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Finite Formulation and Domain-Integrated Field
Relations in Electromagnetics—A Synthesis

loan E. Lager, Enzo Tonti, Adrianus T. de Hoop, Gerrit Mur, and Massimiliano Marrone

Abstract—Complementary formulations of the integral type The former approach is represented by the finite formulation
have established themselves as the most adequate approach t@f electromagnetic (EM) field (see [2], [3] and the references
computational electromagnetics. This paper proposes a computa- iharein) and by a variety of formulations using differential forms

tional strategy that benefits from the advantages offered by the ; o !
finite formulation of the electromagnetic (EM) field, employing [4]. The latter is represented by the domain-integrated field rela-

integral field quantities and dual meshes, and by the domain-inte- tions approach to electromagnetic (EM) field computation (see
grated field relations approach to EM field computation. [5] and the references therein).

In the following, a comparative analysis of these two ap-
proaches is presented. This will suggest the manner to combine
them into a computational method that is suitable for the anal-

Index Terms—Magnetic fields, numerical analysis.

. INTRODUCTION ysis of strongly heterogeneous configurations.
OMPLEMENTARY formulations employing integral
field equations were introduced in the realm of compu- ll. PREREQUISITES

tational electromagnetics by means of the finite integration ) -
method (see [1] and the references therein). The advantafled-ocal Field Quantities
of the integral setup over a differential one were immediately [ et the position in the three-dimensional (3-D) space be spec-
recognized. Another essential feature of it was the use of dif@dd by the position vector and let the time coordinate ke
grids as support for carrying out the integration. The field quantities describing the EM field are: the electric field
The subsequent challenge was to implement a complemetrengthE, the magnetic flux densitjB, the electric flux den-
tary formulation on a simplicial mesh, thus allowing an apprasity D, and the magnetic field streng#f. The pairs {, B}
priate treatment of configurations containing curved surfacegd {D, H} are composed of complementary field quantities.
The computational methods that can be assigned to this clggfowing the standard method in linear, time-invariant systems
follow one of the following approaches: theory, the source distributions that excite the configuration are
« Employ “integral” field guantities; employ metric in- incorporated into the constitutive relations. To this end, the im-
variant equations making no reference to properties pfessed electric polarizatioR and the magnetizatioM are
matter; relate complementary field quantities by mearmsnployed, these quantities being taken to be piecewise contin-
of equivalent constitutive relations that are not definedous in space and time. For allowing for the usual practice in
pointwise. electromagnetics of accounting for the presence/motion of elec-
» Employ computational field quantities expanded on thigic charges, the electric charge densitgnd the electric con-
boundaries of elementary domains; employ integral fielduction current density are added to this list.
relations on those boundaries; employ in these relationsin subdomains of continuity of the material parameters, the
field quantities that can be related without requiring anfjeld quantities are continuous functionsmoand¢, with finite
reference to properties of the matter; relate compleméimiting values assumed upon approaching the boundary of each
tary field quantities by means of equivalent constitutiveubdomain. Across material interfaces, the quantities E,
relations that hold for domains. v-B,v- D, andv x H (with v denoting the unit vector along
the normal to the interface) are continuous, the remaining com-
ponents showing a finite jump discontinuity. As far as the time
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TABLE | The following field equations are employed by the finite for-
INTEGRAL EM FIELD VARIABLES AND THEIR CORRESPONDING mulation of the EM field [2]’ [3]:
FIELD QUANTITIES
B : ®[oV,1] =0 (1)
“Configuration” variables “Source” variables . B "
electric voltage impuls: €« / dt /‘E~T dL electric flux: ¥« /D.n dA 5 I:()SN7 r];] _é I:S;I ~] N (I) I:S7 I ] (2)
_ e _ , . U[oV, 1] =Q°[V,I] ®3)
magnetic flux: (I)«—»/SBWL dA magnetic voltage impuls: }-H./I'(”,/CH'T dL . & Tp . Fra

total electric charge: Q°« /VpdV ]:[887 T] :\II I:S7 I ] - \Ij I:S7 I ] + Q I:S7 T] ’ (4)

electric charge flow: Of - [r‘“ /S smaa  FOraccounting for constitutive properties, the cell method was

proposed for Voronoy—Delaunay dual meshes in [2] and for
barycentric dual meshes in [3]. The cell method was extended

either an inner or an outer orientation [2], [3]. Similarly, time in{C Nonhomogeneous configurations in [9].
stantd and time intervald (with boundarie®T = {I*,1"}),
that are also given an inner or an outer orientation, are defined. V- DOMAIN-INTEGRATED FIELD RELATIONS METHOD

