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Abstract

In this paper we present a space-time finite element formulation for problems
governed by the shallow water equations. A linear time-discontinuous
approximation is adopted, and linear three node triangles are used for the spatial
discretization. Computational aspects are also discussed. It is shown that an
edge-based data structure turns out to be a very fast and efficient way to solve
the non-linear system of equations. Numerical examples are shown, illustrating
the quality of the solution and the performance of the method.

1 Introduction

In this paper we are interested in the numerical solution of the so-called
vertically averaged (2DH) model of the shallow water equations (SWE) which
satisfactory describes the hydrodynamics (circulation of water) in a class of well-
mixed estuaries and coastal embayments. One of the major numerical difficulties
associated with the SWE is its convection-dominated character. Many numerical
procedures rely on characteristic or semi-lagrangian based methods in order to
circumvent this drawback. Another way to deal with this problem, in its full
Eulerian description, is to use stabilized finite element methods [2,6,7,8]. In this
work we adopt this methodology, using a space-time variational formulation for
the non-conservative form of the SWE, written in terms of velocity-celerity
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variables. Following this approach, the CAU finite element method [1,4] is
constructed.

Computational aspects are also addressed in this work. We present some results
using the GMRES iterative method, implemented in element-by-element and in
edge-by-edge basis. The space-time formulation with linear approximations in
time, despite the fact of presenting accurate solutions, results in a system with a
number of equations which is twice the number of equations of the
correspondent semi-discrete version. However, as it will be shown at the end of
this paper, the CPU time necessary to solve the system obtained in the space-
time formulation can be significantly reduced by splitting the system in two
"semi-discrete" systems and using an edge based data structure.

2 Problem Statement

The vertically averaged 2DH model for shallow water problems is described by
the equations:

dy

d r,dU d ^

&y /̂l̂  9y
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d

0 (3)

In these expressions, H = h + r\ is the shallow layer width and (U, V} are the

averaged horizontal velocity components. The water depth and the water surface
elevation, both measured from the undisturbed water surface, are respectively
denoted by h and TJ. The gravity acceleration is denoted by g,/is the Coriolis

parameter, p is the constant density (well mixed layers), tj. and T* are the wind

stress components at the free surface and jj. is the eddy viscosity coefficient,
which takes into account the horizontal diffusion effects for an "appropriate"
turbulence model. Bottom friction forces are modeled by the Chezy formula

+ V* } '* / C* , where C is the Chezy coefficient.

3 Divergence x Advective forms of the SWE

Equations (1-3) can be written in a more compact form as
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U,,+divdF = F (4)

where U' = \HU HV H] denotes the vector of conservation variables. The

notation div dF stands for

with d^ and d^ representing the hydraulic fluxes

2" - ">

m

The components of F are the terms at the right hand side of (1-3). The system (4)
is written in the so-called conservation form and represents an incomplete
parabolic system of equations. On the other hand, the reduced equation

0 (8)

represents an hyperbolic system for which the convective term is expressed in its
divergence form. Hyperbolic system of equations admit discontinuous solutions
(shocks). In this case, the classical derivatives appearing in (8) do not make any
sense and should be understood in the sense of distributions. This fact leads us to
the use of a variational space-time formulation to conveniently represent the
shallow water problem. This occurs for example in the well known "dam break"
problem, for which an efficient shock/discontinuity-capturing technique should
be used as long as a realistic shock discontinuous approximate solution is
desired.

For the incomplete parabolic problem described by (4), discontinuous solutions
are disregarded due to the dissipative character of the terms included in F
(viscous effects). Nevertheless, the convection-dominated nature of the modeled
physical problem requires its "correct" representation as long as approximate
solutions are concerned. This fact guides us to the use of space-time advective
form description of (4), over which a consistent stabilized space-time finite
element approximation is straightforward constructed. This will be done in the
next sections.

