General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

o Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)

(NASA-CR-175812)

PINITE BLENENTS AND THE

I, Rt g 4 G T 8 A

METHOD OF CONJUGATE GEADIENTS ON A
CONCURRBNT PROCESSOR (Jet Propulsion Lab.)

5 p HC AO2/NP AQ}

CSCL 12a

Fiaiie Klements and the Method of Conjugats Gradients
on a Comcurrent Processsor

Gregory A. Lyzenga

Arthur Reefsty

Jet Propulsion Laboraiory
Californma Institute of Technelogy
Pasadena, CA 91109

Bradford H. Hager
Seismological Luboratory
Celitornie Institute of Technology
Pasadens, CA 91125

ABSTRACT

We present an sigorithm for the iteretive solution of
finite sloment problems on s concurrent processor. The
method of conjugste gradients is used to solve the system
of matrix equations, which Is distridbuted among the
processors of a MIMD computer according to en
eslement-based spatial decomposition. This algorithm s
implemented in a two-dimensiona! elastostatics program
on the Caltech Hypercube concurremt processor. The
results of tests on up Lo 32 processors show nearly linear
concurrent speedup, with efficiencies over 90X for
sufficiently large problems.

IHO need to uE& boundary V.ilﬁ Dfﬂ;.ﬂll involving

olliptic partisl differsntial equstions on geometrically
complex domains arises In many engineering contexts,
and incressingly in 8 wide variety of scientific fields. The
finite element method, which has been Lrested in a large
number of texts (e.9., Zlenkewicz, 1), provides
flexible and powerful numerical technique for the solution
of such problems. The physical problems which have
been solved by finite element methods come from such
diverse fields as structural end continuum mechenics,

fivid dynamics, hydrology, hest flow analysis and meny
others.

Among the common features of most finite slement
spplications Is the need to form and to solve s matrix
equetion of the form:

Ax=H (1

Here, X i3 & vector of unknown quantities, te be
solved for al each of seme number of "node’ locations
within the problem domain. The grid of nodes (usually
representing a discretization of some physical spatisl
domain) slse defines a subdtvision of the domain iInto
volumes (or aress) called ‘elements’ which jointly
coaprise the entire problem domain snd share nodes
slong their boundaries (Fig. 1),

ELEMENT 4

oot —/

T+ VECTOR OF NODAL DEGREES OF FREEDOM
D * VECTOR OF EFFECTIVE "FORCES"
A= ASSEMBLY OF ELEMENT “STIFFNESS"

Fig.1 Fiaite element discretization of s boundary valve
problem

The stiffness metrix A contains the terms which
determine the Intersction among the different unknown
degrees of freedom in X, and the forcing terms or
boundary values are Introduced through the right hand
side, B. Operationally, entries of A sre computed by
performing integrals over the elements which Inciude the
node in question. The stiffness matrix therefore consists
of an sssembly of Individual element matrices, which are
mapped into the “globs!® matrix through s master
equation bookkeeping scheme.

A 4 ke ans adad

NB5-27588

. Unclas
G3/64 21276

.

B

,
7

e g A S NG T oy ———————

ORIGINAL P/.

I—————— L

NUPRp————

OF POOR QUALITY

Common to most such finite element applications s
the problem of solving the system given in equation (1).
Since ihm matrix A may be very large (especially in
higher-cimenasional problems), consideradle thought
must go into solving H efficiently. This
computetion=intensive step Is the primary motivation for
looking to concurrent computation techniques.

A stiffness matrix A typically has a number of
properties which Influence the choice of solution
technique. For example, many physica! problems give
rise to @ symmetric positive definite metrix, For Lhe
remainder of the present discussion we shall restrict
ourseives Lo this class of finite element prodlems. This
does not mean that more general cases cannot be tresied
using concurrent techniques similar to those described
below, but such problems are nol within the scope of this
work,

Traditionally, derivatives of Gaussian elimination
have been used to solve these systems, giving robust
parformance under » wide range of matrix {11-conditioning
circematances. Matrix Ill=conditioning mey ocrur If a
given system is very nearly singular, or exhibits a very
large ratio between the largest and smallest sigenvaives,
in which case certain melrix operations which ere
sensittve Lo round-oif error may be insccurste. While
direct techniques such as Gaussian eliminstion are not
particuleriy sensitive to moderate ili-conditioning, they
entail a large smount of computational work. Whether
dealing with iterative or direct techniques, the matrix
problem nearly always represents the dominant
computational cost of a finite element calculation. In the
case of Gaussian elimination, this cost Incregses rapidly
with problem size, being proportionsl to d where N,
is the total number of degress of freedom-, and b is th
mean diagonal bandwidth of nomzero elements in A.

