
General Disclaimer

One or more of the Following Statements may affect this Document

 This document has been reproduced from the best copy furnished by the

organizational source. It is being released in the interest of making available as

much information as possible.

 This document may contain data, which exceeds the sheet parameters. It was

furnished in this condition by the organizational source and is the best copy

available.

 This document may contain tone-on-tone or color graphs, charts and/or pictures,

which have been reproduced in black and white.

 This document is paginated as submitted by the original source.

 Portions of this document are not fully legible due to the historical nature of some

of the material. However, it is the best reproduction available from the original

submission.

Produced by the NASA Center for Aerospace Information (CASI)

Z
V

qP

(VISA-CR- 175812) Pz! M ELESENTS IND THE
ARTHOD 0? CONJOGITE 3E,DIENTS 011 1

CONCORRS1iT p ROCiSSSOS (Jet Propulsion Lab.)

5 p HC 102/9F 101	 CSCL 12k
G3/64

FWto Moments sad the Yotbod of Coejaagatz Oreolieits
m • Cowerrew Prooessom

Gregory A. Lyzenga 3
Arthur Reefsky

jet Propulslon LsOorsiory
Cs/i/ornis 1n011tute of 'ecAno/opy

Psse"ns, CA 01/09

Bradford M. Mager
solsmo/of/cs/ /, e00re. Pry

Csli/ernie Institute of TecAne/ogy
PsssOens, CA V/25

W85-27588

UnclaF
21276

ABSTiLACT

We present on algorithm for the Iterettve solution of
ftnfte element problems on a concurrent processor. The
method of conjugate gradients Is used to solve the system
of matrix equations, which Is distributed among the
processors of a MIMO computer according to an
element-based spatial decomposition. This algorithm Is
implemented In a two-dtmensionsl elestostalics program
on the Caltech tiypercubs concurrent processor. The
results of tests on up to 32 processors show nearly linear
concurrent speedup, with efficiencies over 90I for
sufficiently large problems.

IifTRODUCTION

Finite	nd Elliptic Boundary Value Problems
Ile neon! to solve boundary value problems Involving

elliptic partial differential equations on geometrically
complex domains arises In many engineering contexts,
Ind Increasingl y in a wide variety of scientific fields. The
finite element method, which has been treated In a large
number of texts (e.g., Iienkewlcz,l), provides a
flexible and powerful numerical technique for the solution
of such problems. The physical problems which have
been solved by finite element methods come from such
diverse fields as structural and continuum mechanics,
fluid dynamics, hydrology, host flow analysis and many
others.

Among the common features of most finite element
ap p lications Is the need to form and to solve a matrix
equation of the form:

Az - b

Mere, I is a vector of unknown quantities, to be
solved for at each of some number of 'node* locations
within the problem domain. The grid of nodes (usually
reprosenting a dlocretization of some physical spatial
domain) also defines a subdivision of the domain Into
volumes (or areas) called * elements* which Jointly
co , .iprise the entire problem domain and share nodes
along their boundaries (Fig. I).

DOMAIN OF
PROBLEM

R • VECTOR OF NODAL DEGREES OF FP.EEDOM

b VECTOR OF EFFECTIVE "FORCES"

A • ASSEMBLY OF ELEMENT "STIFFNESS"

AicD

ng.l Rolle elemest diecroLWMiee of a boos" vslue
"ism

The stiffness matrix A contains the terms which
determine the Interaction among the different unknown
degrees of freedom In Z, and the forcing terms or
boundary values are Introduced through the right hand
side, `. Operationally, entries of A ere computed by
performing Integrals over the elements which Include the
node In question. The stiffness matrix therefore consists
of in assembly of Individual element matrices, which ore
mapped	into the 'global' matrix through a master
equation bookkeeping scheme.

ORIGIEAL Plaid,-

OF POOR QUALIV

Common to most such finite element applications Is
the problem of solving the system given in equation (1).
Since the matrix A may be very large tospeclally in
higher- dimensional problems), considerable thought
must go Into solving It efficiently. This
com putation-Intensive stop Is the primary motivation for
looking to concurrent computation techniques.

