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In this article, we define a new evolving surface finite-element method for numerically approximating

partial differential equations on hypersurfaces Γ (t) in Rn+1 which evolve with time. The key idea is

based on approximating Γ (t) by an evolving interpolated polyhedral (polygonal if n = 1) surface Γh(t)

consisting of a union of simplices (triangles for n = 2) whose vertices lie on Γ (t). A finite-element

space of functions is then defined by taking the set of all continuous functions on Γh(t) which are lin-

ear affine on each simplex. The finite-element nodal basis functions enjoy a transport property which

simplifies the computation. We formulate a conservation law for a scalar quantity on Γ (t) and, in the

case of a diffusive flux, derive a transport and diffusion equation which takes into account the tangen-

tial velocity and the local stretching of the surface. Using surface gradients to define weak forms of

elliptic operators naturally generates weak formulations of elliptic and parabolic equations on Γ (t). Our

finite-element method is applied to the weak form of the conservation equation. The computations of

the mass and element stiffness matrices are simple and straightforward. Error bounds are derived in the

case of semi-discretization in space. Numerical experiments are described which indicate the order of

convergence and also the power of the method. We describe how this framework may be employed in

applications.

Keywords: finite elements; evolving surfaces; conservation; diffusion; existence; error estimates;

computations.

1. Introduction

Partial differential equations (PDEs) on evolving surfaces occur in many applications. For example,

traditionally they arise naturally in fluid dynamics and materials science and more recently in the

mathematics of images. In this paper, we propose a mathematical approach to the formulation and ap-

proximation of transport and diffusion of a material quantity on an evolving surface in Rn+1 (n =
1, 2). We have in mind a surface which not only evolves in the normal direction so as to define the

surface evolution but also has a tangential velocity associated with the motion of material points in

the surface which advects material quantities such as heat or mass. For our purposes here we assume

that the surface evolution is prescribed.
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1.1 The advection–diffusion equation

Conservation of a scalar with a diffusive flux on an evolving hypersurface Γ (t) leads to the diffusion

equation

u̇ + u∇Γ · v − ∇Γ · (D0∇Γ u) = 0 (1.1)

on Γ (t). Here, u̇ denotes the covariant or advective surface material derivative, v is the velocity of the

surface and ∇Γ is the tangential surface gradient. If ∂Γ (t) is empty, then the equation does not need a

boundary condition. Otherwise, we can impose Dirichlet or Neumann boundary conditions on ∂Γ (t).

1.2 The finite-element method

In this paper, we propose a finite-element approximation based on the variational form

d

dt

∫

Γ (t)

uϕ +
∫

Γ (t)

D0∇Γ u · ∇Γ ϕ =
∫

Γ (t)

uϕ̇, (1.2)

where ϕ is an arbitrary test function defined on the surface Γ (t) for all t . This provides the basis

of our evolving surface finite-element method (ESFEM) which is applicable to arbitrary evolving n-

dimensional hypersurfaces inRn+1 (curves inR2) with or without boundary. Indeed this is the extension

of the method of Dziuk (1988) for the Laplace–Beltrami equation on a stationary surface. The princi-

pal idea is to use a polyhedral approximation of Γ based on a triangulated surface. It follows that a

quite natural local piecewise linear parameterization of the surface is employed rather than a global one.

The finite-element space is then the space of continuous piecewise linear functions on the triangulated

surface whose nodal basis functions enjoy the remarkable property

φ̇ j = 0.

The implementation is thus rather similar to that for solving the diffusion equation on flat stationary

domains. For example, the backward Euler time discretization leads to the ESFEM scheme

1

τ
(M (tm+1)αm+1 −M (tm)αm) +S (tm+1)αm+1 = 0,

where M (t) and S (t) are the time-dependent surface mass and stiffness matrices and αm is the vector

of nodal values at time tm . Here, τ denotes the time step size.

1.3 Level set or implicit surface approach

An alternative approach to our method based on the use of (1.2) is to embed the surface in a family

of level set surfaces (Bertalmio et al., 2001; Adalsteinsson & Sethian, 2003; Xu & Zhao, 2003; Greer

et al., 2006). This Eulerian approach can be discretized on a Cartesian grid in Rn+1 and has the usual

advantages and disadvantages of level set methods.

1.4 Applications

Such a problem arises, e.g. when modeling the transport of an insoluble surfactant on the interface be-

tween two fluids (Stone, 1990; James & Lowengrub, 2004). Here, one views the velocity of the surface

as being the fluid velocity and hence the surfactant is transported by advection via the tangential fluid
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velocity (and hence the tangential surface velocity) as well by diffusion within the surface. The evolution

of the surface itself in the normal direction is then given by the normal component of the fluid velocity.

Diffusion-induced grain boundary motion (Cahn et al., 1997; Fife et al., 2001; Mayer & Simonnett,

1999; Deckelnick et al., 2001) has the feature of coupling forced mean curvature flow for the motion of a

grain boundary with a diffusion equation for a concentration of mass in the grain boundary. In this case,

there is no material tangential velocity of the grain boundary so it is sufficient to consider the surface

velocity as being in the normal direction.

Another example is pattern formation on the surfaces of growing organisms modeled by reaction–

diffusion equations (Leung & Berzins, 2003). Possible applications in image processing are suggested

by Jin et al. (2004).

1.5 Outline of paper

The layout of the paper is as follows. We begin in Section 2 by defining notation and essential con-

cepts from elementary differential geometry necessary to describe the problem and numerical method.

The equations presented above are justified in Section 3. The weak form of the equations is derived in

Section 4 and the well posedness of the initial boundary value problem is established. In Section 5, the

finite-element method is defined and some preliminary approximation results are shown. Error bounds

for the semi-discretization in space are proved in Section 6. Implementation issues are discussed in

Section 7 and the results of numerical experiments are presented. Finally, in Section 8 we make some

concluding remarks.

2. Basic notation and surface derivatives

2.1 Notation

For each t ∈ [0, T0], T0 > 0, let Γ (t) be a compact smooth connected and oriented hypersurface in

R
n+1 (n = 1, 2) and Γ0 = Γ (0). In order to formulate the model it is convenient to use two descriptions

of Γ (t), one using a diffeomorphic parameterization and the other a level set function.

Note that to define an evolving surface Γ (t) it is sufficient to prescribe the normal velocity. However,

we wish to consider time-dependent material surfaces Γ = Γ (t) for which a material particle P located

at X P (t) on Γ (t) has a velocity Ẋ P (t) not necessarily only in the normal direction. Thus, we assume

that there is a velocity field v so that points P on Γ (t) evolve with velocity Ẋ P(t) = v(X P(t), t).

Hence, for our first description, we assume that there exists a map

Φ(·, t):Γ0 → Γ (t), Φ ∈ C1([0, T0], C1(Γ0)) ∩ C0([0, T0], C3(Γ0)),

so that Φ(·, t) is a diffeomorphism from Γ0 to Γ (t) for every t ∈ [0, T0] and that it solves the equation

Φt (·, t) = v(Φ(·, t), t),Φ(·, 0) = I d.

Thus, for X P (0) = P ∈ Γ0 we have X P(t) = Φ(P, t) ∈ Γ (t).

It follows that Γ (t) has a second representation defined by a smooth level set function d = d(x, t),

x ∈ Rn+1, t ∈ [0, T0] so that

Γ (t) = {x ∈ N (t)|d(x, t) = 0},
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whereN (t) is an open subset of Rn+1 in which ∇d �= 0 and chosen so that

d, dt , dxi
, dxi x j

∈ C1(NT0
) (i, j = 1, . . . , n)

forNT0
=

⋃

t∈[0,T0]N (t) × {t}.
The orientation of Γ is set by taking the normal ν to Γ to be in the direction of increasing d . Hence,

we define a normal vector field by

ν(x, t) = ∇d(x, t)

|∇d(x, t)| ,

so that the normal velocity V of Γ is given by

V (x, t) = − dt (x, t)

|∇d(x, t)| .

We assume that the velocity field v is C1 in NT0
. It has the decomposition v = V ν + T into normal

velocity V = − dt

|∇d| |Γ (t) and tangential velocity T .

Observe that a possible choice for d is a signed distance function and in that case |∇d| = 1 onNT0
.

For later use, we mention that N (t) can be chosen such that for every x ∈ N (t) and t ∈ [0, T0] there

exists a unique a(x, t) ∈ Γ (t) such that

x = a(x, t) + d(x, t)ν(a(x, t), t), (2.1)

where here d denotes the signed distance function to Γ (t).

For any function η defined on an open subsetN (t) ofRn+1 containing Γ (t), we define its tangential

gradient on Γ by

∇Γ η = ∇η − ∇η · νν,

where, for x and y in Rn+1, x ·y denotes the usual scalar product and ∇η denotes the usual gradient on

R
n+1. The tangential gradient ∇Γ η only depends on the values of η restricted to Γ (t) and ∇Γ η·ν = 0.

