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FINITE ENERGY SUM RULES AND THE PROCESS 0 + 0™ -0  +0
Christoph Schmid' and Joel Yellin

Lawrence Radiation Laboratory
University of California
Berkeley, California

December 5, 1968

ABSTRACT

We discuss here pseudoscalar~pseudoscalar‘mesbn elastio
scattering, using finite energy sum rules (FESR). We derive algebraic‘
propertles of the resultlng equatlon, and glve numerical values for

the l 070" and 2 O el coupllngs, computed using the phy51cal 0” 5

- +
A, and 2 masses.
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: T 'INTRODUCTION -

 We stﬁdy hére fhé érocess P+ P ;aP +P (P=0" ‘meéoh),
using fiﬁitevenergy_suﬁ'rules (FESR).l’g In order tp aVoid'spin ¢ompli-
catibns.we have chosen td consider external pseudoséalar mesons.
Interﬁally,'wé také‘account of 1 (V) and 2+<T) sfates only. The
complete self-consistent system includes processes with v and T
‘étates external (e.g., P +V -V + T) and P states intérnal,‘and is
not discussed here.

Provided the'amplitude éatisfieé anélytiéity crossing aﬁd has

Regge ésynmtotic behayior, its discontinuity in. v = %(s - uj: .Dv(v,t),

at fixed t satisfies

+N

;/’ D (v,t) Ve ody

-N

+N
= J[ Background 1ntegral + dV v
s |

Regge cuts Regge poles%

S

| | | : S (1.1)

. We drastlcally truncate the right side of (1.1), keeplng the leading

Regge pole onlv We then have

+N

D_(v,t).vn v (t) N (t)+n+l

a(t) +n + 1

It?

S =

(1.2)
-N
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In the following, we discuss the a@proximationé involved in
ﬁsing (1.2), and we apply this relation to the process P L PP+ P.

It is bj no means clear, a'priori,‘thét fhére exists a choice
bf- N and‘ t sucﬁ that oﬁr approximations aré good. - We contend that:
empiricélly'such a choice e#ists, and we discuss how this comes about
below. | 4

Oh making assumptions |(i)-(v), as listed in the next seﬁtion,
we are left with a set of linear, homogeneous'equatioﬁs for biline;fs in
the unknown couplings. These equations have eertain algebréic propefties
wﬁich are not cﬁaractéristic of fhe bresent schemé alone. Z ;‘O 'field
theo'ries5 and N/D bootstrapsu yiéld‘equatiéns.ﬁith similar algebraig
content.

In Section II, we discuss our approximations. In Section III,
we show the algebraic cdntent of (1.2). 1In Section IV, wé give our
numerical resultsbfor the VPP and TPP couplings. In Sectioan,,ﬁe

discuss exchange degeneracy. We summarize our results in Section VI.
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II.  DISCUSSION OF APPROXIMATIONS

In going from the exacs relation-(1.1) to (1.2) we have made the
following spproximations

(1) E L : =0,
Regge cuts.

(ii)  Background integralv = o0,

(4i1) -_S_ | 'S Leading pole contribution only ..

Regge poles

In §rder to evaluate (1.2) we will make two additiénal'i 
‘aésumptions:',‘ ‘ v | . | | v
C(iv) n o(t) o, f’or finite t. Re a('t)v ~ a(0) + a' (o)t =8 + bt;
(v) ,. Dv(v,t) 'can‘bg ﬁpproxiﬁétea by narrow resonance cqgtfibutiéns
iﬁ'fhe 5 and u chanﬁelé.. |
| We now diSCUSS (i)f(V).in detail:v

NEO I E : Z o

.. Regge cuts

Aécording to leéend,5 cuts arise in a certain class of diagram§
containiﬂg @ultiparticle interﬁediéte'étgfes,.i.e.; in the third
double-spectral function regiop,'dué to the exchange, for eXample, of :
two Regge poles, or-of a Rggée polevplus an eiéméntary particle.

' Hopefully, if we stay away ffom-thé boﬁndafy of the doublé spectral
 function; the effect éf éuts.Will ﬁdt bé'lafge énough‘fo affect our

considerations.
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Without a definite detailed theory of how cuts arise, their

effects are empirically inseparable from those of éeédndary trajectories.

~ (ii) Background integral = O

: In our picture, the background integral accounts for the
bsdillations océurringin amplitudes at low energies,é ﬁhile the small
number of Reggé'poies needed to fit the data at intermediate energies
'héve only a smooth behavior. | | |

We, can roughly estimate the error we make in neglectingbthe
background integral by computing the maximum deviation of the resonance

ot

I ' ' ' ' :
oscillations from their average values, assuming the statement above
cénnecting the background integral with resonance oscillations is -

correct. In the I =1, xx, case, the error amounts to about 10%,

~

taking N halfway between me and méz. Hdwevér, morevpreciseiy

tﬁis error estimate is really a lower limit, since one couldvalways add

afémooth contribution to the background'integral.
C(441) : - leading trajectory only

Regge poles'

: | Here we deal separately With? (l)_negléct of Sécondafy
ffajectories such as p'; (2) neglect of the Pomeranchop.T
| With respect to (é), our profound ignorancg'of the nature of
théanmefanchon leads us to neéleét’it arbitr;rily énd completély.
With respect to (1), sﬁppose  p': for example,ucorresponds to
reéonanées in the t channel. “These résénanéés must occuf in ibwerf
partial waves thgﬁ thdée which would make uﬁ-the 0 trajéctory, whicﬁ

lies higher;
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 The o' contribution is suppressgd‘for large zt' and
therefore for small t and/or large N. As we shall:seé*bélow5 the
nérrow resbnance approximatior for the left side of (l.é).requires just
the oppOéité: large t 'and/or small N. It is our cqntention_that
there exists a range of N and t for which the regions of wvalidity
of the two approximationsvoverlap.

~

(iv) Im a(t)

0. Re aft) = a(0) + a’(0)t = a + bt
If we approximaté our amplitude by one Regge pole in the’
t:channel, and stick to the right half of the J plane, unitarity

i&plies
Imalt) = K(t) p(t) | | ”"'(2.1)

where -K(t) ié-the usual. kinematic factor in the unitarity cohdiﬁion.
In the'narrow resonaﬁce approximation, which we use here, af(t) is

r;al for real t and both sides of (2.1) are small;' Equation (2;;)
’iﬁmediatély implies B(t) is feal in this approximation. Above thresh-
. 2a(t)' are reai and ﬁave no right-hand cufs iﬁ t.

