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SUMMARY 
A new finite element formulation aimed at the solution of problems involving strain localization is presented. 
The proposed formulation incorporates displacement interpolated embedded localization lines. Results are 
shown to converge to an 'exact solution' when the mesh is refined and also to be quite insensitive to mesh 
distortions. 

1. INTRODUCTION 

The phenomenon of strain localization is typical of a number of engineering problems involving a 
wide variety of materials. Some examples are blunt fracture in concrete, rocks and metals'-3 and 
shear-band deformation in ductile  metal^.^-^ Once localization is triggered, almost all the 
deformation concentrates within a band; this process will eventually lead to fracture. Although 
localization can be triggered by different physical mechanisms, depending on the type of material 
and tenso-deformational from a phenomenological viewpoint it generally seems to be 
related to a non-positive definite tangent constitutive matrix, namely to sfrain softening. As 
limiting cases we can mention an abrupt stress drop for the fracture of highly brittle materials like 
glass, and an infinite stress plateau for the shear-band deformation of ductile materials like mild 
steel. Blunt fracture of concrete, rocks and ceramics presents a real strain softening in the 
load-displacement response by which a gradual vanishing of load operates during the fracture 
progress. A local constitutive relation showing strain softening was proved to be thermo- 
dynamically una~ceptable.~~ l o  From a macroscopic viewpoint, strain softening could be con- 
sidered" as an expedient model to accomplish a homogeneous representation of a heterogeneous 
microstructure. 

*CONICET Fellow 

0029-598 1/90/110541-24$12.00 
0 1990 by John Wiley & Sons, Ltd. 

Received 1 September 1989 
Revised 12 January 1990 



542 E. N. DVORKIN, A. M. CUITIRO AND G. GIOIA 

In this paper we are concerned with the finite element modelling of localization problems. It is 
important to note here that we use the term localization to refer to those cases in which the strain 
concentration in the form of bands is related to the behaviour of the material, rather than to the 
distribution of loads and boundary conditions. 

Most of the available finite element techniques for dealing with strain localization problems 
were developed in the context of brittle failure of concrete. From these studies we know that the 
main difficulty caused by strain softening is the mesh size sensitivity, and that this problem can be 
avoided by the introduction of a fractomechanics concept: the fracture energy, i.e. the energy 
consumed in the opening of a unit area of localized fracture. This criterion requires the fracture 
energy to be considered as a material property which cannot depend on the chosen finite element 
mesh.3. ' ', I t  Regarding these considerations two main development routes, which are closely 
related,I3 have been proposed. 

1, The smeared crack 

In this approach an average stress-strain relation that assures a correct fracture energy 
dissipation is specified for a band of smeared cracks of constant width, where this width is 
considered to be a material property related to the inhomogeneities size. Requiring the finite 
elements size to be equal to the band width results in the simplest modelling criterion. It was 
found by numerical experimentation that different finite element sizes can be used, provided the 
average stress-strain relation is adjusted so as to assure the correct fracture energy dissipation. So 
defined, the smeared crack approach gives objective results with regard to mesh size when using 
non-distorted finite elements. However, the behaviour is not clear when mesh distortions are 
necessary for modelling requirements; remarkably in these cases a correct energy dissipation 
cannot be assured, even when the mesh size tends to zero." 

2. The discrete crack 

In this approach, a stress-displacement relation is specified for the discrete crack, i.e. for the 
localization assumed with no width. The softening modulus is chosen so as to assure the correct 
energy dissipation. For localization problems this approach is quite equivalent to the smeared 
crack approach." In the available finite element implementations of the discrete crack, the 
localization is assumed to take place between elements. When the localization extends through a 
certain node, this node must be split into two in order to allow the new crack element insertion. 
The need for repeated changes in the topological connectivity of the mesh is a very serious 
drawback of this implementation. 

In both approaches the analyst must specify the following material properties: 

(i) stress (strain) criterion for fracture initiation; 
(ii) fracture energy. 