4 The Velocity-Celerity Symmetric Form of the SWE

For the SWE a symmetric advective form can be achieved using velocity-celerity

variables. To this end let us define the change of variables U —» V* given by

H = —, where 9 - 2c and c = ̂ gH is the gravitational wave propagation

velocity. Using these definitions, equation (4) can be rewritten as
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where
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Pre-multiplying (9) by (A* j we finally arrive to the symmetric form:
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5 Space-time Finite Element Approximations

In this section we will present some finite element approximations for the
celerity-velocity variables of the shallow water problem described by (13). For

convenience we will use the notation U = V* , A = A* , F = F* . We will assume
that the spatial region of interest is mathematically represented by an open

bounded set O of 9t\ with boundary F ; and the time period of observation is

the interval [o,r]e9T.

We now proceed defining the space-time finite element discretization. To this
end, for n -0,1,2,..., N we will consider a partition of [0, r], given by

^=0</,_<^</^_<^ = r. Denoting by /,,=(f,,,W the "'* time
interval, we will say that for each «, the space-time domain of interest is the
"slab" $„ = D x /„ , with boundary F = F x /^ . Then for w = 0, 1, 2, . . . we will

define a finite element triangulation of H such that:

Q= U 0%; QinQ^=0 for ,f; (17)
g=i

To each O% we associate the space-time finite element S^ - Q* x /^ , leading to

W)»
the space-time partition $„ - U S* .

e=l

Under the above definitions we will assume that the finite element sub space U^

is the set of continuous piecewise polynomials in 6\ , which may be

discontinuous across the slab interface at /„ , i.e:

(18)

where I* is the set of polynomials of degree less than or equal k. For a prescribed

boundary condition g on !""„ a general trial function is then an element of lî ,

where:

Itf = |U*; U" e (C"(5J7; U^ ̂  e (/"(s;)/; U* _ = gj (19)

We present below some different finite element approximations.

5.1 Time-discontinuous Galerkin Method (TDG)

This method consists in: for each $„, n = 0,1,2,... find U* <E U£ such that for all

IT' G L^ the following variational equation is satisfied:
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0 (20)

,

where [u''(C)] = U''(C)~ U*('« ) defines the jump of U* in time /„ , and

R(U*) = Uj + A(U*).VU* - V.(1CVU*)-F(U*) (21)

is the residual associated with the approximate solution U* .

5.2 STPG Method

For convection-dominated problems, Galerkin solutions present spurious
oscillations, due to the lack of stability of the TDG variational formulation. We
can circumvent this problem using the Space-Time Petrov Galerkin (STPG)
stabilized finite element formulation based on the SUPG method [3]. This
stabilization procedure can be achieved adding to the TDG formulation a term
defined as:

,g
XA.VU'̂ n̂  (22)

"^ ̂
where T is a (3x3) symmetric positive matrix of intrinsic time-scales (for a
general definition of this matrix see [9]).

Remark: Note that for hyperbolic problems R = U* +A.VU*, which means

that for U* = U* we arrive at a positive weighted square residual term:

Some advantages of the T matrix definition for the celerity-velocity formulation
were presented in [6],

5.3 CAU Method

We have also mentioned that for discontinuous (shock) solutions of hyperbolic
problems, or even for sharp layers solutions related to highly convective
dominant incomplete parabolic problems, an additional stabilization term is
required if an "accurate" numerical approximation is desired. In the context of
consistent variational weighted Petrov-Galerkin residual methods, this can be
achieved using the CAU method. For this method an additional shock-capturing
term is added to the STPG method which has the general form:

(24)

where once again T^ is a symmetric positive matrix.
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Remark: In the design of the CAU method, the auxiliary matrix A(U*) is

constructed such that:

(A-A).VU'=R; U*-^-»UOA-^A (25)

This construction guarantees that always a quadratic positive weighted residual

term is added to the variational form, since for Ir = U* :

Definitions for the T^ and the (A - A j matrices can be found in [ 1 ].