20/(t)

old of(t) and. B(t)/q

If no trajectories cross, a(t) and B(t)/q also have no left-

hand cuts, as pointed out by Cheng.9

20(t)

Once we know «(t) and g(t)/q have no right or left-

hand cuts, we conclude.they are>real entire functions. We assume

a(t) = a+ bt ,. | . | ) | N _(2;2)

~

and that b = 1 GeV-g is a'universal constant for all Regge”trajec-
tories. MandelstamlO has given arguments whiéh make this behavior of

a(t) plausible. The slope b then fixes the energy scale.of the system.
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Experimentally (2.2) seems to be fairly well satisfied.

(v) - Nérrow:resonance approximation for D, (v,t).
We note there-are three sources of error hére:

'l. Backgfound in low partial waves,.

2. Background in high paftial waves,

3, . Finite resonance width_effects.
Item 3. cpuld be taken care of by, for examble, using the Cheng-Sharp8
equations as modified By Mandelstam.lo In any case, 1. ané.é. aré
more serious problems.

1. Since we are now in the s and- u channels we mﬁst_,'
_ébnéider (27 + l)PJ(zS) or (27 + l)PJ(zu). z, increases (decfeasés)
with t(N).' In contrast to the situation consideféd in (iii), we want

'high t ahd/or low N to suppress the low partial waves.
2. With regard to the high partial waves, we have thekfollowingv
empirical information:‘ (a) in the phase -shift analysis of N |

o the

scattering, if the highest partial wave reéonating has J =J
partial wave a(JO + 1,t) seems to be very small. Bareyre,ll»for'
example, concludes that up to the F wave (1688) resonance, all @
wave phase shifts are smaller than 3 degrees. (B) The tail, for
example, of the _fo(1250) contributes only a few percent of the p
. ” . _
o’ , .
A rough theoretical explanation of (A) and (B) above goes as

follows: We use (1.2) at t = n°
v resonance

wave amplitude at t =s =m

(> 0), so that we are outside
the physical region for the s and wu channels. Our partial wave

expansions are therefore asymptotic and we expect some sort of divergent
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behavior as we hit the boundary o the double spectral function.
However, Regge theory tells us that, at fixed s, the'amplitude goes
at most as tq(s) as t increases. The divergehce of the partial

wave series for Dv(v;t) at most attaches a phase to the exponential.l2
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ITI. FESR FOR P+ P —-»P + P IN THE MASS DEGENERATE CASE:

ALGEBRAIC PROPERTIES

We consider (1.2) in the mass dégenerate case, including

internal V(17) and T(2+) states only.

As shown in Appendix A, (1.2) then takes the form,
1
(J) () (3 (L)nﬂ (9 ()
€abs Bcds ‘ ads “cbs }

). P, e

S

‘The relation (3.1) is evaluated at fixed +t, and the s channel process
is a +b-osc + 4d.

In (3.1) the g(g) are effective'dimensionléss coupling

constants. The first two subscripts refer to 0" states, the third

subscript refers to a sum over intermediate spin J states. I, and

e

are positive kinematic factérs depending on the masses (mo; m ,
mg) and on the limits of integration, N. The quantity f(J)_ is the .
fraétion of the full contribution of the intermediate spin J states

included on the LHS,v (J) is related to the choice of N: If we

)
o

choose f( ) = 0 and_ f(l) =1, N should be appfokimately halfway
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(
(2) = 1/2, then e _ 1, ana

between the 1~ and 2 states; if *
N should be approximately at mé+2--r. If the‘term on the RHS of
(5.l)lis a t channel Regge pole, the terms 6n the left arise from
.resonances iﬁ S aﬂd% u respectiveiy. No crossing matrices appear
in'(5.i); however, the signs of the kinematic.factor are shown explicitly.
[These signs arise from the signs of ?? and of Disc(x - + ie)-l,]

For convenience we now define

Ny E 'JO/KO(l); AoE Ji/f(Z)Kl(E)B S (3-2)
o = £ @@ s W@ @) o)

. 1 ) - P ' . .
fabe = g( ) > Dave = gébg ) (3.&)

abe

Writing out (3.1) for n =0 and n =1 we have, using (3.2)-(3.4),

for n = 0,

Fa.bchds * Fadstcs * KOFcastds +-'EO(DabsD'cds B Dadschs) =03
| | | - (3.5)
for n =1
DébsDcds * Dadstcs - KlpcasDbds * gl(FabsFads - Fadstcs) =0 _
| | ‘ | (3.6)
The usual 1nvar1ance»arguments glye Fabcv: - Fbac’ Dabc = + Dbac'

Summing (3.5) and (3.6) over permutations of the free indices

we have
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(Fabchds * FadstCs * Fcas bds)(x + 2) = 0, (3'7)

(D.. D | +D . D +D )( x. +2) | o . (378)

abs cds ads cbs cas bds

Since )\, > 0, and assuming at least one bf the D's ~is

nonzero, (3.7) and (3.8) yiéld'

o, - (3.9)

Fabchds +_Fadstcs * Fcastds

v o= 2 . . (3.10)
Substituting (3.9) and (3.10) into (3.5) and (3.6) yields the
two additional relations

PaasPeos ~ PacsPans * Fifcasfavs = O 0 (3.11)

| It is immedidtely»clear from (5;9) and (5.11) thatkour system:
allows a U(n) symmetric solution with the F's and D's -identified 
as the Clebsch-Gordan coefficientsbfor the antisymmeﬁric and symmetric ‘
coupliﬁgs of fhree-représentations_each transfbfming.iike

' ~n2 -1 @ l.ljv Sinée the antisymmetric coupling of the vector singlet
.vanishes; this statemeﬁt hés teeéh with reépeét to-the tensor siﬁglet |

coupling ratio only. Computing the siﬁglet/octet'coupling ratio in the
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U(3) case, one discovers that the résult is equal to that conjectured
by Glashow and SocolowllL bybanalogy with Okubo's15 choice for the vector
nonet.
-Let.us explicatebthe remarks above. 
The four conditions:
(a) Total antisymmetry of Fabé’ |
(b) Equality of ﬁhe 0" - and 1; multiplicities.
(¢c) Equation (3.9). | |

(d) FabsFabs' = ass"

are»ﬁecessary and sufficient for the F's to bé the structure conétanté
of é compact; semisimple, Lie algébra.l6 Wé are unable to*déri?e.