A stiffness matrix A typically has a number of
properties which Influence the choice of solution
technique. For example, many physics! problems give
rise to a symmetric positive definite matrix. for the
remainder of the present discussion we shall restrict
ourselves to this class of finite element problems. This
does not mean that more general tales cannot be heated
using concurrent techniques similar to those described
below, bul. such problems are not within the scope of this
work.

Traditionally, derivatives of Gaussian elimination
have been used to solve these systems, giving robust
performance under a wide range of matrix III-conditioning
circi • matences. Matrix III-conditioning may ocrur If a
given system is very nearly singular, or exhibits a vary
large ratio between the largest and smallest elgenvolues,
In which case certain matrix operations which are
sensitive to round-oif error may be Inaccurate. While
direct techniques such as Gaussian elimination are not
particularly sensitive to moderate I11-conditioning, they
entail a large amount of computational work. Whether
dealing with Iterative or direct techniques, the matrix
problem nearly always represents the dominant
computational cost of a finite element calculation. In the
case of Gaussian elimination, this cost Inc r• sea rapidly
with problem site, being proportional to , where I..
Is the total number of degrees of freedom-, and b Is lhf
mean diagonal bandwidth of non-zero elements in A.

In s typical assembled finite element matrix, the
entries In a given column or row are nonzero only within
a gtven distance from the diagonal. This Is because a
given node only contributes Interaction terms from those
nodes with which It shares an element. Although judicious
node numbering con minimize the overage column height
and thus the mean diagonal bandwidth of the matrix,
problems with large numbers of nodes In more than one
spatial direction will unavoidably have very large
bandwidths. 'his moons that, especially for grids In
higher dimensions, the work necessary to solve the
system will increase much faster than the number of
nodes as we attempt to solve larger and larger systems.

Certain classes of structural analysis problems may
have considerably smaller mean bandwidths then the most
general three-dimensional problem, and for these, direct
techniques remain a viable approach. Research into
concurrent methods for these techniques Is already well
advanced(2.3 " 1). The present authors have been most
Interested In continuum mechanics problems, for which
direct methods are more limited In their utility.

For the above reasons, we have pursued the
Implementation of an Increasingly popular llerattve
technique, the method of conjugate gradients. Assuming
that It can be made to converge, the conjugate gradient
method offers the potential for much improved
performancc on large thro"Imsnslonal grids. This,
combined with a rather straightforward concurrent
generalization made this an attractive area to explore. In
addition, the symmetric positwe-dNlnito nature of the
matrices considered makes the method of conjugate
gradients a good f irst choice (see for example
Jennirgs,3). In the discussion which follows, we will

present :h• basic concurrent PIgorllhrn developed for this
application.

figure 2 shows schematically how a two-dimensional
finite element grid might be spread over the processors
of an B-n,de MIMD mo0ins. Each subset of elements
(delineated by the heavy lines) Is treated effectively as a
separate smaller finite element problem within each
processor. Adjoining subdomaine need only exchange
boundary Information with neighboring processors In
order to complete calculations for each region
concurrently. The next section discusses In more detail
how this concurrency Is managed.

i

r

plot. 11 Prot.	IS pros. Ib `Prot. 11

Proc. 10 Ixoc.	11 pros. e2 proc	LT- 1

--- X

Fl{. 2 A possible distribution, of a kwo-4aeasioaal
{rid on as 11-processor concurrent cenputar

The Concurrent Decomposition
The conjugate gradient method represents a

technique for iteratively searching the apace of vectors X

In such a way as to minimize a function of the residual
errors. Briefly, the conjugate gradient procedure
consists of the following algorithm. Initially,

fill . 061. ^ - A =(a)	 (2)

Then, for the kni step,

1. as - (fis t . [(tl) / (' (II . AV%))

2. =(t•II . =(tl . as pal

3
f4t.11 - rUI - at AP("	 (3)

4. pit - Wt. 1). r(t•11) / (r(k) . f(k))

S V(t.1) - f(k•I). Is Oki

6. k - k • 1; /e to /. (ritz iii e* as ti/ re'a rer1#0

As may be seen by Inspecting (3) above, this
algorithm lnvolvss twd basic kinds of operations. The
Ilrsl

(t)
these Is the vector dot product, for example

[[. Thr fscond basic operation Is the matrix-vector
p roduct, Ao k . BoD of these primitive operations can be
done In parallel by decomposing the problem Into regions
of the physical doma i n space. A given *global* vector such
as f or V Is spread out among the processors of a
concurrent ensemble, with concurrent operations being
performed on the various 'pieces' of the vectors in each
processor. The only need for Information from oulslls a

OFaG 11?,3RL F^,

OF POOR QJ.^i i ^l

given processoroccurs when nods on the boundary

betwsn the 'jurisdictions' of two processors are
computed.