6 Computational Aspects

Let cp,-(x,.yX (i -\,..,jmode) denote the global interpolation functions in space

and N- (/), (/' = 1, 2) represent the linear interpolation in time. Then over each

"slab" 6\ the finite element approximation is given by,
nnodc I" 1

(27)

where U^ . and U'' _ are the unknown nodal values of U* at times / = /„ andj,n j,n+\
t = {„+! respectively. Introducing the above approximations in the variational
formulation, the following non-linear system of algebraic equations is obtained:

KU - F , where: (28)

U =
u/I (29)

The matrices K// and the vector F, contain the time interpolation functions TV/ and
(̂U =1, 2),

K^. = K ̂  + Kf + Kf ; Fj = F^ + F/^ + MU*_ ; F, - Ff + Ff" (30)

The matrices M^, K? and M come from the Galerkin formulation (20). The

matrices K^ and K^ come respectively from the STPG term (22) and the
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CAU contribution (24). Similarly, Ff and F/̂  are the Galerkin and Petrov-

Galerkin contributions to the right hand side of the system of equations.

The Modified Newton-Raphson method, applied to the system above, results in
the following algorithm,

R''=F-KU'"

KAU =R , = 0,1,2,...), U" =
V"n
U*.

(31)

Splitting the system in two, the above algorithm can be rewritten as:

R; = F, -K;,U\ -K^ir1 l ll » ^^ n+l
MI AIT+ = R;

r? = ir.+AIT,

ii = F^-K^U^-K^U^
C^AU' ,_ = R;"<~L /J-f-1
r* = u^ +AU'n+l n+l n+l

(i = 0,1,2,...) (32)

where:

K*, = K,,+Mf,

K* =K«+M?,
(33)

The main computational task is to solve the resulting nonlinear system of
equations. This is done by solving a sequence of linear systems as in (31) or in
(32), using the GMRES solver. The performance of any iterative method can be
improved by using some type of preconditioning. Another way to improve the
performance is to optimize the code, reducing memory requirement, the number
of floating point operations (flop) and the number of indirect addressing
operations (i/a).

Element by element techniques are convenient, as the sparsity of the system is
fully exploited by the element level storage. Also, the matrix-vector product
operation can be split into a global product, involving the nodal block diagonal
of the system, and into another which is performed at an element by element
basis. The assemblage of a global nodal block diagonal reduces the amount of
necessary memory, but the coefficients relating two different nodes still remain
spread over the contributing elements. This spreading of element contributions
can be avoided if an edge data structure is used. This can be done performing a
loop on the elements and assembling the coefficients by edges. For the shallow
problem, Table 1 shows the reduction in terms of memory and flop for the
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element-by-element technique with block diagonal. Table 2 shows the reduction
in terms of memory, flop and i/a for the edge-by-edge technique. The reduction,
in both tables, is in relation to the simplest element by element technique, where
the full element matrices are stored (i.e, no diagonal assembled). Note that for
the element-by-element technique the number of i/a is not changed, while for the
edge-by-edge technique there is no reduction for triangles, and the corresponding
space-time prism presents an increase in terms of i/a. To reduce the number of
i/a, the loop over single edges must be substituted for a loop over groups of
edges [5]. In this case, the gain in i/a must compensate the increase in flop.

Table 1 - Element by element technique with block diagonal: reduction in terms
of memory and flop.

Element

Triangle
Quadrilateral
Tetrahedron

Space-time prism with
triangular base

Memory (%)

2778
18.75
23.86
13.89

./&%?

28
19
24
14

(%)

70
79
05
35

Table 2 - Edge by edge technique: reduction in terms of memory, flop and i/a.

Element

Triangle
Quadrilateral
Tetrahedron

Space-time prism with
triangular base

Memory (%)

61.11
4175
80.11
61.11

#%;(%)
6204
44.79
80.30
61.57

//% (%)
0

-100
25

-116.17

7 Numerical Examples

The two examples shown here were selected in order to illustrate the quality of
the solution and the computational performance of the proposed method. The
first test case is the one-dimensional dam break problem, for which the
stabilizing operators, in semi-discrete and space-time versions, are compared.
The second example is a two dimensional extension of the first, and tests the
performance of the GMRES solver using element-by-element and edge-by-edge
techniques.