The components of the tangential gradient will be denoted by

∇Γ η = (D1η, . . . , Dn+1η).

The Laplace–Beltrami operator on Γ (t) is defined as the tangential divergence of the tangential gradient:


Γ η = ∇Γ · ∇Γ η =
n+1
∑

i=1

Di Diη.

Let Γ (t) have a boundary ∂Γ (t) whose intrinsic unit outer normal, tangential to Γ (t), is denoted by µ.

Then, the formula for integration by parts on Γ (t) is

∫

Γ

∇Γ η = −
∫

Γ

ηHν +
∫

∂Γ

ηµ, (2.2)

where H denotes the mean curvature of Γ with respect to ν, which is given by

H = −∇Γ · ν. (2.3)
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The orientation is such that for a sphere Γ = {x ∈ Rn+1||x−x0| = R} and the choice d(x) = R−|x−x0|
the normal is pointing into the ball BR(x0) = {x ∈ Rn+1||x − x0| < R} and the mean curvature of Γ

is given by H = n
R

. Note that H is the sum of the principle curvatures rather than the arithmetic mean

and hence differs from the common definition by a factor n. The mean curvature vector Hν is invariant

with respect to the choice of the sign of d .

Green’s formula on the surface Γ is

∫

Γ

∇Γ ξ · ∇Γ η =
∫

∂Γ

ξ∇Γ η · µ −
∫

Γ

ξ
Γ η. (2.4)

If Γ is closed, then ∂Γ is empty and the boundary terms do not appear. For these facts about tangential

derivatives we refer to Gilbarg & Trudinger (1988, pp. 389–391). Note that, in general, higher-order

tangential derivatives do not commute.

We shall use Sobolev spaces on surfaces Γ . For a given Lipschitz surface Γ , we define

H1(Γ ) = {η ∈ L2(Γ )|∇Γ η ∈ L2(Γ )n+1}

and H1
0 (Γ ) in the obvious way, if ∂Γ �= ∅. For smooth enough Γ we analoguously define the Sobolev

spaces H k(Γ ) for k ∈ N.

2.2 The material derivative and Leibniz formulae

By a dot we denote the material derivative of a scalar function f = f (x, t) defined on NT0
:

ḟ = ∂ f

∂t
+ v · ∇ f. (2.5)

In particular, we note that

ḟ (Φ(·, t), t) = d

dt
f (Φ(·, t), t)

and that the derivative depends only on the values of f on the evolving surface Γ (t).

REMARK 2.1 The material derivative ġ of a function g defined on the (n +1)-dimensional hypersurface

GT0
=

⋃

t∈[0,T0] Γ (t) × {t} ⊂ R
n+2 is related to the tangential gradient on this surface by the formula

ġ = (1 + V 2)
(

∇GT0
g
)

n+2
+ v · ∇Γ g,

where (∇GT0
g)n+2 is the n + 2th component of this tangential gradient. Note that

‖g‖2

L2
(

GT0

) + ‖∇Γ g‖2

L2
(

GT0

) + ‖ġ‖2

L2
(

GT0

)

is equivalent to ‖g‖2
H1(GT0

)
.

It is convenient to note that with (2.3) we obtain

∇Γ · v = ∇Γ · (V ν) + ∇Γ · T = V ∇Γ · ν + ∇Γ · T = −V H + ∇Γ · T (2.6)
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and

∇Γ · v = trace((I − ν ⊗ ν)∇v), (2.7)

where I − ν ⊗ ν denotes the matrix with entries δi j − νiν j . For a scalar f , we have

v · ∇ f = V ν · ∇ f + T · ∇ f = V
∂ f

∂ν
+ T · ∇Γ f. (2.8)

The following formula for the differentiation of a parameter-dependent surface integral will play a

decisive role.

LEMMA 2.2 (Leibniz formula) Let Γ be a surface and f be a function defined in NT0
such that all the

following quantities exist. Then

d

dt

∫

Γ

f =
∫

Γ

( ḟ + f ∇Γ · v) (2.9)

and with the decomposition v = V ν + T of the velocity of Γ into normal and tangential velocity

d

dt

∫

Γ

f =
∫

Γ

(

∂ f

∂t
+ V

∂ f

∂ν
− f V H + ∇Γ · ( f T )

)

. (2.10)

Finally, with the deformation tensor D(v)i j = 1
2
(Div j + D jvi ) (i, j = 1, . . . , n),

1

2

d

dt

∫

Γ

|∇Γ f |2 =
∫

Γ

∇Γ f · ∇Γ ḟ + 1

2

∫

Γ

|∇Γ f |2∇Γ · v −
∫

Γ

D(v)∇Γ f · ∇Γ f. (2.11)

A proof of this lemma is given in Appendix A.

3. Conservation and diffusion on Γ (t)

3.1 Conservation law

Let u be the density of a scalar quantity on Γ (t) (e.g. mass per unit area n = 2 or mass per unit length

n = 1). The basic conservation law we wish to consider can be formulated for an arbitrary portionM (t)

of Γ (t), which is the image of an arbitrary portion M (0) of Γ (0) under the prescribed velocity flow.

The law is that, for everyM (t),

d

dt

∫

M (t)

u = −
∫

∂M (t)

q · µ, (3.1)

where, ∂M (t) is the boundary of M (t) (a curve if n = 2 and the end points of a curve if n = 1) and µ

is the conormal on ∂M (t). Thus, µ is the unit normal to ∂M (t) pointing out ofM (t) and tangential to

Γ (t). The surface flux is denoted by q . Observe that components of q normal toM do not contribute to

the flux, so we may assume that q is a tangent vector.

With the use of integration by parts, (2.2), we obtain

∫

∂M (t)

q · µ =
∫

M (t)

∇Γ · q +
∫

M (t)

q · νH =
∫

M (t)

∇Γ · q.
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On the other hand by the Leibniz formula (2.9), we have

d

dt

∫

M (t)

u =
∫

M (t)

(u̇ + u∇Γ · v),

so that
∫

M (t)

(u̇ + u∇Γ · v + ∇Γ · q) = 0,

which implies the pointwise conservation law

u̇ + u∇Γ · v + ∇Γ · q = 0. (3.2)

Now using a representation of u off the surface, so that u has usual spatial derivatives in Rn+1, we

can write (3.2) as

ut + v · ∇u + u∇Γ · v + ∇Γ · q = 0. (3.3)

Observing (2.10), an alternative form is

ut + V
∂u

∂ν
− uV H + ∇Γ · (uT ) + ∇Γ · q = 0. (3.4)

Thus, we arrive at some special cases.

1. Divergence free velocity:

ut + v · ∇u − uν · ∇vν + ∇Γ · q = 0. (3.5)

2. Zero tangential velocity:

ut + V
∂u

∂ν
− uV H + ∇Γ · q = 0. (3.6)

3. Zero normal velocity:

ut + ∇Γ · (uv) + ∇Γ · q = 0. (3.7)

4. Zero normal velocity and divergence free tangential velocity:

ut + v · ∇Γ u + ∇Γ · q = 0. (3.8)

5. Stationary surface:

ut + ∇Γ · q = 0. (3.9)

REMARK 3.1 Our approach does not require values of the scalar u away from the surface and so does

not need to consider ∂u
∂ν

. In some approaches, this can be handled by assuming an extension of u away

from the surface which is constant in the normal direction (Xu & Zhao, 2003), so ∂u
∂ν

= 0. Furthermore,

there is no explicit need to compute the curvature or normal of the surface in (3.2).

REMARK 3.2 Our computational approach is based on (3.2) and depends only on explicit knowledge of

the surface location and does not require explicit evaluations of the normal ν or the mean curvature H .
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3.2 Diffusion equation and variational form

Taking q to be the diffusive flux

q = −D0∇Γ u, (3.10)

where the symmetric diffusion tensor is D0 � d0I > 0 on the tangent space and D0ν = 0. This leads

to the diffusion equation

u̇ + u∇Γ · v − ∇Γ · (D0∇Γ u) = 0 (3.11)

on Γ (t).

If ∂Γ = ∅, i.e. the surface has no boundary, then there is no need for boundary conditions. For

example, this would be the case if Γ (t) is the bounding surface of a domain.