Figure 3 Illustrates schematically the protocol used
for handling shared
degrees of freedom between

processors	In	the	two-dimensional case.	Each
processor obeys a convention whereby It accumulates

contributions to global vector Quantities (1, r, p)
from neighboring processors along the 'right' and 'down'
edges of the region. Contributions arising from degrees
of freedom along a processor's 'left' and 'up' edges are
sent to the respective neighboring processor for

accumulation. The *lower right' and 'upper left' corner
degrees of freedom are passed twice In reaching their
destination.

SEND 10
UP (SUI

SEND
ACROSS 101,ISU1^

ACCEPT,•
 RIGHT

SEND

g1^MT(SL)	• - _	\	 URI

	

I	I	
J	

I ACCEPT FROM
/
ACROSS ux)

ACCEPT FROM
DOWN (AD)

RESPONSIBILITY
Of LOCAL
PROCESSOR

rig 3 Tvo-disensiosel prowcel for pessina sh&M sedal
oelues

While only one processor has responsibility for
accumulating a given shared degree of freedom, each
neighboring processor must be provided with a copy of the
accumulated result for subsequent calculation	Thus,
the process of updating a quantity such as Ap which
Involves adding contributions from different elements In
different processors, proceed$ as follows:

I. The 'local' contributions are calculated within
each processor Independently. This means calculating

the contributions to the given matrix or vector product
while neglecting the effect of any neighboring processor.

2. A right-to-left pass of edge contributions to
done.
Vector contributions along the left edge of a

processor (I.e., those labeled 9L, al., and sX) are sent
to the neighboring processor on the left, at the some time
that life corresponding right edge degrees of freedom
(AR, AX, and SU) are received from the right. The
received contributions are added to the locally calculated
contributions already resident In those storage '$lots'.

3. This Is followed by a down-to-up pass. The

contributions labeled SU and sU are sent up, while the AD
and sX slots receive contributions to accumulate. Note
that the corner degrees of freedom labeled sX are

transmitted and accumulated twice before reaching their
final destination in an sX slot located diagonally from

their starting point.

4. Finally, an up-to-down shift, followed by a
left-to-right shift which overwrites rather than adds to
the current contents of the boundary arrays serves to

distribute the the final sum of all contributions to all the
Invo l ved processors. rhls ends the communication cycle,
and th. processors t i tan return to concurrent internal
computatwnt.

Aside from this kind of calculation,
In which a

global vector Is updated on the basis of local (element)
Information, there Is one other situation In which
processor 'responsibility' for global degrees of freedom
Is significant. Global scalar products are calculated by

forming partial dot products within each processor, which
are In turn forwarded to a single 'control process' (which
In this case resides In a separate external processor)

which performs the summation and takes action on the
result (e. g., terminating the Iterative loop).	In this
case, In order to avoid 'double-counting' any entry,

each processor calculates Its partial dot product only

using Its Internal and accumulated decrees of freedom

The scheme described above Is applicable to the
hypercube machine architecture specifically, and more
generally to any MIMD computer which suppports the
following communications operations: (I) global
broadcu, t of data from a designated controlling process
or processor to the concurrent array, (2) transmission

of unique dale 'messages' between array elements and the
control process, end (3) element-to-element date
transmission between lattice nearest neighbors.

IYPLIYOtTAT10N

Proorammtno Considerations
The example discussed here was written In the C

language, end cross-compiled on a VAX-I Ir7S0 system
for execution on the 6066 microprocessor-based 32 node

Caltect, Mypercubs (Mark II) machine. Listings and
further information on this code may be obtained by
contacting one of the authors.

There are no basic algorithmic differences between
the concurrent conjugate gradient algorithm discussed
here and its equivalent counterpart on a sequential
machine. Thus the concurrent program should, assuming
Infinite precision of calculation, yield results Identical to

the sequential version.