In » typical sssembled finite slement matrix, the
entries In a given column or row are non-zero only within
8 given distance from the disgonal. This is because »
given node only contribules Interaction terms from those
nodes with which It shares an element. Although judicious
node numbering can minimize the sversge column height
and thus the measn disgonsl bandwidth of the matrix,
problems with large numbers of ncdes in more than one
spatial direction will unsvoidably have very large
bandwidths. This means that, especisily for grids in
higher dimensions, the work necessary to solve the
system will increase much faster than the number of
nodes as we altempt Lo solve larger and larger systems.

Certain classes of structural snalysis problems may
have considerably smaller mean bandwidths than the most
general thres=dimensional problem, and for these, direct
techniques remain a viable spproach. Resesrch into
concurrent methods for these techniques is alresdy well
advanced(2,.3.4). The present suthors have been most
imerested In continuum mechanics problems, for which
direct methods are more limited in their utility.

For the asbove ressons, we have pursued Lhe
implementation of an Incressingly popular HRerative
technique, the method of conjugsts gradients. Assuming
that it can be made to converge, the conjugate gradient
method offers the potential fer much Improved
performance on large three—dimensional grids. This,
combined with a rather straightforwsrd concurrent
generalization made this an sttractive ares to explore. In
sddition, the symmetric positive=definite nature of the
motrices considersd makes the methed of conjugate
gradients s good first choice (see for example
Jennings,3). In the discussion which follows, we will

present Lhe basic concurrent rlgorithm developed for this
spplication.

Figure 2 shows schematically how » two-dimensional
finite element grid might be spread over Lthe processors
of an O-n.de MIMD machine. Each subset of elements
(delinested by tne hoavy lines) is treated effectively as »
separate smaller finite element prodiem within each
procassor. Adjoining subdomains need only exchange
boundary Information wilh neighboring processors In
order to complete calculstions for each region
concurrently. The next section discusses in more detall
how Lhis concurrency is managed.

1)
LR
3
=
?
lan
)
'
?
S
.-'!i

+——t —
i i

proc 431
: &

:

-+t
" d

8 (B R

188
L

EEEEE |
(2l
-
3
8
=
t
1
T
3
"
~

—_———X

Fig.2 A pomibls distribution of & tweo-dimensional
grid oa sa §-processor concurrent computar

¥m conjugate gradient method represents a

technique for fterstively searching the space of vectors X
in such a way as to minimize a function of the residual
errors. Briefly, the conjugste gradient procedure
consists of the following algorithm. Initially,

r® < p®ap-ax® (2
Then, for the k™ step,
.y e (rlt). o))/ (pth). Aph))
g1l o g8, g, gt}
pltel) o plt) . g Api®) (3)
Py = (e, plietl) 7 (pl0) . glt))
'hdl.'(tcll,h.lll

6. Kekel;, gote . (continwe vatil converged)

w o owoN

As may be seen by inspecting (3) above, (this
slgorithm involvzs ivo basic kinds of operstions. The
:‘“l ‘lhou Is the vector dot product, for sxample

r& . '"l&f.c.ﬂl basic cperastion is the metrix-vector
product, Ap'®'. 1 of these primitive operations can be
done in parallel by decomposing the problem into regions
of the physical doma'n scace. A given "global® vector such
98 T or P is spread out among the processors of a
concurrent ensemble, with concurrent operations being
performed on the various ‘pleces’ of the vectors in each
processor. The enly need for information from outside s

ORIGINAL Fr..-

OF POOR QU ALITY

§iven processor occurs when nodes on the boundary
between the “jurisdictions® of (wo processors are
computed.