(a) through (c). We éan, however, interpret "(d) so that it is thsically
reasongble. That condition ié gquivalent to the statement that all V's
have the same total reduéed width, and that the V's couple to
_orthogonal combinations of PP states. !
| if we assume (a) th?oughv(c) are satisfied the "F's are then
the structure constants‘of an arbitrary cémpact,'semisimple, Lie
aigébra; and the (b-,lf) multiplets transform as the adjoint
representation.

Suppose we gake the additional assumption that the 2+, l_,

aﬁd 0 ‘mﬁltiplicities ére equal and that.the thrée multiplets
transform in the saﬁe way uﬁdér the Lie élgebra for which the F's are

the structure constants. Then the D's ére the Clebsch-Gordan

coefficients for coupling the representation in question to itself
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vtrilinearly and symmetrically. Note that if we begin with the adjoint
representation and add an arbitrary number_ofvsingleﬁs,'the F's for
_the singlet couplings are all zero because of’the'antisymmetry. The
“D's, héwever, for the éinglet couplings, are nonZefb. Let us set the
representafion R = adjoint b (p singlets). Since the singlets are
indistinguishable we want to know 1if b  is nonzero. aAssumption (4)
above must now be changed slightly to aécdmmodate the F's which’are

- zero, and the metric tensor 8og acquires b zeroes on ‘the diagénal..
We want to see if p # 0 and if so, we want the relevant adjoiqt/‘
singlet coupling ratios for the D's. Equation (3.11) cqntéins iﬁforma—-
‘tion relative to this point. A subset ofvthe D's musf be the ClebSéh;
‘Gordan coeffidients for coupling the’ad5oint representation td-itsélf
‘trilinearly and symmetrically. This fixes the Lié algebra fo.ﬁe of the
unifary:type An[(modﬁlo addition of p'vU(l)'s]. This is becausé
adjoint QD‘adjoint contains adjoint only once for the orthogonal

B, We

1 Dn+2(n 22); and symplectic Cn+l(n22) algebras, and for G

2°

: 1 .
have not checked Fh’ E6’ E7, E8. 8 We conjecture the statement is true.

for these also because of the completeness of the (n + 1) x (n + 1)
matrix representation of ‘An'

'Thevstructure_bonstants and d's- for Su(n), satisfy, in ﬁhe

notation of Gell—Mann,lg
: 1 _ . . ' ‘ . .
(%5 ij_ = 2if ik 2 . (3.1;) |
BN x“] e A, F b1 (3.14)
1 M7+ T T ik Tmoii o~ :
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for

1 £ (i, §, k) £ n” -1

If we try to set F a f', D oc d', so that..p =0 and there

are no singleﬁs, we immediately contradict (3.11), since the f

1

d 's satisfy

2
t * ” ’ i - [ ' =
fca,sfdbs B ddcsdabs dadsdcbs~+ n (8

chab - 5ad6bc) ’

where the normalization of the - \'s 1is chosen to be

Tr (xixj) = ?aij

Now however, if we define

L
>\O = (2/n)2' 1

we can rewrite (3.13), (5.1&); and (3.15) as
. [}\-i) )\.j]_ = 2lfijk)\k s
[hs A5l = 285 000
e (5 2 S
for 0< (i, j, k) £n” -1, and
fcasfdbs = ddésdabs - dadsdcbs ?

so that p # 0 ,explicitly gives a solution to (3.11) and

t

's - and

(3.15)

(3:16)

(3.17)

(3.18)

(3.19)

_(_3,.20)
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1
d .. = (2/n)2 6. .
ol1l] ! 13

(3.21)

3

This solution is unique. For the n = 3 case (5.21)_correspond8vto

thé cbupling strengﬁh ratiO'assumed'byleashOW'and Socolow;lh

4
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IV. FESR FOR P + P P + P 1IN THE NONDEGENERATE CASE:
NUMERICAL RESULTS
We now apply the FESR (1.2)-
+N

1 - n
5 dv v Dv(v,t)-
-N

(e a(t)ensl "
ggt§'+ n+1 "’ ’ (1.2)

e

to the P +P —-P + P case. We consider n = 0(1) [vector and tensor
Regge terms on the right-hand side.] only. Making approximations (1)-(v),

as listed in Section II, we can rewrite (1.2) as

s=1 J=1
s, Dy ) ] - ) e s ten )
s )

(4.1)

which is identical to Eq; (3.1) except that the kinematic factors are
now dependent on particle labels anq on the channel labelz sincé we

want to ihéert the known Q-, i_, énd _2+ masses. We are not interested
in eledtrémagnetic splittings and_therefore choose definite I, Y for

the right side of (k.1), obtaining equations of the schematic form

EZ?tj(VVﬁ?j _ 7?§J),4 - | (4.2)
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a set of homogeneous linear equations in uvnknown bilinears in coupling
v gk
7Kﬂ

from the t to the j channel is Ctj’ and the dependence on (It,

constants which we label by e.g., The isospin crossing matrix

Yt, Ié‘--):etc.‘has,%eén,guppressed. The explicit forms of the kine-
ﬁatic_faéfois (R,Jf aré derived in Appen&ix A:

In order to use (4.2) tovevaluatebthe ratios~bétween unknown
bilinears Yy, We
" " (a) assume there is a unique N for each process, and usg_thé
condition'thatvthe‘de%erminant of thelcoefficients of the:unknowns:_
must vanish to determine each N;QQ ‘

(b) ‘combine (££") and (fw) on the right-hand sidé of'(hTQ), 56
that there is one . £'= 0, Y = O equation for each value‘of N.- We
explain'this procedure in Appéndix A. | |

o :In Table 1 we show the various contributions for eachvihdepeﬁ;
dent procéss.“in Table 2, we write out the FESR in a shofthand notation,
expliéiﬁly éivihg the créSsing matrix elements and the féctors of %
~ arising Wheh.é'reSOQanceicontributés to one cross-channel only. In
T@Ble 3 we shoﬁ the COupling constant rela%ions arising in thé degen~
erate cagei_.Thésé of course aiso foildw from the relationé of Section
.III. We'havé §erformed nﬁmerical computafions'for the equations
_vshdwn ih Table 2 ohly. We ﬁse'the nonsupercohvergént'equations only,
-éince the édnceilafioﬁs in:ﬁhe suﬁeféoﬁﬁergent>éQu§fidhs iﬁdﬁce large
numerical uncertaiﬁfies.