In actual practice however, the exact result

obtained by the conjugate gradient method, and the
number of iteration• required for It to converge, are
rather sensitive to the finite precision of the numerical
calculations. The accumulation steps which occur during
Interprocessor communizations represent additional
arithmetic operations of finite precision, which Introduce
some additional round-off error not present in the
sequential equivalent. This causes the concurrent code to
produce slightly different (burl numerically egjivslent)
results.

The computation/communication structure of the
concurrent algorithm Is quite regular, In that each
processor is simultaneously doing the some type of task
as every other, and the only load Imbalance or processor
waiting Is caused by giving processors responsibility for
different numbers of elements or degrees of freedom.
The problem of how to best decompose an arbitrarily
shaped finite ailment grid presents s problem in the
preparation of the Input dote, but this preprocessing

49

0

^•1-n-112	0

lJl

2.0

1.5

l.0
Pa

0.5

step ha$ nothing to do directly with the actual operation

of the concurrent algorithm(J). highly Irregular and/or
non-recti lines r grids are handled transparently, just as
long as all shared boundary nodes are properly Identified
(as per Fig. 3) In the Input data stream.

Among the special considerations to note for this
application are restrictions on available memory. In the
present example, we have chosen to cal:ulste and store

each element stiffness entry. In such a case, It becomes
possible to exhaust the relatively modest memory
available In the present generation of machines. This
problem Is particularly acute In moving from two- to
three-dimensional problems. One approach to overcome
this limitation is not to store, but to recalculate

stiffnessss at each Iteration. In such a case, the extra
arithmetic operations may be minimized by utilizing
one-point quadralure with mesh stabilization techniques
(2).

Results of Initial Tests
The above described finite element/conjuget•

gradient program was tested on a series of
two-dimensional plane strain elsslostatice problems,
Intended to a) verify the proper execution of the program
and b) provide benchmark measurements of the
program's concurrent efficiency as a function of problem
size and number of processors.

The Hark II hypercubs was used in these lasts In

configurations from one node (0-dinienslonal cube)
through the full 32 nodes (5-dimensional hypercube).

The actual problems solved were rectangular arrays of

elements with boundary displacements Imposed to produce
a simple sneer field solution. Concurrent efficiency Is a

measure of how nearly a concurrent processor with m

p rocessors approaches speeding a given calculation by e
factor of m. Thus we obtain experimental efficiencies by

dividing the time required to solve a given problem In a
single processor by the concurrent time and the number
of processors. As long as the sequential and concurrent
algorithms are truly equivalent, this efficiency E has an
upper bound of unity.

Teats 1 - Two -dissenstanal can iugwA gradient run Yaea sad
effictenciem

	

&umber of	•umber of	Unee per	efrtcracy
	elements	erocomers	iteration (sec.)

smaller	problems' execution times.	In this
extrapolation, we have assumed a strictly linear relation
between number of equation$ and execution time per
Iteration. The single-processor proportionality constant

Is assumed here to be 6.41 millisecond / Iteration per
degree of freedom. The Quoted experimental efficiencies
are valid to the degree that this scaling assumption holds.

In a problem which Is perfectly load balanced, the
concurrent efficiency will be governed by the ratio of time
s pent	communicating	to	time	spent	calculating
concurrently. Since in a two-dimensional array, She

number of communicated edge values varies as G I =
where a Is the total number pl equations per processor,
this ra tio should very as W i ll and the cslculst on should
obey an efficiency relation,

	

E - 1 - Cn- t/3 .	 (4)

where C to a constant. A log-log plot such as Figure 4

may be used to compere the above efficiencies with this
theoretical prediction.

0.99

0.97

0.90

0.6E

0
1.0	2.0	3.0	4.0	5.0

log n

o	2 PROCESSORS q	16 PROCESSORS
Q • 4 PROCESSORS tr	32 PROCESSORS
A
E PROCESSORS

•
nN
0ER OF DEGREES

OF rREEDOM PER
PROCESSOR

Is-

44 1 010

IM 1 1.64
256 1 392
400 1 413
576 1 797
576 2 310

576 4 11Z

576 : !M

576 16 0.52

576 32 021

1152 32 053
4606 32 2.01
19432 32 715

Fig. 4 Coacurrest speedup efricieacy
an

a fuacuos of
preblas am and somber of procomairs

On this plot, star symbol$ Indicate the 32-node
efficiencies at various problem sizes. The results iserr

0.10	to agree well with the predicted tope - //I line. The
047	points representing those cases with fewer then 16
011	processors plot above the 32-nods trend because they do
0.05	not Involve processors communicating on all four
0.76	boundaries.	In summary, the concurrent conjugate
015	gradient algorithm exhibits performance characteristics
(1.91	which are theoretically understood, and well suited for
6.16	application to large ensembles of processors.