Figure 3 (llustrates schematically the protocol used
for handling shared degrees of (reedom Dbetween
processors in the two-dimensional case. Each
processor obeys a convention whereby It sccumulstes
contributions to global wvector quantities (X, ¢, p)
from neighboring processors along the “right* and “down”
edges of the region. Contributions arising from degrees
of freedom slong & processor's "left” and “up® edges are
sent to the respective neighdboring processor for
sccumulation. The “lower right* and “upper left® corner
degrees of freedom are passed twice In reaching their

destination,
ssro T
u csu? |

SEND I |
ACROSS u;u, (s
A lle]le 9 6 0 o 0 O B O]6 e
e
.
.
: 4, —— ACCEPT
BT T
- ﬁr’“u)
LN g
N N\
———= . 110(6’/%/'/.‘/ pr—
PT FROM
: | ﬁﬁiass ax)
| |
ACCEPT FROM
D&VN (AD)

gS?ONSIIILIW
. LOCAL
M PROCESSOR

Fig. 3 Two-dimensional protecel for paming shared nodal

While only one processor has responsibility fer
sccumulating a given shared degree of freedom, esach
neighboring processor must be provided with a copy of Lhe
sccumuleted result for subsequent cllculnt!oﬂm Thus,
the process of updating s quantity such as Ap'®!, which
involves adding contributions from different elements in
different processors, proceeds as follows:

1. The “local® contributions are calculated within
esach processor independently. This means calculating
the contridbutions to the given matrix or vector product
while neglecting Lhe effect of any neighbering processor.

2. A right-te-left pass of edge contributions is
done. Veclor contributions along Lhe left edge of »
processor (i.e., those labeled SL, sL, and sX) are sent
Lo the neighboring processor on the left, st the same time
that the corresponding right edge degrees of freedom
(AR, aX, and sU) are received from the right. The
received contributions are sdded to the locally calculated
contributions already resident in those storage “slols”.

3. This Is followed by & down—to-up pass. The
contributions labeled SU and sU sre sent up, while the AD
and aX slots receive contributions lo accumulate. Note
thal the corner degrees of freedom labeled sX are

tranamitted and accumulated twice before reaching their
final destination In an aX slot located diagonally from
their starting point.

4. Finally, an up-to-down shift, followsd by »
left=to=right shift which overwrites rether than adds to
the current contents of the boundary arreys serves Lo
distribute the the final sum of all contributions to all the
invo'ved processors. [his ends the communication cycle,
and the processors then return lo concurrent Interns)
computaticna,

Aside from this kind of calculstion, In which »
rlﬂm vector i3 updated on the basis of local (element)
nformation, there (s one other situstion in which
processor “responsibility” for global degrees of freedom
is significant. Global scalar products are calculated by
forming partial dot products within each processor, which
are in turn forwarded to a single “control process” (which
in this case resides in a separste external processor)
which performs the summation and takes action on the
result (e.g., terminating the iterative loop). In this
case, In order to avoid ‘double-counting” any entry,
each processor calculstes its partial dot product only
using ita internal and accumulated dearees of fresdom

The scheme described above is applicadle to the
hypercube machine srchitecture specifically, snd more
generally to any MIMD computer which supports the
following communications operations: Tl) global
broadcast of dats from a designated controlling process
or processor to the concurrent array, (2) transmission
of unique data “messsges” belween array slements and the
control process, end (3) element-to-element date
transmission between lsttice nearest neighbors.

IMPLEMENTATION

The example discussed here was written in the (
languege, and cross=compiled on s YAX=11/750 system
for execution on the 8086 microprocessor-based 32 node
Caltech, Hypercube (Mark II) machine. Listings and
further iInformation on this code may be obtained by
contacting one of the suthors.

There are no basic slgorithmic differences betwesn
the concurrent conjugate gradient slgorithm discussed
here ond fits equivelent counterpart on s sequential
machine. Thus the concurrent program should, assuming
infinite precision of calculation, yleld results identical to
the sequential version.