"As shown in Figﬁfl, we test the sen§itivity‘and self-coﬁéistency

of our equationé by'éhobsing the 1imit of integration, N, in the
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foliowing three ways: cutdff mass corresponding to

N‘Lzr §(mv '+ mT ~ (Case I) ,

) 2. 1. |
Ni= m~ Lt (Case II) ,.
N = %(ng + m3_2) (Case III)

 Qur specific procedure is to take for each term on the left-

J):

hand side of (4.2) a weighting factor f(
Case I: 1 x (V) 0 x- (T);

Ccase II: 1 x (V)3 5 x (T);

Case IIT: 1 x (V); 1 x (T).

For each of (1, I1, II1) Eﬁé use ‘the detefminental condition to deter-
mine N, and for each case we fhen find fhe ratios.éf the»unkﬁown
biiinears in coupliﬁg constants.
- In Table b4 we sho& the couplingbratios compared:to experiment
and tp exact vU(B).' In Table 5 we show the calculéted cufoff masses
corresponding to the v&riéus_self-consistent 1imits of integration.
It wili be ﬁoted that thése masses are quite reasonable, and this is
a strong check on the sel%-consistéhcy'bf our system.v

Though our caléuiated coupling ratios are reasonable we note
tﬁat a good experimental test is lacking, and that we have introduced

numerical ambiguities into the system by using the procedure (ii) above,

" .as discussed in Appendix A
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V. EXCHANGE DEGENERACY

In the PP —» PP system we can make some interesting statements

regarding exchange degeneracy between the vector and tensor trajectories.

By exchange degeneré.,cy Wé mean, for example,

SR < SRS G , - (5.1)

'whefe the y's are reduﬁed widths. Clearly the 1~ and 2+v octets
cannot be exchange degenerate in this sense since they have F and D
"type coupling to thev FP syStem,'respectively. However, the addition'
of a 2+ singlet of the proper strength, as in Section IIJ, enables

exchange degeneracy to be realized for p - A

0y Wg - flf8, and

K -X in Kx — Kx; exchange degeneracy is not then realized for

* *% » :
K -K in Kn - K7, and one obtains in fact

n P Tkn T ke 7 ke o 5:2)

Physically, we expeét, and we do obtain from Qur.bpotstrap,
exchange degeneracy between resonances of even and odd J, in the XK
' system,'because there are only direct forces and no exchange.forcesﬁ'

By contrast the K* and- K**'_néed not be exchange degenerate since

21

the Kr — Kn(XKn) channel contains not only direct forces: o, ff'(ff'),

but also exchangé forces: K*, K**(K*,'K**). Unless the exchange forces
cancel there is no exchange degeheracy. The KX¥* and K*¥* forces are

‘always opposite in sign because of the sign of Pg(z).
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In the mass degenerafe‘case, the superconvergent higher moment

(2)

sum rule can be satisfied for a particular value of f only. For

the lower-moment case the 1 and 2+’ contributions cancel among them-

selves, and if the ‘SU(B) coupling ratios are used the equation is

(2)

in the higher—mbment
equation, however, ~1 . cancels against a definite fraction, f<2), of

0", [See Table 2.] The remaining fraction of the 2" contribution

presumably cancels against a piece of the 5- contribution.

If the fraction f(g) is chosen equal té the one which
produces superconvergence in the appropriate chanhels, the exchange
forces'in the higher-moment equation cancel in the Kx, but not in the

Kn, channel.
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VI. SUMMARY AND CONCLUSIONS

OQur study of P+ P P + P includes an algebreic diseueéion
of the degenerate cese,.and a‘numerical discussion of‘the nondegenerate
case. The-degenerate case yields algebraic equations;b These restrict
tne symmetry'properties of ﬁarticuler solutions, but do not force a
unique solution. 1In the degenerate case, one also obtains certain
kinematie relations between the input parameters,'which are consistent
with the actual average mnltiplet masses, but do not force‘a unique.set.
- of values for mPg, 'mve, mTz.
| In the nondegenerate ease, we have in principle a boetstrap-
.theory ef SU(3) symnetry breaking.22 However, the numerical proeednfe
_ used so far induces uncertainties inasmuch we are not able toteompute
. the splitting of tne I-= 0, Y.= O: members of the V and T Anenets;
"and instead are forced tofintroduce en arbitrary assumption. |

We naVe begun here a discuseion of the eelf-consistency of
the mesons. Our investigation is very limited however, since we make
vety drastic dynamical epproximations, and sirce we consider one
.process only. The extension of this work to the complete system
(P, V, T) is now in pregfess. It is our hope that somewhat more
definite aigebraicrresults will then arise in the degenerate case.

| IthOuld be of great interest if a model could be obtained,
incorﬁorating.towers of meson resonances,_which exactly satisfied the
FESR. As yet we have not been able to_exhibit such an explicit

: =
solution of the FESR, nor do we know if one exists.



-21- ’ UCRL-186275

We would like %o aéknowledge discussions of the properties of
Lie algebras with Professors R. Hermanr and C. Fronsdal. We are
indebted to Professor Stanley Mandelstar for a critiqal_reading of the

manuscript.
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APPENDIX A~

In this section we definé:our notétion, gi&e usefui kinematic
relations, and derive %he explicit formlof the:kineﬁafic faétors.in.
o (k.2).
| 3vFor elastic scaftering of Spinléés particles éur’differential
éross section 1is

do

do (2
a0

- g® - | | .('A-l)

where f has the centefeof-mass partial wave expansion

o]

f = Z (27 + 1) fJ(E_)v-PJ(cosbg) ' (A.é)
J=0 | -

and ”‘ : N
. .igJ _ . o S

fJ(E) = e sin SJ/]%f 5. S (A.3)
q being thé CM gspatial momentum.

In terms of f, our amplitudes A(v, t) are given by

Alv, t) = '(—Z-Ef: i Bt (A1)

The v's in each (s, t,‘u) channel are defined by:
(a) sign: v q(zx = cos_ex):n.
. (b) - scale: !dvxl = lat| .

(¢) origin: e.g., vy

=0 for s =1
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For particles of unequal mass
2 P ‘\. o |
o :
el -3 FANTL (8.5)
aq .2 P
, - blix"s : . : .
 where the § matrix is

L

s = 1 - iF(2n546 (sp) , - o  (A.6)

and the partial wave expansion is

PN P.\3 . o
5 () () T
| T

Br(s)? i y
(a.7)

We now return to the equal mass case and discuss the narrow

resonance approximation. We have '

o

Resonance) = - FRME iT . 2 ,, v .  (A.8)
’ VTR R %R ,

fJ(near E
so that, near resonance, the s channel amplitude‘is

Ay, ©) 2"(2J»+ 1)fJPJ(z_S)" ﬁ%—%

TpMe E

v - VR + iFRlv-[R qR

1
—2- .
- - LZ_L (23 + 1),PJ(Z'S)

(A.9)
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Since

- dy _
V.m Vg + lPRMR .

