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ABSTRACT. We calculate the number of the isomorphism class of the finite
flat models over the ring of integers of an absolutely ramified p-adic field of
constant group schemes of rank two over finite fields by counting the rational
points of a moduli space of finite flat models.

INTRODUCTION

Let K be a totally ramified extension of degree e over Q, for p > 2, and let
F be a finite field of characteristic p. We consider the constant group scheme Cp
over Spec K of the two-dimensional vector space over F. A finite flat model of Cg
is a pair (G,Cr — Gx) such that G is a finite flat group scheme over Ok with a
structure of an F-vector space. Here Gk is the generic fiber of G, and Cp = G is
an isomorphism of group schemes over Spec K that is compatible with the action
of F. Let M(Cp, K) be the set of the isomorphism class of the finite flat models of
Cy. If e < p—1, then M(Cp, K) is one-point set by [2] Theorem 3.3.3]. However, if
the ramification is big, there are surprisingly many finite flat models. In this paper,
we calculate the number of the isomorphism class of the finite flat models of C,
that is, |M(Cy, K)|. The main theorem is the following.

Theorem. Let q be the cardinality of F. Then we have
|M(Ca, K)| =) (an +ay)q".
n>0

Here a,, and a., are defined as in the following.
We express e and n by

e=(p—1eo+e, n=(p—1ng+ni=(p—1ng+n;+e
such that eg,ng,n{ € Z and 0 < ey, ny,n}) <p—2. Then

an :max{eo—(p+1)n0—n1—1,0} ifny #£0,1,
an :max{eo —(p+1)ng—ny — 1,0}
+max{eo—(p+1)no—n1+1,0} ifny =01
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and
a,, =max{ey — e1 — (p+ 1)nj —nj — 2,0} ifny #0,1,
a,, =max{ey — e1 — (p+ 1)nj —nj — 2,0}
+max{eg — e1 — (p+ 1)ny — n}, 0} ifn} =0,1

except in the case where n =0 and ey = p — 2, in which case we put aj, = ep.
In the above theorem, we can easily check that |[M(Cy, K)|=1ife<p—1.

Notation. Throughout this paper, we use the following notation. Let p > 2 be a
prime number, and let K be a totally ramified extension of @, of degree e. The ring
of integers of K is denoted by Ok, and the absolute Galois group of K is denoted
by Gk. Let F be a finite field of characteristic p. The formal power series ring of
u over F is denoted by F[[u]], and its quotient field is denoted by F((u)). Let v,
be the valuation of F((u)) normalized by v,(u) = 1, and we put v,(0) = oo. For
x € R, the greatest integer less than or equal to z is denoted by [z].

1. PRELIMINARIES

To calculate the number of finite flat models of Cy, we use the moduli spaces of
finite flat models constructed by Kisin in [I].

Let Vi be the two-dimensional trivial representation of G over F. The moduli
space of finite flat models of Vf, which is denoted by ¥ Zv, o, is a projective scheme
over F. An important property of 4%y, o is the following proposition.

Proposition 1.1. For any finite extension F' of F, there is a natural bijection
between the set of isomorphism classes of finite flat models of Vi = Ve Qp F' and
GR v, o(F).

Proof. This is [II, Corollary 2.1.13]. O

By Proposition [Tl to calculate the number of finite flat models, it suffices to
count the number of the F-rational points of ¥ Zy; o.

Let & = Zp[[u]], and let Og be the p-adic completion of &[1/u]. There is an
action of ¢ on Og determined by identity on Z, and u +— u?. We choose elements
Tm € K such that 7o = 7 and M1 = T for m >0, and put Koo = 50 K (7m)-
Let ®Mo, r be the category of finite (Og ®z, F)-modules M equipped with a ¢-
semi-linear map M — M such that the induced (Og ®z, F)-linear map ¢*(M) — M
is an isomorphism. We take the ¢-module My € ®Mp, r that corresponds to the
Gk, -representation Vy(—1). Here (—1) denotes the inverse of the Tate twist.

The moduli space 4%y, o is described via the Kisin modules as in the following.

Proposition 1.2. For any finite extension F' of F, the elements of 4% v, o(F")
naturally correspond to free F'[[u]]-submodules My C My Qp F' of rank 2 that
satisfy u*Mp: C (1@ @) (¢* (M) C M.

Proof. This follows from the construction of 9%y, o in [I, Corollary 2.1.13]. O

By Proposition [[.2] we often identify a point of ¥Zy, o(F’) with the correspond-
ing finite free F’[[u]]-module.
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For A € GLy(F((u))), we write My ~ A if there is a basis {e1, ez} of Mg over

F((u)) such that ¢ (Zl) =A (21). We use the same notation for any sublattice
2 2

IMr C My similarly.
Finally, for any sublattice My C My with a chosen basis {ej,es} and B €

GL3(F((u))), the module generated by the entries of ( B Zl with the basis

2
given by these entries is denoted by B - 9My. Note that B - 9 depends on the
choice of the basis of 9p. We can see that if My ~ A for A € GLy(F((u))) with

respect to a given basis, then we have
B-Mp ~ ¢(B)AB™!
with respect to the induced basis.