If ∂Γ (t) is nonempty, then we impose the homogeneous Dirichlet boundary condition

u = 0 on ∂Γ (t). (3.12)

Again if ∂Γ (t) is nonempty, then we could impose the Neumann flux condition

D0∇Γ u · µ = 0. (3.13)

The variational form (1.2) then is an easy consequence. We multiply (1.1) by an adequate test

function ϕ and integrate over Γ (t). We then obtain using integration by parts (2.2) and the Leibniz

formula (2.9):

0 =
∫

Γ (t)

(u̇ϕ + uϕ∇Γ · v) +
∫

Γ (t)

D0∇Γ u · ∇Γ ϕ

=
∫

Γ (t)

((uϕ)̇ − uϕ̇ + uϕ∇Γ · v) +
∫

Γ (t)

D0∇Γ u · ∇Γ ϕ

= d

dt

∫

Γ (t)

uϕ +
∫

Γ (t)

D0∇Γ u · ∇Γ ϕ −
∫

Γ (t)

uϕ̇.

4. Weak form and wellposedness

We introduce the notion of a weak solution of the surface PDE (1.1), for which we derived a variational

form in (1.2). Just as in the Cartesian case, one could integrate (1.2) with respect to time and then

define a weak solution without using a time derivative of u. But since the purpose of this work is the

approximation of stronger solutions, we use a somewhat stronger notion of solution. We treat the case

of a compact surface without boundary.

DEFINITION 4.1 (Weak solution) Let GT0
=

⋃

t∈[0,T0] Γ (t) × {t} and D0 ∈ L∞(GT0
). A function

u ∈ H1(GT0
) is a weak solution of (1.1), if for almost every t ∈ (0, T0)

∫

Γ (t)

u̇ϕ +
∫

Γ (t)

uϕ∇Γ · v +
∫

Γ (t)

D0∇Γ u · ∇Γ ϕ = 0 (4.1)

for every ϕ(·, t) ∈ H1(Γ (t)).



270 G. DZIUK AND C. M. ELLIOTT

In order to simplify the presentation, we set

D0 = I

in this section. With suitable assumptions on D0, the results can easily be extended to the general case.

We first prove the basic energy equations for the problem. They will lead to existence and will be the

basis for error estimates later.

LEMMA 4.2 Let u be a weak solution of (1.1). Then

1

2

d

dt

∫

Γ (t)

u2 +
∫

Γ (t)

|∇Γ u|2 + 1

2

∫

Γ (t)

u2∇Γ · v = 0. (4.2)

Proof. We choose ϕ = u in

d

dt

∫

Γ (t)

uϕ +
∫

Γ (t)

∇Γ u · ∇Γ ϕ =
∫

Γ (t)

uϕ̇

and get

d

dt

∫

Γ

u2 +
∫

Γ

|∇Γ u|2 =
∫

Γ

uu̇ = 1

2

∫

Γ

(u2)̇ = 1

2

d

dt

∫

Γ

u2 − 1

2

∫

Γ

u2∇Γ · v,

and this was the claim. �

LEMMA 4.3 Let u be a weak solution of (1.1), for which the following quantities exist. Then

∫

Γ

u̇2 + 1

2

d

dt

∫

Γ

|∇Γ u|2 = 1

2

∫

Γ

|∇Γ u|2∇Γ · v −
∫

Γ

D(v)∇Γ u · ∇Γ u −
∫

Γ

uu̇∇Γ · v. (4.3)

Proof. We choose ϕ = u̇ in (4.1) and get with the use of (2.11)

0 =
∫

Γ

u̇2 +
∫

Γ

uu̇∇Γ · v +
∫

Γ

∇Γ u · ∇Γ u̇

=
∫

Γ

u̇2 + 1

2

d

dt

∫

Γ

|∇Γ u|2 − 1

2

∫

Γ

|∇Γ u|2∇Γ · v +
∫

Γ

D(v)∇Γ u · ∇Γ u +
∫

Γ

uu̇∇Γ · v.

�

THEOREM 4.4 (Existence) Let u0 ∈ H1(Γ0). Then there exists a unique weak solution of (1.1) and the

following energy estimates hold:

sup
(0,T0)

‖u‖2
L2(Γ )

+
∫ T0

0

‖∇Γ u‖2
L2(Γ )

� c‖u0‖2
L2(Γ0)

, (4.4)

∫ T0

0

‖u̇‖2
L2(Γ )

+ sup
(0,T0)

‖∇Γ u‖2
L2(Γ )

� c‖u0‖2
H1(Γ0)

. (4.5)

Proof. That there can be no more than one weak solution is a consequence of the estimate (4.2) which

applies to the difference of two weak solutions by linearity and a standard Gronwall argument. Let
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ϕ0
j , j ∈ N, denote the eigenfunctions of the Laplace–Beltrami operator on Γ0, (see Aubin, 1982). Let

Φ = Φ(y, t), y ∈ Γ0, 0 � t � T0 denote the diffeomorphism (see Section 2) between Γ0 and Γ (t). Set

ϕ j (Φ(·, t), t) = ϕ0
j .

This then gives a countable dense subset {ϕ j (·, t)| j ∈ N} of H1(Γ (t)). For j = 1, . . . , N one has the

transport property

ϕ̇ j = 0 on Γ. (4.6)

Our ansatz for a Galerkin solution of (4.1) from X N = span{ϕ1(·, t), . . . , ϕN (·, t)} is

uN (x, t) =
N

∑

j=1

u j (t)ϕ j (x, t),

where u j (0) = (u0, ϕ
0
j )L2(Γ0)

. Because of the property (4.6), we have that

u̇N =
N

∑

j=1

u̇ jϕ j

is in the same finite-dimensional space X N as uN . By (linear) ordinary differential equation theory, we

have existence and uniqueness of uN satisfying

d

dt

∫

Γ (t)

uN ϕ +
∫

Γ (t)

∇Γ uN · ∇Γ ϕ =
∫

Γ (t)

uN ϕ̇ (4.7)

for all ϕ(·, t) ∈ span{ϕ1(·, t), . . . , ϕN (·, t)}. Lemma 4.2 then implies the energy equation

1

2

d

dt

∫

Γ (t)

u2
N +

∫

Γ (t)

|∇Γ uN |2 + 1

2

∫

Γ (t)

u2
N ∇Γ · v = 0 (4.8)

and a Gronwall argument gives the estimate

sup
t∈(0,T0)

∫

Γ (t)

uN (·, t)2d A +
∫ T0

0

∫

Γ (t)

|∇Γ uN (·, t)|2d A dt � C, (4.9)

where the constant depends on the geometry of Γ (t), t ∈ [0, T0], and on the initial data u0 but not on

N . Similarly, with Lemma 4.3 we get

∫

Γ (t)

u̇2
N + 1

2

d

dt

∫

Γ (t)

|∇Γ uN |2 � c

∫

Γ (t)

|∇Γ uN |2 + c

∫

Γ (t)

|uN ||u̇N |,

so that with (4.9) and a Gronwall argument we arrive at the estimate

∫ T0

0

∫

Γ (t)

u̇N (·, t)2d A dt + sup
t∈(0,T0)

∫

Γ (t)

|∇Γ uN (·, t)|2d A � C. (4.10)
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When we combine the estimates (4.9) and (4.10), we obtain the boundedness of the sequence (uN )N∈N
in H1(GT0

): thus there exists a u = u(x, t), u ∈ H1(GT0
) such that for a subsequence (which we again

call uN ),

uN ⇀ u (N → ∞) in H1
(

GT0

)

.

This, (4.7), the density of the sequence ϕ j and Fubini’s theorem imply that u is a weak solution as in

Definition 4.1. �

For our error estimates, we shall need regularity properties of the solution u for smoothly evolving

smooth Γ .

THEOREM 4.5 Let Γ be sufficiently smooth. Then, u(·, t) ∈ H2(Γ (t)) and

∫ T0

0

‖u‖2
H2(Γ )

� c‖u0‖2
H1(Γ0)

. (4.11)

Proof. Because of the smoothness of Γ , we have from Aubin (1982) and the elliptic PDE

∫

Γ

∇Γ u · ∇Γ ϕ = −
∫

Γ

(u̇ + u∇Γ · v)ϕ

for all ϕ that u ∈ H2(Γ ) and ‖u‖H2(Γ ) � c(‖u̇‖L2(Γ ) +‖u‖L2(Γ )). The energy estimates (4.4) and (4.5)

then prove the result. �

REMARK 4.6 The results of existence and uniqueness are easily extended to the case where ∂Γ (t) is

nonempty and either Dirichlet or Neumann conditions are prescribed. Then, for the regularity result of

Theorem 4.5, we need regularity of the boundary ∂Γ .