(FOI’ diStinguiShing between the two Orientations, objects with The method was Origina”y deve|oped in the context of sta-
an outer orientation will be marked with a tilde.) tionary and static magnetic fields [10]. It was designed explic-
With these choices, physical quantities are now associaigg for investigating configurations where a discontinuous con-
with “space-time elements”. The following set of integral elecstitutive behavior persists down to the scale where actual mea-
tromagnetic field variables is introduced [2], [3]: the electrigurements are still feasible, a scale referred to as the meso-
voltage impulsef, the magnetic flux, the electric flux¥', the  scopic one. (In a computational scheme, this scale corresponds
magnetic voltage impulsé&’, the total electric charg@¢, and to the mesh size of the spatial discretization.) For such strongly
the electric charge flowd’. The correspondence between inheterogeneous configurations, the property of global differen-
tegral electromagnetic field variables and local field quantitiggbility throughout the domain of computation is lost. Conse-
is indicated in Table I. In this table;, denotes the unit vector quenﬂy, acompu[ationa| scheme Stemming from the field equa-
along the normal to a surface amcthe unit vector along the tions in differential form does not make sense anymore, and
tangent to a curve, their orientation being chosen in accordaniggd relations in integral form must be called upon. It is, how-
to the inner/outer orientations of the relevant geometrical magiver, noted that the existence and the uniqueness of the solu-
folds. Note that the Iabeling of the field variables as “ConﬁgUl'Qi-on of field prob|ems can be proven rigorous|y for the standard
tion” and “source” variables goes back to [7, (pp. 4-5)]. Finallyz M field equations in differential form, only. This is reflected
based on [8, (pp. 33)], it is inferred that thensityof an inte- in the domain-integrated field relations being constructed such
gral quantity associated with a space element with an innerfgt in any subdomain where the field quantities are continu-
an outer orientation should, likewise, be endowed with an innggsly differentiable with respect to the space coordinates, they
or an outer orientation. are equivalent to the field equations in differential form. As for
the representation of field quantities, it was required that com-
ponents that remain continuous upon crossing material inter-
faces are employed exclusively. To this end, an expansion tech-
nigue using consistently linear edge and face expansion func-

In [2] and [3], a computational method that represents a coli!\QnS wa.s.chosen. (For co_mpens.a_tlng their re_duced computa-
sistent finite (as opposed to differential) model of the EM fielfjonal efficiency, an alternative, efficient expansion strategy was

was introduced. The philosophy of this method can be Sumnp({gsgnted in [5]'), . .
rized as follows. This computational approach was applied to the analysis

) ) ) ___.of configurations with a very high degree of inhomogeneity,
* Use global variables as main variables of physics; fie{gemonstrating its accuracy and robustness. Its success in the

quantities follow as densities and rates of global variables,se of static and stationary magnetic fields justified the quest
* Use configuration variables that are associated Wi, 5 time-domain counterpart of it. A first proposal in this
space-time elements endowed with an inner orientatiQnse was formulated in [6]. There, the field relations and
and source variables that are associated with space-tif§g pertaining compatibility relations were formulated on the
elements endowed with an outer orientation. _ boundaries of arbitrary, bounded domains, that were later
* Use field equations that relate global variables associatgflntified with the simplices in a simplicial decomposition of
with a specified space-time element to global variables g{e gomain of computation. Nevertheless, from a physical (and
the same kind, associated with its oriented boundary; thesgm putational) point of view, it is more adequate to express the

equations should be devoid of any notion of metric. rgjevant relations using a combination of contour and surface
 Relate global variables of different kinds by means of COftegrals.

stitutive relations, only.