In sctual pracidce however, the exact result
obteined by the conjugate gradient method, and the
rumber of Rerstions required for it to converge, are
rother sensitive to the finite precision of the numerical
calculations. The accumulation steps which occur during
inlerprocessor communications represent additionsl
arithmetic operations of finite precision, which introduce
some additional round-off error not pressent in the
sequential equivalent. This causes the concurrent code 1o
'fu?u slightly different (but numerically equivalent)
resuits,

The computation/communication structure of the
concurrant algorithm is quite regular, in that esch
processor is simultanecusly doing the same lype of task
a8 every other, andthe only load imbalance or processor
walting is caused by giving processors responsibility for
different numbers of slements or degrees of freedom.
The problem of how to best decompose an arbitrarily
sheped finite element grid presents a problem in the
prepsration of the Input data, but this preprocessing

P N

s = bl

oD o ittt <5 wv Al 0

e

PRSI T T

couttl bl

e " pan

s s o .

step has nothing to do directly with the actusl operstion
of the concurrent algorthm(§). Highly irregular and/or
non=rectilinear grids are handled transparently, just ss
long a8 all shared boundary nodes are properly identified
(as per Fig. 3) inthe input deta stream.

Among the special considerations to note for this
application are restrictions on avallable memory. In the
present example, we have chosen lo calzulate and store
each slament stiffness entry. In such & case, It becomes
possible to exhaust the relatively modest memory
svallable In the present generastion of machines. This
problem is particularly scute In moving from two— to
three-dimensional problems. One spproach to overcome
this limitation I3 not lo store, bul to recalculate
stiffnesses at esch ieration. In such s case, the exirs
arithmetic operstions maey be minimized by wutilizing
?m-utu quadrature with mesh stabilization techniques
1).

in- sbove described finite element/conjugste

gradient program was lested on a series of
lwo-dimensional plane strain elastoststics problems,
intended Lo #) verify the proper execution of the program
and b) provide benchmark measurements of Lthe
program’s concurrent sfficiency as a function of problem
size and number of processeors.

The Mark |l hypercube was used in these Llests in
configurations from one node (C-dimensionsl cube)
through the full 32 nodes (S-dimensional hypercube).
The actual problems solved were rectangular arrays of
eslements with boundary displacements imposed Lo produce
8 simple shear fleld solution, Concurrent efficiency Is a
messurs of how nearly & concurrent processor with m
processors approaches speeding & given calculation by a
factor of m. Thus we oblain experimental efficiencies by
dtviding the time required to solve » given problem in a
single processor by Lthe concurrent time and the number
of processors. As long as the sequential ard concurrent
algorithms are truly equivalent, this efficiency € hes an
upper bound of unily.

Table | - Twe-dimensional conjugals gradieal rua Lmes and

eflicincien

aumber of aumber of Uimass per slTicisacy

eloments processors itsration (mc.)
64 1 048 .
144 1 164 .
% 1 n -
400 1 413 -
7% ! m .
76 2 s (£)
7% 4 152 (1
37 . (3.] (73]
% s 052 (J)]
7 n (J.] "
132 n 033 (])]
L L] n m (3]]
18432 n 753 %

In Table |, we summarize the results of these test
runs on a veriely of problem sizes and numbers of
processors. Since the maximum number of slements we
could accomodate within s single processor was on the
order of 600, the efficiencies listed for the larger
32-node runa are based upon extrapolstions of the

smaller problems’ execution times. In this
extrapolstion, we have assumad a strictly linear relation
between number of equations and execution time per
fteration. The single=processor proportionality constant
is assumed here to be 6.41 millisecond / NHerstion per

* degree of fresdom. The quoted experimental sfficiencies

are valid to the degree that this scaling assumption holds.

In a problem which is perfectly load balanced, the
concurrent efficiency will be governed by the ratio of time
spent communicating te time spent calculsting
concurrently. Since in a two-dimensions! array, 59.
number of communicated edge values varies as n'/2,
where o s the total number ﬂ equations per processor,
this ratio should vary s n°'/2 and the calculation should
obey an efficiency relation,

€=1-CaV3 (4)
where C 1a » constant. A log-log plot such as Figure 4

may be used to compare the above efficiencies with this
theorstical prediction.