5. Finite-element approximation

5.1 Finite elements on surfaces

The smooth evolving surface Γ (t) (∂Γ (t) = ∅) is approximated by an evolving surface

Γh(t) ⊂ N (t), (∂Γh(t) = ∅),

which for each t is of class C0,1 and in time is smooth. In particular, for n = 2, Γh(t) is a triangulated

(and hence polyhedral) surface consisting of triangles e in Th(t) with maximum diameter, uniformly in

time, being denoted by h and inner radius bounded below by σh � ch with some c > 0. The vertices

{X j (t)}N
j=1 of the triangles are taken to sit on Γ (t) so that Γh(t) is an interpolation. Note that by (2.1)

for every triangle e(t) ⊂ Γh(t) there is a unique curved triangle T (t) = a(e(t), t) ⊂ Γ (t). In order to

avoid a global double covering (see Fig. 1) we assume that,

for each point a ∈ Γ there is at most one point x ∈ Γh with a = a(x, ·). (5.1)

This implies that there is a bijective correspondence between the triangles on Γh and the induced curvi-

linear triangles on Γ .

For any continuous function η defined on the discrete surface Γh(t), we may define an extension or

lift onto Γ (t) by

ηl(a) = η(x(a)), a ∈ Γ (t), (5.2)
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FIG. 1. Left: Approximation of a curve Γ (t) by a polygon Γh(t), a point x ∈ Γh(t) and its orthogonal projection a(x, t) onto

Γ (t). Right: A polygonal approximation to a circle, violating the Condition (5.1).

where by (2.1) and our assumptions, x(a) is defined as the unique solution of

x = a + d(x, t)ν(a, t). (5.3)

Furthermore, we understand by ηl(x) the constant extension from Γ (t) in the normal direction ν(a, t).

For each t we have a finite-element space

Sh(t) = {φ ∈ C0(Γh(t))|φ|e is linear affine for each e ∈ Th(t)}.

It is convenient to introduce

Sl
h(t) = {ηl ∈ C0(Γ (t))|ηl(a) = η(x(a)), η ∈ Sh(t) and x(a) given by (5.3)}.

Similarly, each e(t) defines a curvilinear triangle T (t) on Γ (t) by

T (t) = {a(x, t)|x ∈ e(t)}.

In the error analysis of the finite-element scheme, we shall need the following technical lemma, which

gives more detailed information about the order of approximation of the geometry. It will become clear

in the proof of Theorem 6.2 how we shall exploit the following estimates.

LEMMA 5.1 Assume Γ and Γh are as above. Then

sup
t∈(0,T0)

‖d(·, t)‖L∞(Γh(t)) � ch2. (5.4)

The quotient, δh , between the smooth and discrete surface measures d A and d Ah , defined by δhd Ah =
d A, satisfies

sup
t∈(0,T0)

sup
Γh(t)

|1 − δh | � ch2. (5.5)

Let P and Ph be the projections onto the tangent planes, Pi j = δi j − νiν j , Ph,i j = δi j − νh,iνh, j , and

let Rh = 1
δh

P(I − dH )Ph(I − dH ), Hi j = dxi x j
= (νi )x j

. Then

sup
t∈(0,T0)

sup
Γh(t)

|(I − Rh)P| � ch2. (5.6)

Proof. For ease of exposition and without loss of generality, we treat 2D surfaces and omit the time

dependence of all quantities. Let e ⊂ Γh be a triangle of the discrete surface. The corresponding curved
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triangle T = a(e) thus is parameterized over e. Again without loss of generality, we may assume that

e ⊂ R
2 × {0}. By Ih we denote the Lagrange interpolation on e.

Since the vertices of e lie on Γ we have that the interpolate Ihd vanishes identically on e and

‖d‖L∞(e) = ‖d − Ihd‖L∞(e) � ch2|d|H2,∞(e) � ch2‖d‖C1,1(NT0
)

and similarly

‖ν j‖L∞(e) = ‖dx j
‖L∞(e) � ch ( j = 1, 2). (5.7)

For x = (x1, x2, 0) ∈ e, we have by (2.1) that the map a(x) satisfies

ai,x j
= δ j i − ν jνi − dH j i .

Furthermore, since d Ah = dx1dx2 and d A = |ax1
∧ ax2

|dx we have

δh = |ax1
∧ ax2

|.

To derive the estimate of the surface elements (5.5) we observe that from (5.4)

ai,x j
= δ j i − ν jνi − dH j i = Pj i + O(h2).

This implies for n = 2

ax1
∧ ax2

= (e1 − ν1ν − dνx1
) ∧ (e2 − ν2ν − dνx2

) = (e1 − ν1ν) ∧ (e2 − ν2ν) + O(h2)

= e3 − ν2e1 ∧ ν − ν1ν ∧ e2 + O(h2) = ν3ν + O(h2)

together with

|ax1
∧ ax2

|2 � 1 − O(h2) � c0 > 0

for h � h0. Hence, we have from (5.7)

|1 − δh | = |1 − |ax1
∧ ax2

|| = |1 − |ax1
∧ ax2

|2|
1 + |ax1

∧ ax2
| =

|ν2
1 + ν2

2 + O(h2)|
1 + |ax1

∧ ax2
| � ch2,

and we have proved (5.5).

The proof of (5.6) follows from the previous estimates when we keep in mind that in our situation

νh = e3. Note that by νh we mean the piecewise constant vector defined by the normals to the triangles

on Γh(t). We find that

(Rh − I )P = P Ph P − P + O(h2) = O(h2),

since for a unit vector z we have

|(P Ph P − P)z| = |z·(νh − (νh · ν)ν)(νh − (νh · ν)ν)| � ch2,

because from (5.7),

|νh − (νh ·ν)ν| = |e3 − ν3ν| =
√

1 − ν2
3 =

√

ν2
1 + ν2

2 = O(h).

This proves (5.6). �

In order to compare the norms between functions and their lift we need the following lemma.
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LEMMA 5.2 Let η: Γh → R with lift ηl : Γ → R. Then for the corresponding plane, e ⊂ Γh , and

smooth, T ⊂ Γ , triangles the following estimates hold if the norms exist. There is a constant c > 0

independent of h such that

1

c
‖η‖L2(e) � ‖ηl‖L2(T ) � c‖η‖L2(e), (5.8)

1

c
‖∇Γh

η‖L2(e) � ‖∇Γ ηl‖L2(T ) � c‖∇Γh
η‖L2(e), (5.9)

‖∇2
Γh

η‖L2(e) � c‖∇2
Γ ηl‖L2(T ) + ch‖∇Γ ηl‖L2(T ). (5.10)

Proof. The proof is contained in Dziuk (1988). Here, we only give the main ideas. In the following let

d be the distance function with respect to the smooth surface Γ . By definition (see (5.2))

η(x) = ηl(x − d(x)ν(x)), x ∈ Γh .

The chain rule together with the definition of the tangential gradients on smooth and discrete surface

gives

∇Γh
η(x) = Ph(x)(I − d(x)H (x))∇Γ ηl(a(x)), x ∈ Γh,

where Ph and H are as in Lemma 5.1. The results then easily follow from the estimates of that lemma

and in particular the estimate 0 < 1
c
� δh � c < ∞. �

For later use, we list interpolation inequalities which now are available. The lemma was proved in

Dziuk (1988) for the gradient. It is easily extended to the L2-estimate.

LEMMA 5.3 (Interpolation) For given η ∈ H2(Γ ), there exists a unique Ihη ∈ Sl
h such that

‖η − Ihη‖L2(Γ ) + h‖∇Γ (η − Ihη)‖L2(Γ ) � ch2(‖∇Γ
2η‖L2(Γ ) + h‖∇Γ η‖L2(Γ )), (5.11)

The interpolant is constructed in an obvious way. Since η ∈ H2(Γ ), by Sobolev’s embedding it is

in C0(Γ ) since the surface Γ is 2D. Thus, the pointwise linear interpolation Ĩhη ∈ Sh is well defined.

The vertices of Γh lie on the smooth surface Γ and so the nodal values of η are well defined for this

interpolation. We then lift Ĩhη onto Γ by the process Ihη = ( Ĩhη)l according to (5.2).

5.2 Transport property of basis functions

Each triangle e(t) with vertices Xe
k , k = 1, 2, 3, on the discrete surface can be parameterized using

barycentric coordinates over the triangle ê =
{

0 � λk � 1,
∑3

j=1 λk = 1
}

by

xe(λ1, λ2, λ3, t) =
3

∑

k=1

λk X e
j (e,k)(t). (5.12)

For each t ∈ [0, T0] we define (moving) nodal basis functions {φ j (·, t)}N
j=1 defined on N (t) satis-

fying

φ j (·, t) ∈ C0(Γh(t)), φ j (X i (t), t) = δi j , φ j (·, t)|e is linear affine (5.13)
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and on e(t)

φ j |e = λk,

where k = k(e, j).

Clearly, φ j (·, t) ∈ Sh(t) for each j and span{φ j (·, t)} ≡ Sh(t). The linear independence of these

nodal functions implies that for each t they form a basis of Sh(t) so that for each φ(·, t) ∈ Sh(t),

φ(·, t) =
N

∑

j=1

γ j (t)φ j (·, t).