In Table I, we summsrtze the results of these lest
runs on a variety of problem sites and numbers of
processors. Since the maximum number of elements we
could accomodsto within a single protestor was on the
order of 600,
the efficiencies listed for the
larger

32-node runs are based upon extrapolations of the

It Is interesting to note that the experimen!al value

for the constant C In (4) Is apparently approximatel y I.
This result, which agrees with the results of Melsr(Q) for
a two-dimensional finite difference scheme on the some
machine, Is a reflection of the fact that the times for
calculation and communication of a single degree of

freedom on this hardware are roughly equal.

i
,I

I

11

COMUSIONS

We find that the Concurrent conjugate gradient
algorithm outlined here meets our expectations In
providing large, nearly linear speedup In finite element
system solullons. Results from actual runs on th•
32-node Mark II hypercube system yield not efficioncias
upwards of 901. From this we can conclude that future
major use of this and related algorithms on large finite
element applications will hinge upon the applicability of
iterative techniques,	and not upon any Issue of
concurroncy or efficiency.

Several areas are now Indicated for future research
in this area. Among the most Immediate needs are:
(I) •ffuctty precondttioners to speed convergence of the
CG algorithm, (2) extension to three dimensions, (3)
investigation of methods to reduce or eliminate stiffness
storage requirements, and perhaps most Importantly,
(1) automated procedures for brooking up and balancing
on arbitrary finite element problem among processors.
We anticipate addressing these problems In the near
future.

AaAOVLmGIEME S

The research in this publication was carried out
by the Jet Propulsion Laboratory, California Institute
of TocMelogy, under a Contract with the National
Aeronautics and Space Adolnistration. The author

11also gratefully ockno-lodes the Valuable advice and
assistance of "of. T. J. R. Hughes (Stanford Uni..)

and that of S. M. Otte and M. A. Johnson (Caltach').

REFEMas

1. Ztenklewicz, O.C., The Finite Element Method, 3rd
ad., McGraw-HIII, London, 1977.

Z. Heller, D., 'Some Aspects of the Cycllr. Rsductlon
Algorithm for block Trldlegonel Linear Systems,' Sly
Journal of Numerical Analysts. vol.13, 1976, pp.
+84-196.

3. Salerno, M., Lltku, S., andMelosh, R.,'AFamily
of Permutations for Concurrent Factorization of Block
Tridlogonal Matrices,' 2nd Conference on Vector and

ors In Comcutstlo al	 1, Oxford,
August 19b1 proceedings In press .

1. Sameh, A. and Kuck, D., 'Parallel Direct Linear
System Solvers - A Survey,' Parallel Comwto r s -
Parallel MathemNll:2, Int'I. Assoc. for Mothemallcs and
Computers in Simulation, 1977.

S. Jennings, A., Matrix Computation for Engineers
and Scientists, John Wiley and Sons, Chichester, 1977,
pp. 212-211.

5. Fox, G. C. and Otto, S. W., 'Algorithms for
Concurrent Processors,' Physics Today, vol. 37, No. S,
May 1961.

7.	belytschko, T,,	Ong, J. S.,	Llu, W. K.
Kennedy, J. M.,	'Hourgloss Control In Linear and
Nonlinear Problems,' Computatlonal Methods and
Applications In Mechanical Enoinearing, vol. 43, 1981,
pp. 251 -176.

S. Meier, D.L., 'Two-Dimensional, Ono-Fluid
Hydrodynamics: An Astrophysical Teat Problem for the
Nearest Neighbor Concurrent Pr • cessor,' Hm-90, July
1961, Ceilech Concurrent Comput ikon Project , Pasadens,
Calif.

	GeneralDisclaimer.pdf
	0056A02.pdf
	0056A03.pdf
	0056A04.pdf
	0056A05.pdf
	0056A06.pdf