Other formulations aimed at modelling strain localization problems are found in the literature. 
In References 4 and 20 a localization zone of constant width is embedded inside the finite element 
where localization has been triggered. The strains related to this band are simply averaged over 
all the element domain and afterwards superposed on the elastic strain field. This approach was 
not shown to be objective with regard to distortions in general quadrilateral elements. In 
Reference 5 a set of localized strain modes is included in the element formulation. Although this 
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formulation is without doubt very interesting for modelling shear-band deformation, it seems to 
be inadequate for fracture problems. In fact, the use of local softening stress-strain relations does 
not allow the fracture energy to be preserved. In Reference 7 also discontinuous strain fields are 
embedded in the elements. Finally, in Reference 17 a technique for using the smeared crack 
approach in distorted elements is presented. 

Our present objective is to develop a finite element formulation for strain localization problems 
that: 

1. Retains the desirable features of the smeared crack approach, namely the ability to model 
the progression of strain localization zones without remeshing and, for fracture problems, 
the use of an energy criterion in order to obtain results objective with regard to mesh 
refinement. 

2. Achieves the additional capability of being objective with regard to mesh distortions, thus 
assuring the correct energy dissipation in fracture problems, even when distorted elements 
are used. 

In this paper we develop a finite element formulation that fulfils the proposed requirements. 
The main aspects in our new formulation are: 

1. We consider that strain localization involves a complete element as the minimum informa- 
tion q ~ a n t u m ~ - ~ ’ ~ ’  instead of working at the integration points level as is usual in most of 
the available techniques. 

2. When strain localization is encountered inside a finite element, we consider it in the form of 
a displacement discontinuity line embedded in the element domain. This displacement 
discontinuity is realistic in brittle fracture caseS2’ but should not be interpreted in a 
micromechanics sense in blunt fracture situations (concrete, ceramics, etc.) and in shear- 
band deformation. 

3. Once localization has been triggered in a given element, there are two different constitutive 
relations defining its mechanical behaviour. First, a stress-displacement law for the dis- 
continuity line. For fracture problems, this law must be adjusted to the fracture energy 
value. Secondly, a conventional stress-strain law for the rest of the domain (hyperelasticity 
or hypoelasticity); e.g. the concrete constitutive relation developed in our References 22-24. 

4. The resulting finite elements are non-conforming. Hence, for a reliable analysis capability, 
the elements must not contain spurious zero-energy modes and must satisfy Irons patch 

As shown in Section 3, these requirements are fulfilled by the proposed formula- 
tion. It is important to note that for problems involving strain localization the patch test 
should refer to constant stress rather than constant strain situations.’ 

Finally, an important note is in order. The finite element formulation presented herein is aimed 
at a global description of the structural effects due to strain localization. Hence, it is not possible 
to obtain a detailed description of the stress field near the localization zone. Whenever such a 
description is sought, more sophisticated models can be used, for example non-local 
fo r rn~ la t ions .~~~  33 

2. THE NEW FORMULATION 

In this section we develop the incremental formulation for a 2D isoparametric finite element 
where a strain localization takes place. Without any lack in generality we assume that the only 
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non-linearities in the problem are due to material behaviour. Geometrical non-linearities should 
be treated in the usual way.29 

We assume the general body shown in Figure 1 in equilibrium at time (load level) t. At this time 
the localization phenomenon has been already triggered, and is described in the form of a 
localization line. We seek the equilibrium configuration at time (load level) t + At, i.e. the 
configuration depicted in Figure 1. This configuration must satisfy the principle of virtual 
W O T ~ , ~ ~ ~  34 

JUT r + Ar iV, beTrtA'crdV1 + I, 6eT'+ArcdV - P1 dS1 + I, PzdSz 
2 - I, 

+ I, 8uTffAfrl dA, + 8 ~ ~ ~ + ~ ~  rz dAz (1) I, 
In the above, and using the nomenclature of Reference 29, 

e: vector containing the Cartesian components of the incremental infinitesimal strain 
tensors; 

t+Arc: vector containing the Cartesian components of the stress tensor at time t + At;  
u: vector containing the Cartesian components of the incremental displacements. 

tt 

1 
V 

v1 + v* = v 

s1 + s* = s 

A1 = A2 = A 
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Figure 1 .  Solid with a localization line 