7.1 One-dimensional Dam Break

The first example is the well known dam break problem, which consists of a wall
separating two undisturbed water levels that is suddenly removed. Friction
effects are neglected and the spatial discretization is given by a 4x100 triangular
elements mesh. Figures 1-2 show the results for t = 7.50, with A/ = 0.25. In these
figures, we show the approximate solutions for the water elevation and the
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velocity obtained with the Galerkin, the STPG and the CAU methods. The
results plotted in these figures show a remarkable accuracy improvement when
the CAU method is employed. It can also be noted that the discontinuity-
capturing term provided by this method behaves better than the one proposed in
[9], here simply referred as DC. In Figure 3 we also present the results
corresponding to the semi-discrete version of these methods. As expected, the
approximations provided by the CAU method present the best results.

1.2-,

0.4-

0.0-

Space-time

Exact
Galerkin
STPG

1.2 -,

44 0.0

Space-time

Exact
DC
CAU

-40.0 0.0 40.0 -40.0 0.0

Figure 1 - Water elevation using space-time elements.

2.0

1.5-

0.0

-40.0 0.0 40.0 -40.0 0.0

Figure 2 - Velocities using space-time elements.

40.0

40.0
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-40.0 0.0 40.0 -40.0 0.0 40.0

Figure 3 - Water elevation (a) and velocity (b) using semi-discrete formulation.

7.2 Two-dimensional Dam Break

This example is a two-dimensional extension of the first. The spatial
discretization is given by a 2x100x100 triangular elements mesh, resulting in
59606 equations (29803 equations in the semi-discrete version).

Figure 4 - Water elevation for / = 7.5: SUPG (a); semi-discrete CAU (b); STPG
(c); space-time CAU (d).
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The semi-discrete and space-time solutions for / = 7.5 can be seen in Figure 4.
The time step is the same as in the one-dimensional case (A/ = 0.25). The
advantages of using edge data structure can be seen in Tables 3-4. These tables
present the CPU time spent by the GMRES solver, to reach the solution at / =
7.5, or 30 time steps. The element-by-element techniques are denoted by EBE
(full element matrices), EBE-D (simple main diagonal assembled) and EBE-BD
(block diagonal assembled), while the edge-by-edge technique is denoted by
EDGE. In space-time formulation with edge data structure, the results were
obtained in both ways: solving the entire system or splitting the system in two
(EDGE*). These figures also show the total number of non-linear iterations and
the total number of GMRES iterations. A simple diagonal preconditioning has
been used in all cases.

Table 3 - Semi-discrete (Crank-Nicolson): SUPG

EBE
EBE-D
EBE-BD
EDGE

CPU time (s)

185.32
161.90
147.35
105.92

Reduction (%)

-
12.64
20.49
42.84

Non-linear
iterations
240
240
240
240

GMRES
iterations
1961
1961
1961
1961

Table 4 - Space-time: STPG.

EBE
EBE-D
EBE-BD
EDGE
EDGE*

CPU time (s)

712.38
679.23
626.93
439.82
185.93

Reduction
(%)
-

4.65
1200
38.26

-

Non-linear
iterations

211
211
211
211
300

GMRES
iterations
2342
2342
2342
2342
3399

8 Conclusions

In this paper we have presented a space-time finite element formulation for
problems governed by the shallow water equations, using linear approximation
in time and linear three node triangles for the spatial discretization. For the one-
dimensional dam break problem, the numerical results were compared to the
exact solution. Accurate results were obtained with the CAU method, showing
its capability as a stabilizing operator. Although the number of equations in
space-time formulation is twice the number of equations arising in the
correspondent semi-discrete version, the CPU and memory requirements were
significantly reduced by splitting the space-time system of equations in two
"semi-discrete" systems, and using an edge based data structure.
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