- ir , ' - (A.10)

-00

27 + 1
g

. 1 o
Im A(v, t) Dv = (Z) PJ(zs)thFRx , (A.11)

where x 1is the elasticity of the resonance. It is sometimes useful to
- have the connection between A and the couplingvconstants,>jg, defined

by the two-body decays:

2 2l o2 RPN
R =, - (A.12)
M. = (P, -P,) . (P, -P) e ... . (A13)
The bar in (A.12) indicates a spin average; e - is
(7= -
the polarization tensor for a spin J meson, and s2(J 1) = m%eionance

has been inserted for dimensional convenience. We then have

4

g2 . 22J1P|'2J+l .
T R e (A.1k)

The Feynman amplituae
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25 I J
277P; P Py(z )8, e,

2
s = M

(see Fig. A-1),

as one discovers on using the vertices defined by (A.lB); This yields

o oW o(g- '
- g." & ]2 22(3-1)p Jp Jp (5 )
Alv, 8) T = 1 I s (A.16)
v Uy Ly j 2 :
{ : M~ - s
In terms of the total width, T,
. o L lP!2J+1,' " | | 2A 1)
so that
. L
| xf‘12 F22J . PJ(ZS) '
Alv, t) o RN — -~ . _ (A.18)
i~ fyp M - s
Our Regge amplitudes are
olt), - igc(t
Alv, t) = BB Salc ) (A.19)
’ sin na(t) »
We take Tmo(t) S0, Reaft) = a +bt, b 2 1 GV . For
Re v <0, Imv>0,
v o= IVI elﬂ P) .
: (A.20)
e’ o iwo
2o % e
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The discontinuity of A(v, t) ecross the left-hand cut in

v . is

D(v, t) = T p(t)u]*) (a.21)

' if A(v, t) .has,eﬁenv(odd) signature, D(v, t) is odd (even).

Ourvsum rules then read

Na(t)+n+l

$,(8). = Freyma B(8) ., (a.22)

1

after disregarding cuts, the backgroundvintegral, the Pomeranchon, and

all Regge poles excepting the leading one.

In (A.22)
y = v%(s - U) = 8 + %(£ - Z) 5 . ‘ | (Aigj)
) 43 . . o . | o . ;
L = Z .migl . ' _ - (a.2L)
: i=1l | : '

Qur final expression for an s=-channel contribution to the

IHS of (A.22) is then

W : Vep (5 )
1 L n. Ctsﬂ(2J+l)(s) PJ(ZS)V ‘ =
= D (V, t)y dv = —s T : (3)2(X'X )2
5 sy’ ’ . (MP P')§ gl-f b
-N ' v i f
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where Cts is the ¢ to_' s channel crossing matrix for isospin or
unitary spin. .To finish defining the problem we need to evaluate

2
B(t = mResonance)'

From (A.19), near resonance

_ (m )v a(m )
A(Vy t) =
- ﬂ'a'(t -m )
1
lim (7 + l)(t)2P (2 )T (x, %)%
T % &/ TR (A.26)
(g m v - ARg) (Pin)2
. - J : . .
as v ww, Piz) szt | o (a.27)
giving
. : R
mF(x x )2 (27 + l) oA (m ) c (z ) (t)2
2
g(m~) = " )) , (A.28)
’ : P P '
where we have used, z, —».v/EPin , (A.29)
5J-1 -
5 | - mr(x X )? (t)°
sB(m~) = (27 + 1)xa' (mv'_) cs T5T (A.30)
[(42,P)7]
" We are assmning o ;“l G‘eV_zv. The cuteff, N, is givvenvby
' L A o
N = %—(QSN +m2 - Z mig)- . ' . - (A.31)

i=1
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The RHS of (A.22) is then

(25 + l)ﬁng F2J o (x % )ZNJ+n+l » _ -
RHS = — T - (A.32)
[(4p,P,)?] (J +n +1)

In terms of si:-(Pl + P2)2, the CM spatial momentum is

2 I _ . o '

P = Iz {s f_(m1 + m2) } { s - (m1 - m2) } . (A.}B)
The THS of (A.22) is then given by (A.25). The CM scattering

angle is

= TR " ““3_*"

for the process 1 + 2 —95 + h where' z = cosbel5, and-the' |p|'s
are given by (A 53) In the mass degenerate case the two s1des of '
(A.22) reduce to

JHn+l-

o : (2J + 1) mm r(J) J 1o _ [s -'em‘2 +m 2/2]“,
(RE) I = J_ ¢7 S 0 n
a0 i - (A.35)
| (27 + 1)m
2 2 2 jmr
(1) X = [mJ - om "+ m /2] L 2‘1.r(J)
(mJ -rhmo )2

: pJ[1'+2m52/(m52 -'umog)] L (A.36)
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For the numerical work of Section IV, we have combined the
FESR, for I =Y = 0, evaluated at t = mw? and t = m¢2, into one
equation as follows. Let RH(t = mHQ) be the usual Regge contribution

of the particle H to the RHS of (A.22). "We have assumed

-

x = R¢(£)/Rw(t) s | o B (A.37)

is nearly constant over the range mwgvs t < m¢2,’so that the FESR at

t =m 2 reads
W

2

Lﬁs(még) | (1 + x) Rw(mw

1]

y O (a.38)

and at m¢2;

1l

LHS(m - (1 +x) R /m . : A.39
..( ¢ ) X (’ ). ¢( ¢‘) | o (A.39)
,Using the physical masses and Widths we have then computed
x = LHS(m 2)/R (m 2) : LHS(m 2)/R (m, ) "and used (A.38) as the single
S 0 g TN
(@) equation to compute broken couplings in the manner described in
the test. The same proceduré was carried through for (ff"). 1In

Table Al, we give the numerical contributions corresponding-to the

.symbolic notation of Table 2.
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Table 1. TFESR arising from Eg. (1.2). Shown are the objects which

contribute to the LHS: (-) = no contribution, (X) = contribution.

(y) means contributes to the y channel only. :The‘right-hand side

is always taken to be the t channel. (SC)

superconvergent.