IIl. FINITE FORMULATION OF AN EM FIELD

LetD be a bounded domain with piecewise smooth boundary
Due to the particular manner in which configuration and souréeD. LetS be a simply connected subsurfaced@ with piece-
variables refer to space-time elements with inner and outer asiise smooth boundar§S. Let n be the unit vector along the
entation, the application of this computational method calls incutward normal t@D and+ be the unit vector along the tan-
natural manner for the use of dual meshes. gent todS, the orientation o®S and that ol being related by
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means of the screw rule. L&t be a bounded time interval with  Notable differences between the two methods are as follows.

boundaryoT = {t1,1,}. Then, the space-time integrated field 1)
relations read

/ 7-H(r,t)dLdt — /
OSXT S
/ rE(r,t) dLdt + / nB(r.).dA| =0 (6)
JosxT S a1

n-D(r,1), dA‘aT -0 (5

while the space-time integrated compatibility relations are

/(; wDir. t)dA‘aT —0 @)

/ n-B(r, t)dA‘ =0
oD oT

where the notation _ standsforf(¢)| = f(¢2)—f(¢1). Note

that, unlike in the %gse of the formﬁration discussed in [6], (7)
and (8) are true compatibility relations. For substantiating this,
it is sufficient to observe that a summation of the contributions
yielded by (5) and (6), when applied to any of the subsurfaces
that compose the bounda#p, yields automatically the condi-
tions in (7) and (8).

In a computational scheme, the domainis identified with
each of the simplicial cell§,, (m = 1,..., M) of the simpli-
cial decomposition of the domain of computation, the surface
with any of the faces of the simplicial c€l},, anddS with the
closed contour along the edges that enclose the relevant face.
The interface boundary conditions then call for a spatial expan-
sion of E andH in terms of consistently linear edge expansion
functions and ofD and B in terms of consistently linear face
expansion functions, in conjunction with a linear interpolation
on successive time intervals. As far as the source distributions
are concerned? andM are taken to be at most linearly varying
in space and time in the interior of each cell.

For accounting for the constitutive properties, a procedure 2)
that is reminiscent of the method employed for stationary and
static magnetic fields was proposed in [6]. This procedure min-
imizes the discrepancy in the stored electric and magnetic ener-
gies for the chosen (computational) field quantities. The main
advantage of this approach is that electric and magnetic inho-
mogeneities that manifest themselves simultaneously can be ac-
counted for. It also allows for employing the efficient normal-
ization strategy, originally described in [5], that reduces the po-
tential depreciation of the obtained accuracy due to round-off 3)
errors.

8

V. COMPARATIVE ANALYSIS

The formulations described in Sections Il and IV have some
remarkable similarities.

1) The methods advocate the use of integral models of the
electromagnetic field, the integration being carried out in
both space and time.

2) Both methods employ a complete set of complementary
field quantities.

3) Both methods compute quantities that are continuous
across material interfaces, thus preventing possible
detrimental round-off effects.

The main difference between the two methods concerns
the approach to modeling the constitutive relations. These
approaches aim at accommodating the choice for repre-
senting (integral) field quantities along lines and surfaces,
only, with the fact that the constitutive properties of the
matter always manifest themselves in a volume.

In the finite formulation of electromagnetic field, the
field is taken to be uniform in regions of space assimilated
to cells [2], [3] or micro-cells [9]. The uniformity condi-
tion amounts to assuming that the densities of field vari-
ables (assimilated to the local field quantities) are con-
stant over the relevant domains.

In the case of the domain-integrated field relations
method, following from the assumed mesoscopic struc-
ture of matter, the material parameters inside each cell
may differ from the ones in any of the neighboring cells.
Inside each cell, the material parameters are taken to
be constant, while the field quantities themselves may
vary. Since the field quantities were only defined on the
boundaries of the simplicial cells, an extrapolation of
these quantities into the interior of those cells is, thus,
required. For the assumed simplicial decomposition,
algebraic topology ensures the possibility to employ a
consistently linear spatial expansion, based on the lim-
iting values of the expanded quantities upon approaching
nodes, edges and faces. The expansion coefficierfis of
are then related to those &f and P, and the expansion
coefficients of B are related to those o and M,
by taking the value of the relevant expansions upon
approaching the nodes of the mesh via the interior of
each cell. This approach allows for taking into account
electric and magnetic inhomogeneities that manifest
themselves simultaneously.