For the others terms in equation (l), Figure 1 is self-explanatory. 
We now introduce the displacement interpolation for the new finite element discretization. In 

order to obtain a first insight into the proposed formulation, we first analyse the simple case of a 
truss element with two nodes, which is shown in Figure 2(a). The incremental displacements 
interpolation prior to localization is given as usual, i.e. 

u = H U  (2) 
where UT = ( U ,  , U , )  is the vector of incremental nodal displacements and H is the displacement 
interpolation matrix.29 

This interpolation is represented by line 3 in Figure 2(a). Once localization has been triggered, 
we consider a discontinuity of displacements at the element centre A, thus defining subdomains 
Vl and V2 as indicated in Figure 2(a). We assume V2 to undergo a rigid relative incremental 
displacement U,  with respect to Vl. In order to obtain the same incremental displacement 
derivatives on both subdomains, we adopt for Vl and V2 the interpolations represented in Figure 
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2(a) by lines 1 and 2 respectively. Their mathematical expressions are 

u1 = H[U - ( y )  Uc] 

for the left subdomain Vl and 

( 3 )  

for the right subdomain V2. The purpose of matrix + = (0 l)T in equations ( 3 )  and (4) is clear 
from the analysis of Figure 2(a). As expected, for every point either on Vl or V, the incremental 
strain is 

where B is the usual strain-displacement matrix." 

vector 
displacement associated with the localization line A, 

For the 2D case in Figure 2(b), these concepts can be properly generalized by introducing the 
containing the components, in a local Cartesian system (a,, i2), of the rigid incremental 

where (al, a,) is defined on the localization line, and thus depends on the localization criterion. If 
we call R the matrix that rotates Cartesian vector components from (a,, 2,) to the global 
Cartesian co-ordinates, the resulting displacement interpolation for the left subdomain V, can be 
written 

u1 = H(U - +ROC) (7) 

and for the right subdomain V2 

u2 = H(U - +ROC)  + RZT' = H U  - (H+ - I ) R @  (8) 

Matrix + in equation (7) and (8) follows from a straightforward generalization of its counterpart 
in equations ( 3 )  and (4). For 2D problems + can be written in the general form 

$1 

4 =  [ i N ]  (9) 

where N is the number of nodes in the finite element, and each of the submatrices @i of dimension 
(2 x 2) depends on the position of node i relative to the localization line, according to the 
following rule: 

0 when node i E V, 
m i = {  I when node i E V2 
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3 

x2L s1 = s; + s; 

s* = s; + s; 

s* = s; + s; 

SB = s; + s; 

s = s1 + s2 v = v1 + v2 

Figure 2. Finite element with embedded localization line: (a) 1D element; (b) 2D element 
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For two neighbouring points, one on the right and the other one on the left of the localization 
line, the incremental displacement discontinuity is given by 

(10) u+ - u- = R e  

Taking derivatives in equations (7) and (8) we obtain the same expression for the incremental 
strain. Therefore, for any point either on V, or V,, 

e = B(U - QRQ") 

US: = Hq(U - QRZT') 

(1 1) 
The displacement interpolation matrix for points on an element edge Si is denoted HSi. On the 

edge Sf, 
( 124 

On the edge S:, Hs: Q = 0, therefore on this edge, 

On the edge S!, Hs:Q = I, therefore on this edge, 

US; = Hs;U (W 

u A -  = H ~ ( u - Q R Z T ' )  ( 124 

On the localization line, coming from the left, 

and coming from the right, 

UA + = H A U  - (HA+ - I)R@ 

6e = B(6U - QR6Q") 

Wf) 

(134 

Therefore, the different variations in equation (1) can be calculated in the finite element scheme as 

~ u A  + = HA6U -(HA+ - I ) R ~ Z T '  (13d 
Replacing in equation (1) and taking into account that 6U and 66c are independent variations, 

after some algebra we arrive at the following two sets of equations: 
r r 

ItT QT Iv BT d V = RT QT LA H,T* ' + "p dSA 

- Is:RTp,dS$ + IAr+-id,4 
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The first set above is the usual set of global equilibrium equations, while the second set 
represents an additional requirement that we are now going to investigate. Taking into account 
that r r r 