Lemma 1.3. Suppose F' is a finite extension of F and x € YR, o(F') corresponds

u®i
to E)ﬁ]F/. Put f)ﬁ]F/’i = ( 0
Assume My 1 and My o correspond to x1,x2 € YRv, o(F') respectively. Then

x1 = x2 if and only if

;;) M for 1 <i <2, 5,8 € Z and v; € F'((u)).

51 = 89, t; =ty and vi — vy € U F'[[u]].

Proof. The equality z1 = 3 is equivalent to the existence of B € GLo(F'[[u]]) such

that
ust oy us2 vy
ot )= (% i2)
It is further equivalent to the condition that
us2 st ’Uguftl _ u52*51*tlvl
(" g € GLy(F'[[u])).
The last condition is equivalent to the desired condition. ([

2. MAIN THEOREM

Theorem 2.1. Let q be the cardinality of F. Then we have
[M(Ce, K)| = ) (an +al)q"

n>0

Here a,, and al, are defined as in the introduction.

Proof. Since Vg is the trivial representation, My ~ <é (1)> for some basis. Let

Mo be the lattice of My generated by the basis giving My ~ (é (1)> By the

S
Iwasawa decomposition, any sublattice of My can be written as 16 1;) - Mr o

for s,t € Z and v € F((u)). We put

IRV, 0.54(F) = {(% ;’t) Mg € YRy, ofF) | v € F((u))}.

Then
GRveo(F) = | 9%ve0,..:(F)

S,tEZL
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and this is a disjoint union by Lemma

We put
u® 0
Mp st = (O ut) - M 0.

u®—1s 0

Then we have Mg s ; ~ < 0 (=1t with respect to the basis induced from

v

Mpo. Any My in Y% v, 0,5.¢(F) can be written as (é 1) - Mg ¢ for v in F((w)).

Then we have

u(p_l)s _Uu(p_l)s + ¢('U)u(p_1)t
Me~ | WPt

with respect to the induced basis. The condition u*Mp C (1 ® @) (¢*(Mr)) C My
is equivalent to the following:

0<(p—1)s<e,0<(p—1)t<e,
vy (vuP7YS — p(0)uPV) > max{0, (p — 1)(s +¢t) — e}.
Conversely, s,t € Z and v € F((u)) satisfying this condition gives a point of

1
GR v, 0,5 (F) as <O

We fix s,t € Z such that 0 < s,t < eg. The lowest degree term of puP=1s ig equal
to that of ¢(v)uP~V* if and only if v, (v) = s—t, in which case v, (vuP~1%) = ps—t.
In the case where ps — ¢ > max{0, (p — 1)(s +t) — e}, the condition
v (vuP* — () uP~V) > max{0, (p—1)(s+1t) —e}
is equivalent to
min{vu(vu(p_l)s), Uy (¢(v)u(p_1)t)} > max{0,(p— 1)(s +t) — e}

and further equivalent to

11)) My 5.0 We put 7 = —v,(v).

r < min{(p —1)s,

e—(p—1)s (p—1)t
— ,e—(p—l)t,ip }
We put

o= mind (- [0 oy [0

In this case, the number of the points of Y%, o s.+(F) is equal to ¢"+* by Lemmal[L.3l

Next, we consider the case where ps —t < maX{O, (p—1(s+1t)— e}. We note
that

ree <min{(p—1)s,e— (p— 1)t} <t—s
in this case. We claim that the condition
v (vuPV® — () u PV > max{0, (p — 1)(s +t) — e}
is satisfied if and only if
v=oau"""+uv; for a € F and vy € F((u)) such that — v, (vy) < 7s .

Clearly, the latter implies the former. We prove the converse. We assume that the
former condition. If

min{vu(vu(pfl)s), Vy (qﬁ(v)u(p*l)t)} > max{0, (p— 1)(s + t) — e},
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we may take o = 0. So we may assume that
min{ v, (vu®%) v, ((v)uP D)} < max{0, (p— 1)(s +t) — e}.

Then the lowest degree term of vu~1* is equal to that of ¢(v)uP~1! and the
lowest degree term of v can be written as au®~t for « € F*. We put v, = v—au’™?.
We can see —v,(vy) < 75, because

vu (V3w = G(v ) uP V) > max{0, (p — 1)(s +t) — e}

and the lowest degree term of vy uP~1* cannot be equal to that of ¢(v+)u(p’1)t.
Thus the claim has been proved, and the number of the points of Y%y, o.5.¢(F) is
equal to ¢"s*T! by Lemma [[3
We put hg; = log,|9%v;0,s,:(F)|. Collecting the above results, we get the
following:
o If s+¢<egand ps—1t>0,then hy;, = [(p— 1)t/p].
o If s+t <epand ps—1t<O0,then hyy = (p—1)s+ 1.
o Ifs+t>epandps—t > (p—1)(s+t)—e, then hyy = [(e— (p—1)
eIfs+t>eandps—t<(p—1)(s+t)—e, then hyy =e— (p—1)t

Now we have
| C]F ) Z q

0<s,t<eqo

)s)/p].
+ 1.