LHS : o ~ RHS
— L

22 Process
[ T - N
o - wf K* ﬁg £ %% 'i(Y) .n Particle' r
S S .
X - - - X - 1 0 o
; - - - ; - 0 1 f! 1818 —aﬁﬂ
s s _
X - - - -X - 2 1 SC
- u - s u '

- - 1 , *
X X X X /2 -0 : K'
S u s u ~

- - *¥*
X X . 5 1/2 1 K
- - X - - X 1 0  p Kn — Kx
- - X - - X 0 1 £t (KK - o)
S _ u _ s u
- X . X 3/2 0 sC
s u s u E
X - X - X X 3/2 1 sc.
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Table 1 (Continued).

: 1HS RIS >Process
-, ., § N
r : A . N p—— oy, _
o WP -+ 4 K**  I(Y) .n  Particle
t % % t | IR o
X .x. = X X - 1 0 e
t 0t t t
X ¥ - 3 x - 1 1. A2 . KK — KK
t ot t ot - , P
XX - % % - 0 1 i (KK =~ KK)
t t t t '
x x X X i ° po
‘XX - X X - o(2) o sC
X X - X X - 1(2) 1 sc
t s t
- - - . *
X X x V2 0 K
- - . t - 5 t X%
X X X 1/2 . X K7 — K7
- - X - - X 0 1 ££! (KK = 1)
- - X - . X o 0 sc
u S u ' :
- - - *
X X x Y2 0 K
u S . u e
- - : - - *¥
X X X 1/2’ 1 K KN - Kr
- - X - - X 1 1 Aé (KK - nx)
- - X - - X 1 0 - SC
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Table 1 (Continued).

LH " RHS ‘ ' Process
o S \ / . "\, . “
of o K* fg ffr K¥* ~ I(Y)- n Particle
u 5 :
- - X X - 1 1 A2
. u < _
- - X X - . 0 SC N — w17
- - X - - 0 0 £ (M = xn)
- - X - - 0 0 3C
- - - X - 0 1 £’ ‘
- m — 1M
- 0 - 8C o
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Table 2. Symbolic FESR for P + B P + P. Signs and magnitudes
of crossing-matrix elements are shown explicitly, along with'factors
of 1/2 arising if a left-hand resonance contributes to one cross

channel only. The definitioﬁs,of the symbols- are:

Left-hand symbol: (y) = @ — e - :
o 2
, . (hPin)
. a(mx2)+n+l“ . .
Right-hand symbol: (x) = X 5 _ . B(ng)
o om ") +n +71
(See Appendix A for details and notation.)
. Process
1/3 £ +1/2 0 = p QT
1/3 ££' +p = £
/3 ff -1/2p = 0O
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~ Table 2 (Continued).

Process
1/2{p + —i—T £f' - 1/5 K* + 1/3 K** = K* h
(6)= .. . J
1/2 {p FI PP 1/3 KX - 1/3 KaH = Kx*
(6)° .
2/3[Kk* + K**} = 0 Kn — Kn
(6)2/3[k* + K**] = £ (KK = o)
1/21-1/2 o + ;l—% 1! +'2/5(K* - K**). =0 (n=0)
1 4 :
3 - S |
1/2y-1/2 p + — £f' - 2/3(K* - K**)] =0 (n =1)
L (6)2 . .
1/2[1/2 wg + 1/2 £f' - 1/2(p + Ag)] = p
| same  -a,
C1/el1/2 08 + 1/2 180+ 3/2(0 4 AY)) = £E KK — KK
. game = fu - (KK — KK)

3/2(p - Ay) + 1/2 ££' - 1/2 ffu = 0 (n = 0)

i
o
Pamny
fa}
1l

S1/2(p - Ay) + 1/2 287 - 1/2 fu 1)
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Table 3. Coupling-constant relations in mass degenerate limit.

[Compare Egs. (3.9) and (5'1;)7]

i

5(7@”9)2 - (7_&¢w)2
3(@?2)2 - MY
| N |
300+ O] = 305 O + O™
E“1(7{;{»0)2. = 2/3(7mffv'_:)2]
3 7K1]K,* 7KKK%V ; 571\,;”1{** 7an** - /?47:? , gig = o
(7KﬁK**)2 . 51(7,1{;{*)2 B Ov
: ('xKﬂK*)E_ _5/1;7&0 .7m(p _o

K*%.2 K*2 _ i rr e
O )+ 810 )7 =3/ 7 rge =0




Table L,
Independent groups of reactions corresponding to one'amplitude.
Respnances occurring in A as intermediate stateé.>
(Isoscal_ar”factor.)2 for Sﬁ(B),-aésuming magic mixing angle tanEQ = 1/2, and the
ot singlet/dctét coupling ratio (Ref. 14) GE/FQ = 8. (2+ isoscalars are multiplied
by 5/9). -
Reduced-éxperimenﬁal,widths,'dividéd by‘ther;ofrequnding‘entries iﬁ éolumn' C.
Our predicted theoreticai fgauced_widths divided by the correéponding’entries in_

column. C. Shown are‘results for Cases.I,in; and IITI with the corresponding self-

-6¢ -

consistent limits of integration.

Experimental partial Widths taken from Ref. 24. In the s — KK .case,
(i}j) - (1‘1 . I" _é— . |
exXp BN & - KK
underlined.

is the effective'width. Quantities used as'input'aré

C29g8T~THON .



Table 4 (Continued)

A B c D E F
Channel Resonance Isoscalars _ﬁ__(_g_xﬂ_ B theory/isosca.lars r (1,3)
. ) : . Isoscalars exp
I II°  III .| [in GeV]
0 2/3 0.7% +0.18 | 1 Co.91 | 1.0h | ou1on
HE SR e : - .
£ 1 -1 (#0.1h) 1 1 10.137
: fl + f8 . - o ' :
£ : 0 not observed <0.010
0 1/3 - 1.0k § 0.91 | 0.85 -
L K* /b 1 (:0.02) 1 1 1 | o.okg
Kn - Kn |_.. - . .
i — KK %— ' '
: £ 1/(6) 0.8% + 0.32 1.30 | 1.13 0.021
£, + Ty o ' - :
f! .0 not observed <0.023%
K** 1/h 0.85 +0.05 - 0.92°} 0.76 0.0k45

_O-n_

C298T-TdON -
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Table 4 (Continued)

T

A B C D E F
Channel ‘Resonance Isoscalars —~§£E§El-— B theory/isoscalars r (1,9)
: : Isoscalars : exp ‘
I I IIT 1§ rn gev]
o 1/6 - 1.06 | 0.9% | 0.92 - -
w 1/6 - ‘ -
wg 1 1 1
o gy 1/3 0.85 + 0.20 0.0029
KK - KK .
KK — KK A, 1/6 0.54 + 0.1k - 1159 a7 0.00%6
£ 1/6 0.69 + 0.2k 1.%6 | 1.22- 0.00%2
; fi + f8 , _ o - :
£) 1 13 1.20 + 0.Uk . 0.053

e

¢299T-Td0N
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Table 5. Cutoff masses corresponding to -
self-consistent integration limits N,

as in Fig. 1.