J HiAf+AfpdSA + J H&"+"pdS* = J S H ~ f + A t p d S  
S A  SB 

and replacing with equations (14a) and (15) in equation (14b) we obtain 
r r r 

Since 

R'@' J H$tr+AtpdSB + R'p,dS$ = J '+At?dA 
SB JS: A 

r r 

and since @'H& = I, we finally obtain 

f + A t  e dA 

We now impose as an additional condition: the global equilibrium of each of the two parts into 
which the localization line subdivides the element, i.e. 

6, RTf+Afp2 dS2 = ]Af+Afg.n,dR (19) 

where t+Atg is a second order tensor, nA is a unit vector normal to the localization line and the dot 
indicates a scalar product. By properly defining a matrix + we can write 

a.n, = *t+Ara (20) t +A? 

By substitution of equation (19) in equation (18) and taking into account equation (20), we obtain 

Hence, and considering that at t the equilibrium equations are fulfilled, the second set of 
equations can be written in incremental form as 

where 'a and $ are increments. In order to satisfy equation (22) an iterative scheme is used at the 
element level. 

For the linearized incremental step 

Q = 'Q + ,Ce (23) ? + A t  

where [C is the tangent constitutive relation. 

equations: 
Using equations (11) and (23) in equation (14a) we obtain the global set of equilibrium 

P 

BT,CB(U-@R@)dV='+A'P-rF Jv 
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The right hand side of equation (24a) is the incremental load to evolve from the configuration at 
time t to the configuration at time t + At. 

The stress-displacement incremental relation for the localization line is 

ri = , e f j c  (25) 
As we stated above, in fracture problems the definition of equation (25) is made so as to assure a 
correct energy dissipation. 

Hence, replacing in equation (22) with equations (23) and (25) we obtain 

[ jA$zCBdA]U = [ lA($,CS$R + , e ) d A  1 @ 

Calling n 

S,,= $*CBdA I 
and 

Scc = ($,CB+R + ,P )dA I 
we obtain 

@ = s,'s,,u 
Therefore, we can condense the degrees of freedom corresponding to the localization line at the 
element level. Using (27c) in equation (24a), we finally get for the linearized step 

[~"~T ,CB( I -$RS, lS , )dY 1 U = ' C A ' P - t F  

The term between brackets in the left hand side of the above equation is the consistent tangent 
stiffness matrix for the new formulation. 

The final equilibrium configuration corresponding to time t + At is reached using iterative 
 method^.".^^ It is very important to note that the stiffness matrix obtained in equation (28) is 
non-symmetric. Since most finite element codes use only symmetric matrices, a non-symmetric 
stiffness matrix complicates the implementation of the present formulation in existing codes. 
Other problems giving rise to non-symmetric stiffness matrices have motivated the development 
of special techniques to replace the original non-symmetric stiffness matrices for symmetric ones 
without losing too much efficiency in the iterative  scheme^.^^^^^ In our case, numerical experi- 
mentation indicates that when using only the symmetric part of the stiffness matrix, the efficiency 
of the iterative procedure is still acceptable (see next section). 

In this section we presented the localization lines embedded in displacement-based finite 
elements; however, the localization lines can be embedded in finite elements based on different 
formulations. In the following section we present some results obtained using localization lines 
embedded in elements based on mixed interpolation of tensorial  component^.^^-^*^ 37 
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3. NUMERICAL EXPERIMENTATION 

In this section, we present the numerical experimentation we performed using the new formula- 
tion. The numerical tests are geared to: 

1. Illustrate on the objectivity of the formulation with regard to mesh distortions which is, as 
we stated in the Introduction, one of the main thrusts for the present formulation. In order 
to investigate this topic, we analyse: 

(i) constant stress problems. In the present context, these problems are equivalent to the 

(ii) a problem with a more complicated stress distribution. 
patch test; 

2. Investigate the efficiency of the formulation when only the symmetric part of the stiffness 
matrix is used. In order to explore this topic, we solve simple cases using different iterative 
schemes,29 resorting first to the consistent stiffness matrix and afterwards to its symmetric 
component only. 