We put
Sn = {(Sat) € z? ’ 0<s,t<eo, hs,t :n}7

and

€Sn|s+t<en, ps—t>0},
ESn’s—i—tgeo, ps—t<0},

i ={(st) €Sy | s+t >eq, ps—t>(p—1)(s+1t) —e},
ho={(st) €Sy |s+t>eq, ps—t<(p—1)(s+1t)—e}.

It suffices to show that |Sy, 1| + [Sn2| = an and [S], ;[ + |5}, 5| = ai,.

Firstly, we calculate |S, 1|. We assume (s,t) € S, 1. In the case ny # 0, we have
t=pno+n1+1by[(p—1)t/p] = (p— 1)no +ni. Then ps >t = png+ny +1
implies s > ng + 1, and we have

nl—{57

(s,t
ng = {(S,t
(s,t

\_/\_/\_/\_/

no+1<s<e—png—ng—1.
We note that if ¢ > ey, we have
(eo—pno—m1—1)—(no+1)+1=e—(p+1)ng—n; —1<0.
So we get
[Sp.1] = max{eg — (p + 1)ng —n1 — 1,0}.
In the case ny = 0, we have t = png or t = png + 1 by [(p — )t/p] = (p — V)ng. If
t = png, we have ng < s < eg—png. If t = png+1, we have ng+1 < s < eg—png—1.
So we get
|Sp.1] = max{eo — (p + 1)ng + 1,0} + max{ep — (p + 1)no — 1,0}.
Secondly, we calculate |S, 2|. In the case ny # 1, we have S, 2 = (). In the case
ny = 1, we assume (s,t) € S, 2. Then s = ng, and we have png +1 <t < ey — ng.
So we get
|Sh,2| = max{eg — (p + 1)no, 0}.
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Collecting these results, we have Sy, 1] + [Sn,2| = an.

Next, we calculate |5}, ;|. We assume (s,t) € S}, 1 In the case nj # 0, we have
s=ey—e —pny—ny—1by [(e—(p—1)s)/p|] = (p—1)ny +n} + e;. We note
that [(e — (p— 1) )/p] =n > 0 shows s < ep. Thenps—t > (p—1)(s+1t)—
implies pt < peg — png —ny — 1 and further implies t < eg —nj, — 1. So we have

e1 +pn6+n'1—|—2§t§60—n6—1.

We note that e; +png+ni +2=n+ny+2>1and eg — nj — 1 < e, because
ng > —1. We note also that if s < 0, then

(o —ny—1)—(e1+pny+ni+2)+1=e —e1—(p+1)ng—n) —2<0.

So we get

IS, 1| = max{eq —e1 — (p+ 1)ng — nj — 2,0}
In the case nf = 0, Wehaves:eo—el—pn()—lors:eo—el—pn6 by
[(e— -1 )/p} (p—Dni+er. If s =eyg—e1 —pnjy—1, we have e; +pnj+2 <

t<ey—ny—1. If s =eg—e; —pn(, we have e; +pnj+1 <t < eg —nj. We note
that n{, > 0, because nj = 0. So we get

|Svlz,1| =max{ey —e1 — (p+ 1)ng — 2,0} + max{eg — e; — (p + 1)ng, 0}.
At last, we calculate |S], 5. In the case ny # 1, we have S}, o = (). In the case
ny = 1, we assume (s,t) € S;,,. Then t = ey — ng, and we have ny +1 < s <

ep — e1 — pn{, — 1. Here we need some care, because there is the case nj, = —1, in
which case ¢t > eg. Now nj = —1 is equivalent to n = 0 and e; = p — 2. So we get

|Sn,2l = max{eo —ex — (p+ 1)ng — 1,0},

except in the case where n = 0 and e; = p — 2, in which case S}, , = = (). Collecting
these results, we have S}, 1| + 5], 5| = a;,. This completes the proof. O

Example 2.2. If K = Q,((,) and F = F,,, we have |M(CFP,QP(CP))| =p+3 by
Theorem 211 We know that Z/pZ @ Z/pZ, Z/pZ & p, and i, © py, over Og, (c,)
have the generic fibers that are isomorphic to Cr,. We can see |Aut(C]FP)| =
p(p+1)(p — 1)%. On the other hand, we have

Aut(Z/pZ & pp) = Aut(Z/pZ) x Hom(Z/pZ, pip) x Aut(pyp),
because Hom (i, Z/pZ) = 0. In particular, we have |Aut(Z/pZ & )| = p(p — 1)

Hence, there are (p + 1)-choices of an isomorphism Cf, = (Z/pZ &) up)Q @) that

give the different elements of M (Cg,,Q,((p)). So the equation |M (Cr,,Q,((p))| =
14 (p+1)+ 1 shows that there does not exist any other isomorphism class of finite
flat models of Cf, .

Remark 2.3. Theorem [2.1lis equivalent to an explicit calculation of the zeta function
of Y%y, 0, and we can see that dimYZv, o = max{n >0 | ap, + al, # O}.
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