Observing the definition of material derivative, we find that

φ̇ j |e = d

dt
φ j (xe(λ1, λ2, λ3, t), t) = d

dt
λk(e, j) = 0,

which yields the remarkable property

φ̇ j = 0 on Γh(t).

Thus, we have the following proposition describing the transport property of the finite-element func-

tions.

PROPOSITION 5.4 (Transport property) On Γh(t), for each j = 1, . . . , N ,

φ̇ j = 0

and for each φ =
∑N

j=1 γ j (t)φ j ∈ Sh(t)

φ̇ =
N

∑

j=1

γ̇ j (t)φ j .

REMARK 5.5 Observe that the derivative φ̇ is defined with respect to the evolving surface on which φ

takes its values. Noting that

dX j

dt
(t) = v(X j (t), t) =: V j (t)

and vh(·, t) is the velocity of Γh(t) where

vh(·, t) =
N

∑

j=1

V j (t)φ j (·, t) (5.14)

we may write the transport property of these finite-element basis functions in the interior of e(t) as

φ j,t + vh · ∇φ j = 0.

Here, we use the lift extension of a finite-element function on the discrete surface which is constant in a

direction normal to the underlying smooth surface.
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5.3 Semi-discrete approximation

Our ESFEM is based on the evolving finite-element spaces introduced in this section and the variational

form (1.2) of the diffusion equation.

DEFINITION 5.6 (Semi-discretization in space) Find U (·, t) ∈ Sh(t) such that

d

dt

∫

Γh(t)

Uφ +
∫

Γh(t)

D
−l
0 ∇Γh

U · ∇Γh
φ =

∫

Γh(t)

U φ̇ ∀ φ ∈ Sh(t). (5.15)

Here, D−l
0 is such that its lift is D0 so that (D−l

0 )l = D0.

Using the Leibniz formula for the evolving triangulated surface Γh(t), it is easily seen that an equiva-

lent formulation is
∫

Γh(t)

U̇φ +
∫

Γh(t)

Uφ∇Γh
· vh +

∫

Γh(t)

D
−l
0 ∇Γh

U · ∇Γ φ = 0 ∀ φ ∈ Sh(t). (5.16)

Setting

U (·, t) =
N

∑

j=1

α j (t)φ j (·, t)

and using Proposition 5.4 we find that

∫

Γh(t)

N
∑

j=1

α j,tφ jφ +
∫

Γh(t)

N
∑

j=1

α jφ jφ∇Γh
· vh +

∫

Γh(t)

D
−l
0

N
∑

j=1

α j (t)∇Γh
φ j · ∇Γ φ = 0 ∀ φ ∈ Sh(t)

and taking φ = φi , i = 1, . . . , N we obtain

M (t)α̇ + M̃ (t)α +S (t)α = 0, (5.17)

whereM (t) is the evolving mass matrix

M (t) jk =
∫

Γh(t)

φ jφk,

M̃ (t) is a mass matrix weighted by the surface divergence of the velocity

M̃ (t) jk =
∫

Γh(t)

φ jφk∇Γh(t) · vh

and S (t) is the evolving stiffness matrix

S (t) jk =
∫

Γh(t)

D
−l
0 ∇Γh

φ j∇Γh
φk .

A consequence of the fact that the covariant derivatives of the evolving basis functions vanish is

PROPOSITION 5.7

dM

dt
= M̃ . (5.18)
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Proof. A simple application of the Leibniz formula yields

d

dt

∫

Γh(t)

φ jφk =
∫

Γh(t)

(

φ̇ jφk + φ j φ̇k + φ jφk∇Γh(t) · vh

)

and since φ̇ j ≡ 0 we have the result. �

Thus, we arrive at a simpler version of the finite-element approximation which does not explicitly

involve the velocity of the surface. The system

d

dt
(M (t)α) +S (t)α = 0 (5.19)

is equivalent to (5.15). Since the mass matrix M (t) is uniformly positive definite on [0, T0] and the

stiffness matrix S (t) is positive semi-definite, we get existence and uniqueness of the semi-discrete

finite-element solution.

REMARK 5.8 A significant feature of our approach is the fact that the matricesM (t) andS (t) depend

only on the knowledge of the position of the nodes on the discrete surface. The computational method

does not require a numerical evaluation of the normal or curvature.

REMARK 5.9 The numerical approximation can be directly applied to surfaces having a boundary.

6. Error bounds

In this section, we will prove a convergence result. To start with, we prove the basic stability results.

They are similar to the energy estimates in Theorem 4.4.

LEMMA 6.1 (Stability) Let U be a solution of the semi-discrete scheme as in Definition 5.6 with initial

value U (·, 0) = U0 and U l its lift according to (5.2). Then the following stability estimates hold:

sup
(0,T0)

‖U l‖2
L2(Γ )

+
∫ T0

0

‖∇Γ U l‖2
L2(Γ )

� c‖U l
0‖2

L2(Γ0)
, (6.1)

∫ T0

0

‖U̇ l‖2
L2(Γ )

+ sup
(0,T0)

‖∇Γ U l‖2
L2(Γ )

� c‖U l
0‖2

H1(Γ0)
. (6.2)

Proof. The estimates for U follow from the Leibniz formulas in Lemmas 4.2 and 4.3 in the same way

as this was done for the continuous equation. We then lift U to the continuous surface and use the

estimates of Lemma 5.2 together with (6.6). For the last argument, we refer to the proof of the following

theorem. �

THEOREM 6.2 (Convergence) Let u be a sufficiently smooth solution of (4.1) and let U be the discrete

solution from Definition 5.6. With the lift U l of U we then have the following error estimate:

sup
t∈(0,T0)

‖u(·, t) − U l(·, t)‖2
L2(Γ (t))

+
∫ T0

0

‖∇Γ (u(·, t) − U l(·, t))‖2
L2(Γ (t))

dt

� ch2‖u0‖2
H2(Γ0)

+ ch4 sup
s∈(0,T0)

‖u(·, s)‖2
H2(Γ (s))

+ ch6

∫ T0

0

‖u̇(·, s)‖2
H2(Γ (s))

ds. (6.3)

Proof. The error bounds rely on a suitable form of the error equation. In order to compare discrete and

continuous solution, both should be defined on the same surface which we take to be the continuous
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surface Γ (t). The continuous equation reads

d

dt

∫

Γ (t)

uϕ +
∫

Γ (t)

D0∇Γ u · ∇Γ ϕ =
∫

Γ (t)

uϕ̇ ∀ ϕ ∈ H1(Γ (t)), (6.4)

and the discrete equation is given by

d

dt

∫

Γh(t)

Uφ +
∫

Γh(t)

D
−l
0 ∇Γh

U · ∇Γh
φ =

∫

Γh(t)

U φ̇ ∀ φ ∈ Sh(t). (6.5)

Here again D−l
0 is defined such that the lift of D−l

0 is D0. We lift the discrete equation to the continuous

surface as it was described in Section 5.1. We define U l and φl by

U (x, t) = U l(a(x, t), t), φ(x, t) = φl(a(x, t), t), x ∈ Γh(t).

The transformation of the material derivative of φ with respect to the discrete surface Γh is done as

follows. For x ∈ Γh(t), we have

φ̇(x, t) = φt (x, t) + vh(x, t) · ∇φ(x, t)

= φ̇l(a(x, t), t) + ((P(I − dH )vh − dtν − dνt )(x, t) − v(a(x, t), t)) · ∇φl(a(x, t), t).

By definition, ∇φl(a(x, t), t) · ν(x, t) = ∇φl(a(x, t), t) · ν(a(x, t), t) = 0 and so ∇φl = ∇Γ φl . With

the use of the estimate (5.4), this leads to

φ̇(x, t) = φ̇l(a(x, t), t) + (vh(x, t) − v(a(x, t), t)) · ∇Γ φl(a(x, t), t) + O(h2|∇Γ φl(a(x, t), t)|).