The distinction made in the finite formulation of the EM
field between “configuration” and “source” variables,
corroborated with the choice for inner and outer orienta-
tions of the space-time elements, calls, naturally, upon the
use of dual grids. The domain-integrated field relations
method makes no distinction between field quantities,
as long as integral relations are satisfied exactly and
interface boundary conditions are enforced. For meeting
these requirements, the use of a simplicial mesh suffices.
As far as the computational aspects are concerned, the
application of the finite formulation results in a square
system of linear, algebraic equations.

For the kind of configuration considered above, the do-
main-integrated field relations method does so, as well.
However, this method allows for more general variations
of material parameters and source distributions in each
cell. In such cases, a minimization of an energy type of
norm yields an overdetermined system, the solution of
which is computed in the least-squares sense. From a
computational point of view, this fact will not influence
too much the efficiency of the algorithm, the matrix-ma-
trix multiplications involved by the least-squares solution
being carried out at simplicial cell level. However, it can
be argued that this approach to solving the system results
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In view of complying to the interface boundary
conditions, the following spatial expansion is em-
ployed: E «+ consistently linear edge expansiof) <«
consistently linear face expansiaH, «— Cartesian expansion,
with one degree of freedom (DoF) per each node and
B — local Cartesian expansion, with one DoF per each vertex
of each triangle. As for théime discretizationis concerned,
linear interpolations based on the valuedodndB “sampled”
at instantg = ty + nA; (n = 0,...,N) and on the values of
D andH “sampled” at the instants= to + (n + 1/2)A; (with
Fig. 1. Primal mesh and its barycentric dual in the simplicial star of a‘ﬁ\t dem_)tmg a constant time step)_ are employed.

(interior) node: the thickness of the 2-D slicesis(a) the complete simplicial ~ Relations of type (6) are now invoked for closed contours
star and (b) one triangle in the simplicial star. along the primal mesh, enclosing the nodes whBrés un-
known [for example, the contour of the complete simplicial
in the generation of an unphysical mixing of equationstar in Fig. 1(a)]. Further, relations of type (5) are written
originating from field and constitutive relations. for closed contours along the dual mesh, such as the contour
{a,d’,q",c,c,g,a} in Fig. 1(b). Since expansions ab on
VI. PROPOSEDCOMPUTATIONAL PHILOSOPHY the primal mesh are available, only, the relevant contour

Based on the arguments discussed above, it is tempting toiﬂg?grals are exp_ressed for corresponding closed contours along
to combine the two methods. The combined method should bde edges of this mesh (for the contour, ¢, 4’ ¢', ¢, g, a}
efit from the highly structured character of the equations pdfis being f,a’, B', ¢, ¢, B, a}). To this end, (7) is applied
taining to the finite formulation of electromagnetic field. Furf0 quadrilateral prisms such as the one having the basis
ther, it should provide the possibility to compute the value 3" @’ ¢';¢’}. Note that, by combining the relations of the
local field quantities, with acceptable accuracy, at any locatid¥e (5) relative to the three shaded contours in Fig. 1(b), the
inside the domain of computation (an aspect required by mafgmpatibility relation in (7), when applied to the triangular
practical applications). Finally, the intrinsic pointwise, up to ma2fiSm, is automatically satisfied. (In view of the configuration
terial interfaces, character of the constitutive relations should B&ing 2-D, the compatibility relation in (8) is trivial.). These

clearly manifest in this method. The following computationdlations are supplemented By {E, P} andB — {H, M}
philosophy is, thus, proposed. mappings that follow from the constitutive relations. Finally, in

1) Employ integral field relationson the boundaries of Ori?)::itgt;dvl\]/iiemtgi d”;”;?grsz ?%hﬁléotﬁgszogzgi?gfetg(\a/vict)rr:es
space-time elements; formulate these relations in ter Pt

of field quantities that can be related without requiring :nd"DC aa;irgnegrfn;p]%te;. orithm. by also taking into account
any reference to properties of the matter. PP 9 e 9

tge relevant boundary conditions, will yield a square system

Select as supports for carrying out integrations the ele; . . ) . .
ments of dual grid, constituted from a primal simplicial of linear algebraic equations that can be solved using suitably
' chosen standard (iterative) methods.

mesh and its barycentric dual.
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