaxation in the normal node can be disregarded so that
the right-hand side of (2) is set to zero. Furthermore, we
assume that the voltage bias V is sufficiently small so that
the energy dependence of the transmission (reflection) co-
efficients can be disregarded. To further simplify the dis-
cussions the contacts 1 and 2 are taken to be identical,
G

"
1 � G

"
2 � G", G

#
1 � G

#
2 � G#, and G

"#
1 � G

"#
2 � G"#.

Contact 3 is characterized by the conductances G
"
3, G

#
3,

and G
"#
3 . We find the distribution in the normal node by

solving the four linear Eqs. (2). The current through the
contact between reservoir 1 (2) and the node is obtained
by inserting the resulting distribution for the normal node
into Eq. (3).

When the magnetizations in reservoirs 1 and 2 are
parallel there is no spin accumulation since contacts 1 and
2 are symmetric and, consequently, ferromagnet 3 does
not affect the transport properties. The current is then
simply a result of two total conductances G � G" 1 G#

in series, I � GV�2. The influence of ferromagnet 3 is
strongest when there is a significant spin accumulation
in the normal metal node, and in the following the
magnetizations of the source and drain reservoirs are

FIG. 2. The three-terminal device where a normal metal node
is connected to ferromagnetic reservoirs. An applied bias causes
a source-drain current between F1 and F2. The charge current
into F3 is adjusted to vanish by m3. The magnetization direction
of ferromagnet F3 controls the current.
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FIG. 3. The current Tr�i1� � 2Tr�i2� in the three terminal de-
vice as a function of the magnetization direction u3. The straight,
dashed, and dotted lines correspond to the relative mixing con-
ductance Reh2 � 2, 5, and 10, respectively. The other param-
eters were set to P � 3D0.4, P3 � 0.1, G � G3, Reh3 � 1.0,
Imh � 0 � Imh3.

antiparallel, m1 ? m2 � 21. We denote the relative
angle between the magnetizations in reservoirs 3 and 1
(reservoir 2) u3 (p 2 u3). The current is an even function
of u3 and symmetric with respect to u3 ! p 2 u3 as a
result of the symmetry of the device, e.g., the current when
the magnetizations in reservoirs 1 and 3 are parallel equals
the current when the magnetizations in reservoirs 1 and 3
are antiparallel. Because of the finite mixing conductance
at noncollinear magnetization the third contact acts as a
drain for the spin accumulation in the node, thus allowing a
larger charge current between reservoirs 1 and 2. The rela-
tive increase of the current due to the reduced spin
accumulation D3�u3� � �I�u3� 2 I�u3 � 0���I�u3 � 0�,
is plotted in Fig. 3 as a function of u3. The maximum
of D3 is achieved at u3 � p�2 (u3 � 3p�2) and equals
(ImG

"#
3 � 0)

D3 � P2 2GG3

2G 1 G3h3

h3 2 1 1 P2
3

2G�1 2 P2� 1 G3�1 2 P2
3�

(7)

introducing the total conductance of the contact
Gi � G

"
i 1 G

#
i , the polarization of the contact

Pi � �G"
i 2 G

#
i���G"

i 1 G
#
i� and the relative mixing

conductance h � 2G
"#
i ��G"

i 1 G
#
i�. The influence of the

direction of the magnetization of reservoir 3 increases
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with increasing polarization P and increasing relative
mixing conductance h3 and reaches its maximum when
the total conductances are of the same order G3 � G.
Note that the physics of this three-terminal device is
very different from that of Johnson’s spin transistor [5];
the latter operates with collinear magnetizations of two
ferromagnetic contacts, whereas the third may be normal.

In conclusion, we have proposed a finite-element trans-
port theory for spin transport in mesoscopic systems. In
the presence of ferromagnetic order a contact can be de-
scribed by four conductance parameters which we obtained
explicitly for diffuse, ballistic, and tunnel contacts. We
have applied the theory to a novel three-terminal device
with arbitrary contacts.
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