Here, we also have used that vh is bounded independently of h. Since vh is the interpolant of v (see

(5.14)), we have that |vh(x, t) − v(a(x, t), t)| � ch2, and we arrive at

φ̇(x, t) = φ̇l(a(x, t), t) + O(h2|∇Γ φl(a(x, t), t)|), x ∈ Γh(t). (6.6)

For better understanding of the following, we introduce the notation

uh(x, t) = U l(x, t), x ∈ Γ (t)

and the abbreviation

Rh(x, t) = 1

δh(x, t)
(D−l

0 (x, t))−1 P(x, t)(I − d(x, t)H (x, t))

× Ph(x, t)D−l
0 (x, t)Ph(x, t)(I − d(x, t)H (x, t))

(x ∈ Γh(t)), and its lifted version for Rl
h(a(x, t), t) = Rh(x, t), x ∈ Γh(t). Lemma 5.1 holds with a

minor modification in the proof for the case thatD0 is not the identity on the tangent space by observing

the identity

(D−l
0 )−1 P PhD

−l
0 Ph P − P = (D−l

0 )−1(P Ph P − P)D−l
0 P Ph P + P Ph P − P.
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Then (6.5) and

D
−l
0 ∇Γh

U · ∇Γh
φ = D

−l
0 Ph(P − dH )∇uh(a, ·) · Ph(P − dH )∇ϕh(a, ·)

= D
−l
0 Ph P(I − dH )∇Γ uh(a, ·) · Ph P(I − dH )∇Γ ϕh(a, ·)

= D
−l
0 Rh∇Γ uh(a, ·) · ∇Γ ϕh(a, ·)

on Γh(t), together with the estimate (6.6) lead to the inequality

d

dt

∫

Γ (t)

uhϕh

1

δl
h

+
∫

Γ (t)

D0 Rl
h∇Γ uh · ∇Γ ϕh �

∫

Γ (t)

uh ϕ̇h

1

δl
h

− ch2

∫

Γ (t)

|uh ||∇Γ ϕh | 1

δl
h

(6.7)

for all ϕh ∈ Sl
h(t). We take the difference of (6.4) at ϕh and (6.7). The error relation between continuous

and lifted discrete solution then is given by

d

dt

∫

Γ (t)

(

u − 1

δl
h

uh

)

ϕh +
∫

Γ (t)

D0(∇Γ u − Rl
h∇Γ uh) · ∇Γ ϕh

�

∫

Γ (t)

(

u − 1

δl
h

uh

)

ϕ̇h + ch2

∫

Γ (t)

|uh ||∇Γ ϕh | 1

δl
h

∀ ϕh ∈ Sl
h(t), (6.8)

or, written in a more convenient form:

d

dt

∫

Γ (t)

(u − uh)ϕh +
∫

Γ (t)

D0∇Γ (u − uh) · ∇Γ ϕh

�

∫

Γ (t)

D0(Rl
h − I )∇Γ uh · ∇Γ ϕh + d

dt

∫

Γ (t)

(

1

δl
h

− 1

)

uhϕh −
∫

Γ (t)

(

1

δl
h

− 1

)

uh ϕ̇h

+
∫

Γ (t)

(u − uh)ϕ̇h + ch2

∫

Γ (t)

|uh ||∇Γ ϕh | 1

δl
h

∀ ϕh ∈ Sl
h(t). (6.9)

This implies

d

dt

∫

Γ (t)

(u − uh)2 + d0

∫

Γ (t)

|∇Γ (u − uh)|2 −
∫

Γ (t)

(u − uh)(u̇ − u̇h)

�
d

dt

∫

Γ (t)

(u − uh)(u − ϕh) +
∫

Γ (t)

D0∇Γ (u − uh) · ∇Γ (u − ϕh)

−
∫

Γ (t)

(u − uh)(u̇ − ϕ̇h) +
∫

Γ (t)

D0(Rl
h − I )∇Γ uh · ∇Γ (ϕh − uh)

+ d

dt

∫

Γ (t)

(

1

δl
h

− 1

)

uh(ϕh − uh) −
∫

Γ (t)

(

1

δl
h

− 1

)

uh(ϕ̇h − u̇h)

+ ch2

∫

Γ (t)

|uh ||∇Γ (ϕh − uh)| 1

δl
h

∀ ϕh ∈ Sl
h(t). (6.10)



FINITE ELEMENTS ON EVOLVING SURFACES 281

We now observe that from (2.9)

d

dt

∫

Γ (t)

(u − uh)2 −
∫

Γ (t)

(u − uh)(u̇ − u̇h)

= 1

2

d

dt

∫

Γ (t)

(u − uh)2 + 1

2

∫

Γ (t)

(u − uh)2∇Γ · v

�
1

2

d

dt

∫

Γ (t)

(u − uh)2 − c

∫

Γ (t)

(u − uh)2

and similarly

d

dt

∫

Γ (t)

(u − uh)(u − ϕh) −
∫

Γ (t)

(u − uh)(u̇ − ϕ̇h) � c

∫

Γ (t)

(|u − uh | + |u̇ − u̇h |)|u − ϕh |.

Thus, for any ϕh ∈ Sl
h(t) we have from (6.10) using the geometry estimates from Lemma 5.1 together

with the fact that (Rl
h − I )∇Γ = (Rl

h − I )P∇Γ ,

1

2

d

dt

∫

Γ (t)

(u − uh)2 + d0

∫

Γ (t)

|∇Γ (u − uh)|2

� c

∫

Γ (t)

(u − uh)2 + c

∫

Γ (t)

(|u − uh | + |u̇ − u̇h |)|u − ϕh |

+ c

∫

Γ (t)

|∇Γ (u − uh)||∇Γ (u − ϕh)| + ch2

∫

Γ (t)

(|uh | + |∇Γ uh |)|∇Γ (u − uh)|

+ ch2

∫

Γ (t)

(|uh | + |∇Γ uh |)|∇Γ (u − ϕh)| + d

dt

∫

Γ (t)

(

1

δl
h

− 1

)

uh(u − uh)

− d

dt

∫

Γ (t)

(

1

δl
h

− 1

)

uh(u − ϕh)

+ ch2

∫

Γ (t)

|uh ||u̇ − u̇h | + ch2

∫

Γ (t)

|uh ||u̇ − ϕ̇h |.

Standard applications of the Cauchy–Schwarz and Young inequalities then lead to the estimate

1

2

d

dt

∫

Γ (t)

(u − uh)2 + d0

2

∫

Γ (t)

|∇Γ (u − uh)|2

� c

∫

Γ (t)

|∇Γ (u − ϕh)|2 − d

dt

∫

Γ (t)

(

1

δl
h

− 1

)

uh(u − ϕh) + c

∫

Γ (t)

(u − uh)2

+ d

dt

∫

Γ (t)

(

1

δl
h

− 1

)

uh(u − uh) + ch2‖uh‖L2(Γ (t))‖u̇ − u̇h‖L2(Γ (t)) + c

∫

Γ (t)

(u − ϕh)2

+ ‖u̇ − u̇h‖L2(Γ (t))‖u − ϕh‖L2(Γ (t)) + ch2‖uh‖L2(Γ (t))‖u̇ − ϕ̇h‖L2(Γ (t)) + ch4‖uh‖2
H1(Γ (t))

.
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Integrating with respect to time, we arrive at the following estimate, with uh0 = uh(·, 0) ∈ Sl
h(0), using

the estimate (5.5) at several places:

‖u − uh‖2
L2(Γ )

+ d0

∫ t

0

‖∇Γ (u − uh)‖2
L2(Γ )

dt

� ‖u0 − uh0‖2
L2(Γ0)

+ c

∫ t

0

‖∇Γ (u − ϕh)‖2
L2(Γ )

dt + c

∫ t

0

‖u − ϕh‖2
L2(Γ )

dt

+ ch2‖uh‖L2(Γ )‖u − ϕh‖L2(Γ ) + ch2‖uh0‖L2(Γ0)
‖u0 − ϕh(·, 0)‖L2(Γ0)

+ c

∫ t

0

‖u − uh‖2
L2(Γ )

dt + ch2‖uh‖L2(Γ )‖u − uh‖L2(Γ )

+ ch2‖uh0‖L2(Γ0)
‖u0 − uh0‖L2(Γ0)

+ ch2

∫ t

0

‖uh‖L2(Γ )‖u̇ − u̇h‖L2(Γ )dt

+ c

∫ t

0

‖u̇ − u̇h‖L2(Γ )‖u − ϕh‖L2(Γ )dt + ch2

∫ t

0

‖u̇ − ϕ̇h‖2
L2(Γ )

dt + ch4

∫ t

0

‖uh‖2
H1(Γ )

dt.

We use the stability estimates from Lemma 6.1 for uh = U l and use the interpolation estimates from

Lemma 5.3 for uh0 = Ihu0, ϕh = Ihu. This gives us the estimate

‖u − uh‖2
L2(Γ )

+
∫ t

0

‖∇Γ (u − uh)‖2
L2(Γ )

dt

� c

∫ t

0

‖u − uh‖2
L2(Γ )

dt + ch2‖u0‖2
H2(Γ0)

+ ch4‖u‖2
H2(Γ )

+ ch2

∫ t

0

‖u̇ − u̇h‖2
L2(Γ )

dt + ch2

∫ t

0

‖u̇ − (Ihu ‖̇2
L2(Γ )

dt. (6.11)

For the last two terms on the right-hand side of this inequality, we observe that from Theorem 4.4 and

Lemma 6.1
∫ t

0

‖u̇ − u̇h‖2
L2(Γ (s))

ds � c‖u0‖2
H1(Γ0)

+ c‖uh0‖2
H1(Γ0)

� c‖u0‖2
H2(Γ0)

and with (6.6) we get
∫ t

0

‖u̇ − (Ihu)̇ ‖2
L2(Γ )

dt � ch4

∫ t

0

‖u̇‖2
H2(Γ )

+ ‖u‖2
H2(Γ )

dt.