Channel = _. sn(GeVQ)
Case
I I III
T o . 1.05 '_1'.57 - 1.87
- Kn — Knx
o 1.17 1.75 2.08
e = KK ‘
KK — KK

1.27 2.00 2.k0




Table.Al. Numerical values of the terms shown symbolically in Table‘z, for the nonsuperconvergenﬁ
relatioﬁs. Eéch equation is identified by the object appearing on the RHS. PFor the RHS the
value of B(mxg) is shown. For the LHS the entire contribution is shown. To compute the
broken couplings shown in_Table‘h,~thef, f', and .Q,¢ contribufions have been combined asv
outlined in Appendix A; the determinental condifiqﬁ-ﬁhen ylelds the limits of integration, N,

in Table 5, and the couplings of Table L.

Equation -

B (RHS) o - K*(890) 'K%*(lhzo) - 0 A2‘ [ | g° ‘Process-
1.93 (K*) 0.7k -0.58 " 1.10 1.20 b;he R - -
1.54 (K*%) ‘2.5u 2.09 ~-10.36 16.56 .5.98 ‘- - -
173 (£) b - I 7.38 3L.15 - - - - - Ky = K
0.40 (f') . 13.00 - 66.22 - - I U - (KK - o)
0.9 (p) - 1.9k b 331 ; - - - - . |

-gn-

G298T-"T40N



Table Al.(Continued).

Equation

.09 (w)

8 (RES) o K*(890) | K**(1420) £ 0’ Ap WL L Process
60 (£) 9.3k - - 30.35 0.76 - - -
.05 (£7) 16.20 - - 59.37 { 1.36 - - - -
.88 (o)  : 1.58 - - 3,90 0.09 - - -

0.47 (p) -ofo9' - - 0.52 § 2.03 }|-0.28 22 10.67
.66'(A2). -0.33 - - 3.26 §.20.80 -2.86 81 | 2.6k KK - KK
.83 (f). 1 0.88 - - 2.8% | i8.5o‘ 7.49 7L [ 2.38 | (KK - KK)
.90 (£1) 'k 1.83 - - 6o | e lises |16 fues |
.18 (¢) 0.59 . - 0.7k 3.95 1.89 a7 1.6

0.29 - - 0.3k 2.12 0.89 | 0.23 | 0.70 -

-tih=

GE9gT-T¥oN
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FIGURE CAPTIONS

Fig. 1. Mandelstam diagrém for P+ P P + P in-deéenerate case showing
| self-consistent limits of integration N, .for Cases I, II, and
IIi, as discussed in Section IV of.theltext;‘and also showing'
‘the location of 1 and 2 poles.
Fig. Al. The process P‘% PP +/P with.sfchannel exchange of spin

J object.
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XBL68I2-7296

Fig. 1.
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XBL68I2-7297

~ Fig. A.l.
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: *
APPENDIX B

Crossing Trajectories and Possible Branch Points

Followiﬁg Cheng,g'we consider the partial-wave amplitude a(J, t) <

and the trajectory function a(t). We have, defining D = 1/a(J,t),
Dloaft), t] = 0 . o | - (B.1)

Suppose D(J, t) is regular around '(JO, to) and that

D(Jo, tO) = 0. Then the Taylor expansion of D Yields‘

D(J., to) 0
= oD/ag|[a(t) - JO] o F g% (t - t) .
(J)t)=(JO}to)‘

(3,8)=(3otg)

2 ey 2 - . |
+ 9Dlalt) - gplm e e | (B.2).
oF 1 (J,t)=(Jy,t,) '
If |
oD :
ST ' . - o ,
13, 8)=(30,t,)
a(t) = 'Jo:f R(t -lto) o, R . o (m3) )

(Appendices B, C, and D are not included in the version of this

report submitted for publication.)
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where

_ OD/at
ID/3F

=]
|

X

On the other hand, if /|, = 0,
| | P/ =
o i ) »
a(t) — - J _@Lét_ (t - to)—é 4 e , (B.l‘,) ’

0* \3°p/35

explicitly exhibiting the two,cros;ing trajectories_at J = Jb.



-50- ' ~ UCRL-18625

~ APPENDIX C

Some Convenient Relations for SU(n) and U(n)

The following relations are convenient for the discussion of
algebraic properties as in Section III above. We define, following

Gell—Mann,19 the matrices '(Xi] which generate SU(n). They satisfy

i

[ngs xj] Ings xj]_ = 2ifighe s (C.l)vv,

il
I

{xi,_xj} [xi,,xj]+ edijkxk + (u/_n)aij , (c.2)
for
e . D '
l%(l)J;k)<n -1 1]

where the \'s are nofmalized so that -

Tr(xixj) = 2555 - - | (c.3)

Under ordinary multiplication we have

xixj = _(2/n)aij + (dijk + ifijk)xk ' (c.k)
and also

fisg = - i Tr([xi, xj]xk).;,b | o "(0,5).

dijk = + i— Tr(.{);i,v xj.}xk'),_'. - o | - (C_',6)

From these relations d and f are totally antiéymmetfic and symmetric

"in their indices respectively.
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The A are’ n X n and traceless; Furthermore thj commutes

with all the Xi and is theréfore a multiple of the identity. From

(C.6) we have

L ! , N
diik' = ¥ Tr({xi, xi}xk) = 5 Tr(c' 1 xk) = 0
(c.7)
' The Cartan gohdition for the f's reéds
fijkfpjk =. naip , : | (c.8)
and the symmetry prbperties give
(c.9)

£ sx%psx

It is cdnvenient for the derivation of further relations to

employ the matrix identities

[{a, B}, C] + [{B, cl, Al + [{c, A}, B] = O, (c.11)
(a, (8, C}} - (B, (C, A)} + [C; [A, BI] = 0. (c.12)
| InSerting the Qxi into. (C;lo) 5(0.12), we get
fabsfsé:d * fbcsféad-f fca.sfsbd ° o (C'lﬁ)
%absTscd T FesTead T YeasTsva = -0 o - (C.1k)
0 (c.15)

» .désddbcs - dbsddcas - fcsdfabs



From (C.8) and (C.15)

: n° - )
Ytk = T Pus

Last, we giveffouf relations for trilinears in f and d:

1

» ) E ..
‘pigfasrii T T2 ik 7
) - ._n
Gigfosrfr = =7 Yijx

2
: : . n - 12 )
Yeigdasrfrp = “n Yk

espn . UCRL-18625

(c.16)

(c.17)
f(c.18)'

(c.19)

It is sometimes useful to define d's and f's for VU(n). We set

L1
N = (/M2
“so (C.2) becomes

-y xj}+‘_= 2d; ..