In the numerical examples presented in this section we considered the following material 

(i) For the localization line, a stressdisplacement constitutive relation corresponding to 

behaviour. 

Mode I blunt fracture: 

where, as indicated, modulus ' E ,  is a function of '0, and modulus tGT is assumed to be 
constant. Figure 3 shows the two different functions tET( 'Oc)  considered herein:' 5 , 3 2  we 
have adjusted both functions to a fracture energy G, = 0.2e - 4. The fracture initiation 
criterion is shown in Figure 4, and is presented in Reference 24. 

(ii) Outside the localization line, a linear elastic stress-strain relation. It is important to remark 
that any other constitutive relation can be used. 

Constant stress problems 

In Figures 5 to 8 we show the results corresponding to some constant stress problems. In these 
types of problem the localization has to be induced, therefore we slightly weakened the elements 
that are shadowed in the figures. In all cases the results show that the present formulation is 
objective with regard to mesh distortions. For the cases in Figures 6 and 8 (pure shear) it is worth 
noting that, since we only consider a Mode I localization type, the discontinuity lines are at an 
angle of 45" with the plate sides. The final equilibrium configurations were drawn amplifying the 
displacements 20 times. 

Bending of a simply supported beam 

In this case, where the stresses are not constant in the element domains, in order to perform a 
fair evaluation of the objectivity of the new formulation with regard to mesh distortions, it is 
fundamental to use finite elements that, in the absence of localization, provide objective results. 
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Figure 3. Some simple constitutive relations for the localization line: (a) linear model; (b) non-linear model 

Considering that the standard isoparametric 4N and 8N elements do not fulfil objectivity with 
regard to mesh distortions, we use the quadrilateral QMITC element, based on mixed inter- 
polation of tensorial  component^.^^,^' 

In Figure 9 we show the results obtained using: 

(i) standard 4N elements + new localization formulation; 
QMITC elements + new localization formulation. 

It is clear from these results that, in order to achieve objectivity with regard to mesh distortions, it 
is necessary to use the new formulation coupled to an element that is also quite insensitive to 
element distortions. The final equilibrium configurations were drawn amplifying the displace- 
ments 40 times. 
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Figure 4. Blunt fracture initiation criterion 
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Figure 5. Biaxial stress state in four element meshes (plane stress): (a) undistorted mesh; (b) distorted mesh; (c) results 
corresponding to a linear +-O relation; (d) results corresponding to a non-linear ?-O relation; (e) final equilibrium 

configuration of undistorted mesh; (f) final equilibrium configuration of distorted mesh 
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Figure 6. Pure shear in four element meshes (plane stress): (a) undistorted mesh; (b) distorted mesh; (c) results 
corresponding to a linear i-13 relation; (d) results corresponding to a non-linear i-G relation; (e) final equilibrium 

configuration of undistorted mesh; (f) final equilibrium configuration of distorted mesh 

Iterating using only the symmetric component of the stiffness matrix 

In order to compare the efficiencies of the solution procedure when the consistent stiffness 
matrix is used and when only its symmetric component is used, we consider the following cases: 

(i) biaxial stress state (Figure 5 )  with linear t-0 relation; 
(ii) biaxial stress state (Figure 5 )  with exponential E-0 relation; 
(iii) pure shear (Figure 6) with linear t-8 relation: 
(iv) pure shear (Figure 6) with exponential t-ij relation. 

rza WWMU) rza wwm 
ELEMENT ELEMENT (b) 

Figure 7(a, b) 
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Figure 7. Tensile load in large meshes (plane stress): (a) undistorted mesh; (b) distorted mesh; (c) results corresponding 
to a linear t O  relation; (d) final equilibrium configuration of undistorted mesh; (e) final equilibrium configuration of 

distorted mesh 
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Figure 8(a, b, c, d) 
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Figure 8. Pure shear in large meshes (plane stress): (a) undistorted mesh; (b) distorted mesh; (c) results corresponding 
to a linear P-G relation; (d) final equilibrium configuration of undistorted mesh; (e) final equilibrium configuration of 

distorted mesh 
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Figure 9(a, b) 
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Figure 9. Bending of simply supported beam (plane stress): (a) undistorted mesh; (b) distorted mesh; (c) results 
corresponding to standard 4N and QMITC elements; (d) final equilibrium configuration of undistorted QMITC mesh; 