2.0 T T ! 0.%
-]
LSF gepoptta 0 40.97
-
= L0} " 0.9 «
g e
0.5t 10.08
0 1 L | n 0
0 .0 2.0 30 40 50
fog n

© + 2 PROCESSORS
() * « PROCESSORS
4 = 8 PROCESSORS

O - 16 PROCESSORS
% - X PROCESSORS

n - %‘%&Dﬂﬁnﬂﬂs

Fig. 4 Concurreat spesdup afTiciency as & fuaction of
problem size aad aumbsr of processors

On this plot, star symbols Indicete the 32-node
efficiencies atl various problem sizes. The results seem
Lo sgree well with the predicted s/0pe = //2 line. The
points representing (hose cases with fewer than 16
processors plol sbove Lhe 32-node Lrend because they do
not involve processors communicating on all four
boundaries. In summary, the coencurrent conjugate
gradient slgorithm exhidbits performance characteristics
which are theoretically understood, and well suited for
spplication to large ensembles of processors.

it s Interesting to nole thal the experimental value
for the constant C in (4) 1a spparently spproximately 1.
This result, which sgrees with the resuits of Meler(f) for
8 two-dimensional finite difference schemes on the same
machine, Is a reflection of the fact that the times for
calculation snd communication of & single degree of
fresdom on this hardware are roughly equal.

We find thet the concurrent conjugate gradient
slgorithm outlined here meets our expectations In
providing large, nearly linesr speedup in finite slement
system solutions. ults from actusl runs on the

-node Mark || hypercube system yleld net efficiencies
upwards of 90X, From this we can conclude that future
major use of this and relsted algorithms on large finite
element spplications will hinge upon the applicabliity of
iterstive techniques, and notl upon any lssue of
concurrency or efficiency.

Several aress are now indiceted for future research
in this area. Among the most Immediste needs are:
(1) effuctive preconditioners to speed convergence of the
CG algorithm, (2) extension to three dimensions, (3)
investigation of methods to reduce or sliminate stiffness
storage requirements, and perhaps most importantly,
(4) sutomated procedures for breaking up and balancing
an arbitrary finite element problem among processors.
'W‘: anticipate addressing these problems in the nesr

ure.

The research in this publication was carried out
by the Jet Prepulsien Laberatery, Califernia Institute
of Technelegy, wnder o contract with the Natienal
Aeronsutics and Bpace Adeinistratieon. The asuthers
alse gratefully eckneuledge the valusble advice and
sssistance of Pref. T, J. R, Mughes (Stanford Univ.)
and that of §. W, Otte and M. A, Jehnsen (Caltech).

1. Zlenklewicz, 0.C., ,3rd
od., McGraw=Hill, London, 1977.

2. Heller, D., *Some Aspects of the Cycliz Reduction
Algorithm for Block Tridiegenal Linear Systems,” SIAH
Journal of Numaerical Analvais, vol.13, 1976, pp.
484-496.

3. Salama, M., Nkuy, S., snd Melosh, R., ‘A Family

of Permutations for Concurrent Factorization of Block
Tridiagonal Matrices,”

, Nxford,
ugust 4 (proceedings In press).

4. Semeh, A, snd Kuck, D., “Persllel Direct Linesr
System Solvers - A Survey,’ -

Barallel Comguters -

Elﬂl-ltl-ﬂllﬂ.!ﬂll.}il- Int’l. Assoc. for Hathematics and
omputers in Simulastion, 1977,

S. Jennings, A., mm:gmunn_lnuwmu

» John Wiley and Sons, Chichester,1977,

pp. 212-221.
6. Fox, 6. C. ond Otto, S. W., "Algorithms for
Concurrent Processors,” Phyaics Today, vel. 37, No. S,
May 1084, .
7. Belytschko, T., Ong, J. S., Liu, W. K.,
Kennedy, J. M., “Mourglass Control In Linear and

Nonlinear Problems,”
. vol. 43, 1984,
pp. 251-276.

8. Meter, D.L., “Two-Dimensional, One-Fluid
Hydrodynamics: An Astrophysical Test Problem for the
Nearest Neighbor Concurrent Precessor,” Hm-90, July
é’?‘:. Caltech Concurrent Comput ition Project , Pasadens,

alif,

B

st Bt e

PR

	GeneralDisclaimer.pdf
	0056A02.pdf
	0056A03.pdf
	0056A04.pdf
	0056A05.pdf
	0056A06.pdf