1Jk%k’ ’
for _
e . o
0< (i, §, k) <n” -1 ;
then
o 3 _
doiy = (E/H) 5 -

Equation: (C.4) becomes

o .
Ny (dijk AT

(6.20)

,(c,el)

(6.22)
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(c.7) gives

1
diik

and (C.16) becomes

WA ¢ ’ o
dijkdzjk = n(5iz + 610 530)_=r

~with the new f eqﬁation

fix Toge = (83, = 850 By0)

‘We also have

1] 1] 1] t 1 '
% polmgk * YGonlink * Gonlijn * O

which follows immediately from (C.18).

UCRL-18625 .

(c.2k)

(c.25)

(c.26)

CRON

(Most of the above relations are contained in Macfarland et al.,

Cambridge University preprint 1968, unpublished.) 4
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APPENDIX D

- Derivation of FESR

We derive the finite energy sum rule using the Khuri
representation.
| .Cbnsider the amplitudé for the pfoéess P+P P +P,
-assuming equalQmasses. In the physical region for the f channel make
the expansions . | o .
o

D Y YRS It
J=0 g

of the even and odd J parify amplitudes.

Noting v = %(s - u), and defining

a(l)(J; t) = Py hmg ;‘22 ..Q,J<l v+ 2—:?") Ds(ty. S)_ ’ |
(D.2)
.' a(e)(J, tv) o= ]-:_[['- /h—g g;llié- Q’J<l + ;;3_2_> Du(t, u)‘
, . : (D.3) -
(da® = t - hn) | )
) . » .
| ai(J, t) = a(l)(J, ‘t) + a(2)(J’ t) 9 . .‘(D-LI-) N

where D
s,u

are the s,u discontinuities in the dispersion relation
3 . : : .
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’ o ' o0
. D (t, s') D (t, u')
A(v, t'):%/ ds' "S"""‘E““L%/ T
| Jn® | /

| (D.5)

Note

Zt = ): S = ug = 14 -1 -U./qu = 1 +S/2q2 .

‘ t - bm 2q : ' '

If there are no exchange forces ‘Du-= a(2> = 0, at = a-, and we have
whét is usually called exchange.degeﬁeracy.

We prefer to expand

A, 8) = Y el 0 eyls ) = Y ol 0
k=0 S k=0
| (D.6) .

in a power ‘series in v (i.e., in s and u). Khuri, [N. N. Khuri,

Phys. Rev. 132, 91k (1963)§ 130, k29 (1963)] has proved theorems

relating the analytic behavior of a,,\(J, t) in the complex J plane
| rof an(J, :

to that of ¢ )(J, t), under the assumptions (i) a(J, t) has a

(1,2
unique, meromorphic interpolation for Re J > - % with a finite number

of poles in Re J > - %; (ii) 1im  a(J, t) —§c(t)\/Je?;lJ|'§(t);;
' R B

Re £(t) >0, ImE(t) =0 .

Under these éonditions C(K,t) is such that we can make a Watson-

- Sommerfeld transformation on (p.6),
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Jo+iw
A(v,t) = [ 4z (3, 6)(-v)
Jo~ie - '

ind : 3y

J 4l - e ;_. | '.(D.7) .

sin(nd

where we have separated A(v,t)  into even and odd parts in v. We have
generalized Khuri's result .slightly here, assuming A(v, t) has no
singularities for Re J> g ‘Note that (D.7) is true provided

analyticity, crossing, and unitarity hold. When 1 is'chosen such

that the posifions of the poles in the J. plane, o(t), satisfy

In o 0, Rea ~n (n any integer), the pole contributions which

appear on moving the contour in (D.7) have the usual Regge form

vosa f1 - eI
~e0g) Temaa (0.8)

As we move thé.contour to the.leff, unéovering‘the riéhf half
of the J plané,_we will get, in geﬁeral, a sum oveér pole'contributions,'
a sum over cut contributions, and a remainder.integral, ﬁsually referred
vﬁo in the literature as the background integral. Our approximation will
be to neglect all;thesevterﬁs,'egcept the leading Regge pole,.so that

(D.7) becomes

At(v, f) = (Background Integral) + o+ E ' ) .

cuts - poles

>

. i + -iﬂa(t) .
Ol R o
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We have here two kinds of amplitudes with. JP =(17, 3, -++) or

(O+, 2#, cee), 'corrésponding_to odd or even A(v, t). We assume here
A also Im @ ~ 0, Re a(t) ~at +b, with b ~1 GeV™e  for all
trajectories.
. o ' 2
| Taklng the imaginary part of (B.9) for t = (mresonance) ,
multiplying by vn, and integrating from -N to +N, we get
+N . ’
: ot)+n+l
1 : L n _ pt) N o
5 . Im A(y, t) dv v = ) TR T (D.10)

-N

~Since taking the'imaginary part changes the symmetry in v,

n

“even in (D.10) corresponds to the trajectory with = odd, and

. n _oddbto JP(even+) [v(T) trajectories].
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LEGAL NOTICE

This report was prepared as an account of Government sponsored work.
Neither the United States, nor the Commission, nor any person acting on
behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with
respect to the accuracy, completeness, or usefulness of the informa-
tion contained in this report, or that the use of any information,
apparatus, method, or process disclosed in this report may not in-
fringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages
resulting from the use of any information, apparatus, method, or
process disclosed in this report.

As used in the above, 'person acting on behalf of the Commission”
includes any employee or contractor of the Commission, or employee of
such contractor, to the extent that such employee or contractor of the
Commission, or employee of such contractor prepares, disseminates, or pro-
vides access to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.
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