A Gronwall argument then leads to the final estimate

‖u(·, t) − uh(·, t)‖2
L2(Γ (t))

+
∫ t

0

‖∇Γ (u(·, s) − uh(·, s))‖2
L2(Γ (s))

ds

� ch2‖u0‖2
H2(Γ0)

+ ch4 sup
s∈(0,T0)

‖u(·, s)‖2
H2(Γ (s))

+ ch6

∫ T0

0

‖u̇(·, s)‖2
H2(Γ (s))

ds

for t ∈ (0, T0) and the theorem is proved. �
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7. Implementation and numerical results

7.1 Implicit Euler scheme

The time discretization in our computations is done by an implicit method. We discretize the variational

form (1.2) in time. The spatially discrete problem is

d

dt

∫

Γh(t)

Uφ +
∫

Γh(t)

D
−l
0 ∇Γh

U · ∇Γ φ =
∫

Γh(t)

U φ̇ ∀ φ ∈ Sh(t). (7.1)

We introduce a time step size τ > 0 and use upper indices for the time levels. Thus, U m represents

U (·, mτ) and Γ m = Γ (mτ). With these notations, we propose the following algorithm.

ALGORITHM 7.1 (Fully discrete scheme) Let U 0 ∈ Sh(0) be given. For m = 0, . . . , mT0
solve the

linear system

1

τ

∫

Γ m+1
h

U m+1ϕm+1
j +

∫

Γ m+1
h

D
−l,m+1
0 ∇

Γ m+1
h

U m+1 · ∇
Γ m+1

h
ϕm+1

j

= 1

τ

∫

Γ m
h

U mϕm
j , j = 1, . . . , N . (7.2)

7.2 Implementation

A typical finite-element program sets up stiffness matrix, mass matrix and right-hand side of the linear

system (7.2) within a loop over all triangles (elements). Let us describe how in our algorithm the stiffness

matrix setup is implemented. On each triangle e = conv{X1, X2, X3} with vertices Xk ∈ R
3, the

element stiffness matrix

S
e

i j =
∫

e

∇eφ
e
i · ∇eφ

e
j , i, j = 1, 2, 3,

with local basis functions φe
j , j = 1, 2, 3, is computed and then is summed to the correct globally

numbered places of the matrix S . Here, ∇e = ∇Γh
is the tangential gradient on the triangle e ⊂ Γh .

Obviously the tangential gradient on a plane is a Cartesian gradient. The triangle e can be parameterized

over the unit triangle ê ⊂ R
2 as in (5.12). Then, the usual transformation matrices for the map between

ê and e is used to compute the element stiffness matrix. The area of the triangle is trivially given by

elementary geometry.

A drawback of our method is the possibility of degenerating grids. The prescribed velocity may

lead to the effect, that the triangulation Γh(t) is distorted and that the solver for the linear system does

not converge. In all our computational examples, this problem did not occur. But, of course, in general

situations this problem may appear. A remedy then is to retriangulate the surface by some method,

preferably this is done by conformally reparameterizing the surface and mapping a nice grid onto the

surface.

It is straightforward to handle both Dirichlet and Neumann boundary conditions when ∂Γ (t) is

nonempty. Some examples are included in the numerical results.

7.3 Numerical tests

EXAMPLE 7.2 To start with, we solve the heat equation on the unit sphere. Here the surface does not

move. This example shows that our method also produces a finite-element method for parabolic PDEs
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TABLE 1 Heat equation on the sphere. Errors and eocs for Example 7.2

h L∞(L∞) eoc L∞(L2) eoc L2(H1) eoc

1. 0.088590 — 0.12023 — 0.24265 —
0.55745 0.089525 −0.02 0.14399 −0.31 0.22904 0.10
0.28664 0.036723 1.34 0.060878 1.29 0.10258 1.21
0.14433 0.010891 1.77 0.018351 1.75 0.040083 1.37
0.072293 0.0028831 1.92 0.0048303 1.93 0.017503 1.20
0.036162 0.00073909 1.97 0.0012250 1.98 0.0083646 1.07

TABLE 2 Errors and eocs for Example 7.3

h(T0) L∞(L∞) eoc L∞(L2) eoc L2(H1) eoc

0.82737 0.095488 — 0.15424 — 0.29287 —
0.43422 0.057944 0.77 0.097788 0.71 0.17507 0.80
0.21939 0.018764 1.65 0.033083 1.59 0.074327 1.26
0.10994 0.0050819 1.89 0.0089784 1.89 0.033367 1.16
0.055007 0.0013038 1.97 0.0022950 1.97 0.016053 1.06

on surfaces which do not move. The function u(x, t) = e−6t x1x2 is an exact solution of

ut − 
Γ u = 0

on Γ (t) = Γ0 = S2 with initial data u0(x) = x1x2. We have chosen the coupling τ = h2 in order to

show the higher-order convergence for L2 and L∞ errors. The time interval is T0 = 2.0. In Table 1, we

show the absolute errors and the corresponding experimental orders of convergence (eocs) for the norms

L∞(L∞) = sup
(0,T0)

‖u − U l‖L2(Γ ), L∞(L2) = sup
(0,T0)

‖u − U l‖L2(Γ ),

L2(H1) =
(∫ T0

0

‖∇Γ (u − U l)‖2
L2(Γ )

)

1
2

.

For errors E(h1) and E(h2) for the grid sizes h1 and h2, the experimental order of convergence is

defined as eoc(h1, h2) = log E(h1)
E(h2)

(log h1
h2

)−1.

EXAMPLE 7.3 The second computational example is a PDE on a moving surface with time-dependent

curvature. The surface is given by the level set function

d(x, t) =
x2

1

a(t)
+ x2

2 + x2
3 − 1, (7.3)

so that the moving surface Γ (t) = {x ∈ R3|d(x, t) = 0} is an ellipsoid with time-dependent axis. We

have chosen a(t) = 1 + 0.25 sin (t). As exact continuous solution, we choose u(x, t) = e−6t x1x2 and

compute a right-hand side for the PDE from the equation

f = ut + v · ∇u + u∇Γ · v − 
Γ u.
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FIG. 2. Level set picture of the solution u(·, t) of Example 7.4 at times t = 0.008, 0.040, 0.08 and 0.16. Time step size τ =
0.00016.1

FIG. 3. Level set picture of the solution u(·, t) of Example 7.4 for large time step size τ = 0.01 at the time steps 1, 2, 3 and 10.

Lagrangian property of the scheme.

The time step size was taken to be the square of the initial maximal grid diameter. The time interval

was [0, 4]. In Table 2, we show the error in three norms together with the eocs. The grid size h in this

example depends on time. We compute the eocs with the use of the grid size at the final time T0 = 4.

EXAMPLE 7.4 We compute solutions on a rotating planar disk

Γ (t) = {(cos (100t)x1 − sin (100t)x2, sin (100t)x1 + cos (100t)x2, 0)|x ∈ Γ0},

where Γ0 = {x ∈ R
3|x2

1 + x2
2 � 1, x3 = 0}. Here, D0 = 0.1I and f (x1, x2, 0) = 100.0 where

(x1 − 0.5)2 + x2
2 � 0.01, f (x1, x2, 0) = 0.0 where (x1 − 0.5)2 + x2

2 > 0.02 and f smooth elsewhere.

We have used homogeneous Dirichlet boundary conditions on ∂Γ , and as initial value we have taken

u0 = 0. The time step size was τ = 0.00016 and the triangulation had 16,384 triangles. In Fig. 2, we

show some time steps of the computations. In order to show that large time steps (experimentally) are

allowed we computed the same example with a time step τ = 0.01. The results for the first three time

steps are shown in Fig. 3. They show the Lagrangian property of our algorithm. Note the large velocity

of the rotation of the disk.

We computed the solution of (7.6) with D0 = 0.1I on a graph Γ (t) above the unit disk, which

vertically moves according to the parameterization

x(θ, t) =
(

θ1, θ2,
1

2
(1 + te−t ) sin (2πθ1) sin (3πθ2)

)

, θ = (θ1, θ2) ∈ B1(0). (7.4)

1Full colour images of the figures in this paper are available in the electronic version from http://imanum.oxfordjournals.org/.

http://imanum.oxfordjournals.org/
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FIG. 4. Transport and diffusion on a vertically moving graph, see (7.4). Times t = 0.795, 1.59, 6.36 and 15.9.