(e) final equilibrium configuration of distorted QMITC mesh 
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For each of the above cases we run the complete problem (from the unstressed initial 
configuration up to the final fractured configuration), iterating in the load displacement space35 
with different iterative schemes and an energy tolerance ETOL = 1.e - 10. In all cases we use 11 
steps, a first step close to the localization point and 10 more equal steps. In Tables I to IV, for each 

Table I 

Iteration 
method K c  K, KE 

Newton-Raphson 8/1 l0/8 - 

B.F.G.S.29 - - 10112 
Modified N-R 28/1 28/8 28/29 

Table I1 

Iteration 
method Kc K, KE 

~~~ ~ ~~ ~ ~ ~ 

Newton-Raphson 112 10/8 - 
B.F.G.S. - - 10111 

Modified N-R 2913 2918 29/30 

Table 111 

Iteration 
method Kc K, KE 

Newton-Raphson 511 13/10 - 

B.F.G.S. - - 15/13 

Modified N-R 80/1 80/12 80/80 

Table IV 

Iteration 
method Kc K, KE 

Newton-Raphson 412 11/10 - 

B.F.G.S. - - 15/13 

Modified N-R 88/3 88/10 88/69 
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of the above cases, we indicate for the different combinations of iterative procedures and stiffness 
matrices the pair of numbers ‘a/b’ where 

a: number of iterations in the second step where the localization is triggered. 
b: average number of iterations in each of the following 9 steps. 

In these tables, 

K,: consistent stiffness matrix; 
K,: symmetric part of the consistent stiffness matrix; 
K,: elastic stiffness matrix. 

The conclusion is that, although the consistent stiffness matrix provides a more efficient solution 
scheme, the efficiency provided by its symmetric part only is still acceptable. 

4. CONCLUSIONS 

In previous publications we presented finite element formulations for certain solid mechanics 
problems that fulfil a number of requirements that render those formulations a reliable modelling 
tool in engineering  application^.^^-^^^^^ Th ose requirements were stated as follows. 

1. The theoretical formulation of the elements is clear, and does not incorporate numerically 

2. The elements do not contain any spurious zero energy mode. 
3. The elements satisfy Irons’ patch test. 
4. The elements are relatively insensitive to distortions and changes in material properties (e.g. 

In this paper we develop a formulation for localization problems that also fulfils the above 
reliability criteria. 

Following the basic ideas of the discrete crack approach (Hillerborg) and of the smeared crack 
approach (Baiant), we developed a new formulation for solving strain localization problems. This 
new formulation introduces displacement interpolated localization lines embedded in the element 
domains. 

For the localization lines a local stressalisplacement constitutive relation is used, assuring in 
the case of fracture problems a correct energy dissipation, and in this sense, the new formulation is 
equivalent to the preceding ones, keeping objectivity with regard to regular mesh refinements. 

The advantage of the new formulation over the discrete crack approach is that it does not need 
mesh redefinitions to follow the progression of the localization zone; and the advantage over the 
smeared crack approach is that it can deal with distorted meshes without causing deterioration of 
the results. 

Although the new formulation introduces a non-symmetric consistent stiffness matrix, our 
numerical experimentation shows that, with a limited efficiency decrease, only the symmetric part 
of the consistent stiffness matrix can be used. This makes the finite elements with embedded 
localization lines easy to implement in standard non-linear finite element codes, and therefore all 
the existing finite element libraries and constitutive models for the material outside the localiza- 
tion line can be readily used in combination with them. 

Although in this paper we experimented only with fracture problems we are presently working 
on the extension of this finite element formulation to shear-band problems in which the 
localization is triggered by material instability. 

adjusted factors. 

no locking in plane strain plasticity). 
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