FIG. 5. Diffusion and transport on a rotating sphere (Example 7.5).

The initial value was u0 = 0 and the right-hand side was a smoothened characteristic function f =
100χD with D = {(x1, x2, x3) ∈ R3|(x1 − 0.5)2 + x2

2 � 0.12}. The high curvatures and the velocity of

the surface lead to transport and diffusion shown in Fig. 4.

EXAMPLE 7.5 In Figs 5 and 6, we show the results of a computation on a rotating sphere Γ (t) with

Γ0 = S2. The parameterization of Γ (t) is given by

x(θ, t) = (cos (ηt)θ1 − sin (ηt)θ2, cos (ηt)θ1 + sin (ηt)θ2, θ3), θ ∈ S2, (7.5)

with η = 25. For the initial data u0(x) = 0 and the right-hand side f (x, t) = 100χBR(x0)∩Γ (t)(x) with

x0 = (0, 1, 0), R = 0.25 we solve

u̇ + u∇Γ · v − ∇Γ · (D0∇Γ u) = f (7.6)

on Γ (t) with D0 = I . In Fig. 5, we show the levels of the solution at times t = 0.005213, t = 0.5213

and t = 1.5639 (slightly tilted). We used a grid with 8194 vertices. Note that the shading in each time

step is done for an equal distribution between maximum and minimum of the discrete solution. In Fig. 6,

we show level lines of the stationary solution seen from the x1 axis. The left figure shows the level lines

on the front side of the sphere and the right figure shows the level lines on the back side of the sphere.

EXAMPLE 7.6 Figure 8 shows computational results for a rotating cylinder and for small diffusivity.

Here,

Γ0 = {x ∈ R3|x2
1 + x2

2 = 1, 0 � x3 � 1},
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FIG. 6. Level lines of the stationary solution of Example 7.5. Front side of the sphere (left) and backside (right).

FIG. 7. Triangulation of the sphere (Example 7.5) and the cylinder (Example 7.6).

and this cylinder is rotated according to (7.5) with η = 5. As initial function, we choose u0(cos ϕ,

sin ϕ) = χ{|ϕ|�0.01}. We imposed boundary conditions u = u0 on ∂Γ (t). The boundary conditions are

independent of time t . As diffusivity, we have chosen the relatively small numberD0 = 0.1I . We used

the triangulation in Fig. 7 with 3200 vertices and 6144 triangles and the time step size was τ = 0.1 h.

EXAMPLE 7.7 Figure 9 shows the solution of (1.1) on a rotating cylindrical surface with Dirichlet

boundary conditions u(x, t) = u0(x) for x ∈ ∂Γ (t). Thus, mass concentration is kept fixed during the

evolution on the boundary of the surface. u0 is a smoothened version of the function 100χB0.25
((1, 0, 1)).

The surface is a deformed cylinder—not a catenoid. So, its mean curvature does not vanish identically.

The surface is rotated according to (7.5) with η = 10.

EXAMPLE 7.8 Our ESFEM allows the solution on surfaces with strongly varying principal curvatures.

As a test for this, we have chosen the surface (Fig. 10). It represents a buckley initial surface which is

evolved into part of a sphere of radius 4 as the time tends to infinity. Figure 11 shows some time steps

of the solution for problem (7.6) with a right-hand side f = 1 and diffusion coefficient D0 = 0.1I .
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FIG. 8. Level lines of a solution of (1.1) on a rotating cylinder with Dirichlet boundary conditions and small diffusivity. Time steps

0, 10 and 50, and 100, 150 and 200 (half-level spacing).

FIG. 9. Level lines of a solution of (1.1) on a cylindrical surface. Left: initial function, middle: stationary solution for stationary

surface, right: stationary solution for rotating surface (Example 7.7).

FIG. 10. Moving surface changing its curvatures strongly. From left to right: surface at time t = 0, 0.5, 2.45.
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FIG. 11. Results for Example 7.8 at times t = 0.0, 0.5 and 2.45. The level lines are equally spaced between maximum and

minimum of the solution.

We have used Neumann boundary conditions. The initial function u0 was taken to depend on random

numbers.

8. Concluding remarks

The approach described here is directly applicable to other boundary conditions when ∂Γ (t) is nonempty

such as the nonhomogeneous Dirichlet condition

u = g on ∂Γ (t)

or Neumann boundary condition

∇Γ u · µ = g on ∂Γ (t).

The method is directly applicable to a system in which there is mass accumulation and deposition

onto the surface from outside such as

u̇ + u∇Γ · v − ∇Γ · (D0∇Γ u) = V ua + f,

where ua is an ambient external concentration and f is a prescribed deposition rate.
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The method could be developed to apply to a coupling with field equations away from the surface

such as the Navier–Stokes equations with surfactant transport on the interface between two immiscible

fluids.

The methodology is applicable to more general equations such as semi-linear reaction diffusion

systems and fourth-order equations such as the Cahn–Hilliard equation which can be split into two

second-order problems, so allowing the use of piecewise linear finite elements.

The exposition has been concerned with an evolving discretized surface which preserves the quasi-

regularity of the mesh as time evolves. In practice, this may be a short time property and the issue of

remeshing arises. Observe that the approximating surfaces are polyhedral. It is a challenge to extend this

approach to higher-order approximations of the surface and higher-order finite-element methods.

Although the exposition has been concerned with triangulated surfaces in R3, immediately applic-

able to curves, the methodology is also applicable to hypersurfaces in higher space dimensions.
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Appendix A. Proof of the Leibniz formula

Proof. Let Ω ⊂ R
n be open and X = X (θ, t), θ ∈ Ω , X (·, t): Ω → G ∩ Γ be a local regular

parameterization of the open portion G ∩ Γ of the surface Γ which evolves so that X t = v(X (θ, t), t).

The metric (gi j )i, j=1,...,n is given by gi j = Xθi
· Xθ j

with determinant g = det(gi j ). Let (gi j ) = (gi j )
−1.

Define F(θ, t) = f (X (θ, t), t) and V (θ, t) = v(X (θ, t), t).

Then with the Euler relation for the derivative of the determinant,

∂

∂t

√
g = √

g

n
∑

i, j=1

gi j Xθi
· Vθ j

,

we have the following proof of (2.9):

d

dt

∫

Γ ∩G

f = d

dt

∫

Ω

F
√

g =
∫

Ω

∂ F

∂t

√
g + F

∂
√

g

∂t

=
∫

Ω

(

∂ f

∂t
+ ∇ f (X, ·) · X t

) √
g + f (X, ·)√g

n
∑

i, j=1

gi j Xθi
· Vθ j

=
∫

Γ ∩G

ḟ + f ∇Γ · v,

where in the last step we have used that V = X t and that the tangential divergence of v is given by

(∇Γ · v)(X, ·) =
n

∑

i, j=1

gi j Xθi
· Vθ j

.

The formula (2.10) follows from the first equation by observing the velocity decomposition (2.6)

and (2.8).

For the right-hand side of (2.9) this leads to

∫

Γ

ḟ + f ∇Γ · v =
∫

Γ

( ft + v · ∇ f + f ∇Γ · v)

=
∫

Γ

(

ft + V
∂ f

∂ν
− f V H + ∇Γ · ( f T )

)

.

Thus, we have the equivalent form (2.10) for (2.9).
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For the proof of (2.11), we first observe that we have

|(∇Γ f )(X, ·)|2 =
n

∑

i, j=1

gi j Fθi
Fθ j

, (A.1)

so that

1

2

d

dt

∫

Γ ∩G

|∇Γ f |2 =
∫

Ω

√
g

n
∑

i, j=1

gi j Fθi
Fθ j t + 1

2

∫

Ω

√
g

n
∑

i, j=1

g
i j
t Fθi

Fθ j

+ 1

2

∫

Ω

√
g

n
∑

i, j,k,l=1

gi j gkl Xθk
· Vθl

Fθi
Fθ j

.

An easy calculation shows that

g
i j
t = −

n
∑

k,l=1

gik g jl gkl,t = −
n

∑

k,l=1

gik g jl
(

Xθk
· Xθl

)

t
= −

n
∑

k,l=1

gik g jl
(

Vθk
· Xθl

+ Xθk
· Vθl

)

and we arrive at

1

2

d

dt

∫

Γ ∩G

|∇Γ f |2 =
∫

Γ

∇Γ f · ∇Γ ḟ −
∫

Γ

n
∑

i, j=1

Div j Di f D j f + 1

2

∫

Γ

|∇Γ f |2∇Γ · v

and have proved (2.11). �


