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Finite Formulation and Domain-Integrated Field
Relations in Electromagnetics—A Synthesis

Ioan E. Lager, Enzo Tonti, Adrianus T. de Hoop, Gerrit Mur, and Massimiliano Marrone

Abstract—Complementary formulations of the integral type
have established themselves as the most adequate approach to
computational electromagnetics. This paper proposes a computa-
tional strategy that benefits from the advantages offered by the
finite formulation of the electromagnetic (EM) field, employing
integral field quantities and dual meshes, and by the domain-inte-
grated field relations approach to EM field computation.

Index Terms—Magnetic fields, numerical analysis.

I. INTRODUCTION

COMPLEMENTARY formulations employing integral
field equations were introduced in the realm of compu-

tational electromagnetics by means of the finite integration
method (see [1] and the references therein). The advantages
of the integral setup over a differential one were immediately
recognized. Another essential feature of it was the use of dual
grids as support for carrying out the integration.

The subsequent challenge was to implement a complemen-
tary formulation on a simplicial mesh, thus allowing an appro-
priate treatment of configurations containing curved surfaces.
The computational methods that can be assigned to this class
follow one of the following approaches:

• Employ “integral” field quantities; employ metric in-
variant equations making no reference to properties of
matter; relate complementary field quantities by means
of equivalent constitutive relations that are not defined
pointwise.

• Employ computational field quantities expanded on the
boundaries of elementary domains; employ integral field
relations on those boundaries; employ in these relations
field quantities that can be related without requiring any
reference to properties of the matter; relate complemen-
tary field quantities by means of equivalent constitutive
relations that hold for domains.
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The former approach is represented by the finite formulation
of electromagnetic (EM) field (see [2], [3] and the references
therein) and by a variety of formulations using differential forms
[4]. The latter is represented by the domain-integrated field rela-
tions approach to electromagnetic (EM) field computation (see
[5] and the references therein).

In the following, a comparative analysis of these two ap-
proaches is presented. This will suggest the manner to combine
them into a computational method that is suitable for the anal-
ysis of strongly heterogeneous configurations.

II. PREREQUISITES

A. Local Field Quantities

Let the position in the three-dimensional (3-D) space be spec-
ified by the position vector and let the time coordinate be.
The field quantities describing the EM field are: the electric field
strength , the magnetic flux density , the electric flux den-
sity , and the magnetic field strength. The pairs { }
and { } are composed of complementary field quantities.
Following the standard method in linear, time-invariant systems
theory, the source distributions that excite the configuration are
incorporated into the constitutive relations. To this end, the im-
pressed electric polarization and the magnetization are
employed, these quantities being taken to be piecewise contin-
uous in space and time. For allowing for the usual practice in
electromagnetics of accounting for the presence/motion of elec-
tric charges, the electric charge densityand the electric con-
duction current density are added to this list.

In subdomains of continuity of the material parameters, the
field quantities are continuous functions ofand , with finite
limiting values assumed upon approaching the boundary of each
subdomain. Across material interfaces, the quantities ,

, , and (with denoting the unit vector along
the normal to the interface) are continuous, the remaining com-
ponents showing a finite jump discontinuity. As far as the time
behavior is concerned, the argumentation presented in [6] indi-
cates that and are continuous across any jump discontinuity
in the time behavior of the excitation of the configuration.

B. Integral EM Field Variables

In view of accounting for the geometrical properties of the
(necessarily bounded) domain of computation, this domain
is now interpreted as a finite collection of subdomains. This
decomposition allows the definition of geometrical manifolds,
namely: points , curves , surfaces (with boundaries ),
and “volumes” (with boundaries ) that are attributed
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TABLE I
INTEGRAL EM FIELD VARIABLES AND THEIR CORRESPONDING

FIELD QUANTITIES

either an inner or an outer orientation [2], [3]. Similarly, time in-
stants and time intervals (with boundaries ),
that are also given an inner or an outer orientation, are defined.
(For distinguishing between the two orientations, objects with
an outer orientation will be marked with a tilde.)

With these choices, physical quantities are now associated
with “space-time elements”. The following set of integral elec-
tromagnetic field variables is introduced [2], [3]: the electric
voltage impulse , the magnetic flux , the electric flux , the
magnetic voltage impulse , the total electric charge , and
the electric charge flow . The correspondence between in-
tegral electromagnetic field variables and local field quantities
is indicated in Table I. In this table, denotes the unit vector
along the normal to a surface andthe unit vector along the
tangent to a curve, their orientation being chosen in accordance
to the inner/outer orientations of the relevant geometrical mani-
folds. Note that the labeling of the field variables as “configura-
tion” and “source” variables goes back to [7, (pp. 4–5)]. Finally,
based on [8, (pp. 33)], it is inferred that thedensityof an inte-
gral quantity associated with a space element with an inner or
an outer orientation should, likewise, be endowed with an inner
or an outer orientation.

III. FINITE FORMULATION OF AN EM FIELD

In [2] and [3], a computational method that represents a con-
sistent finite (as opposed to differential) model of the EM field
was introduced. The philosophy of this method can be summa-
rized as follows.

• Use global variables as main variables of physics; field
quantities follow as densities and rates of global variables.

• Use configuration variables that are associated with
space-time elements endowed with an inner orientation
and source variables that are associated with space-time
elements endowed with an outer orientation.

• Use field equations that relate global variables associated
with a specified space-time element to global variables of
the same kind, associated with its oriented boundary; these
equations should be devoid of any notion of metric.

• Relate global variables of different kinds by means of con-
stitutive relations, only.

Due to the particular manner in which configuration and source
variables refer to space-time elements with inner and outer ori-
entation, the application of this computational method calls in a
natural manner for the use of dual meshes.

The following field equations are employed by the finite for-
mulation of the EM field [2], [3]:

(1)

(2)

(3)

(4)

For accounting for constitutive properties, the cell method was
proposed for Voronoy–Delaunay dual meshes in [2] and for
barycentric dual meshes in [3]. The cell method was extended
to nonhomogeneous configurations in [9].

IV. DOMAIN-INTEGRATEDFIELD RELATIONS METHOD

The method was originally developed in the context of sta-
tionary and static magnetic fields [10]. It was designed explic-
itly for investigating configurations where a discontinuous con-
stitutive behavior persists down to the scale where actual mea-
surements are still feasible, a scale referred to as the meso-
scopic one. (In a computational scheme, this scale corresponds
to the mesh size of the spatial discretization.) For such strongly
heterogeneous configurations, the property of global differen-
tiability throughout the domain of computation is lost. Conse-
quently, a computational scheme stemming from the field equa-
tions in differential form does not make sense anymore, and
field relations in integral form must be called upon. It is, how-
ever, noted that the existence and the uniqueness of the solu-
tion of field problems can be proven rigorously for the standard
EM field equations in differential form, only. This is reflected
in the domain-integrated field relations being constructed such
that in any subdomain where the field quantities are continu-
ously differentiable with respect to the space coordinates, they
are equivalent to the field equations in differential form. As for
the representation of field quantities, it was required that com-
ponents that remain continuous upon crossing material inter-
faces are employed exclusively. To this end, an expansion tech-
nique using consistently linear edge and face expansion func-
tions was chosen. (For compensating their reduced computa-
tional efficiency, an alternative, efficient expansion strategy was
presented in [5].)

This computational approach was applied to the analysis
of configurations with a very high degree of inhomogeneity,
demonstrating its accuracy and robustness. Its success in the
case of static and stationary magnetic fields justified the quest
for a time-domain counterpart of it. A first proposal in this
sense was formulated in [6]. There, the field relations and
the pertaining compatibility relations were formulated on the
boundaries of arbitrary, bounded domains, that were later
identified with the simplices in a simplicial decomposition of
the domain of computation. Nevertheless, from a physical (and
computational) point of view, it is more adequate to express the
relevant relations using a combination of contour and surface
integrals.

Let be a bounded domain with piecewise smooth boundary
. Let be a simply connected subsurface of with piece-

wise smooth boundary . Let be the unit vector along the
outward normal to and be the unit vector along the tan-
gent to , the orientation on and that of being related by
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means of the screw rule. Let be a bounded time interval with
boundary . Then, the space-time integrated field
relations read

(5)

(6)

while the space-time integrated compatibility relations are

(7)

(8)

where the notation stands for . Note
that, unlike in the case of the formulation discussed in [6], (7)
and (8) are true compatibility relations. For substantiating this,
it is sufficient to observe that a summation of the contributions
yielded by (5) and (6), when applied to any of the subsurfaces
that compose the boundary , yields automatically the condi-
tions in (7) and (8).

In a computational scheme, the domainis identified with
each of the simplicial cells ( ) of the simpli-
cial decomposition of the domain of computation, the surface
with any of the faces of the simplicial cell and with the
closed contour along the edges that enclose the relevant face.
The interface boundary conditions then call for a spatial expan-
sion of and in terms of consistently linear edge expansion
functions and of and in terms of consistently linear face
expansion functions, in conjunction with a linear interpolation
on successive time intervals. As far as the source distributions
are concerned, and are taken to be at most linearly varying
in space and time in the interior of each cell.

For accounting for the constitutive properties, a procedure
that is reminiscent of the method employed for stationary and
static magnetic fields was proposed in [6]. This procedure min-
imizes the discrepancy in the stored electric and magnetic ener-
gies for the chosen (computational) field quantities. The main
advantage of this approach is that electric and magnetic inho-
mogeneities that manifest themselves simultaneously can be ac-
counted for. It also allows for employing the efficient normal-
ization strategy, originally described in [5], that reduces the po-
tential depreciation of the obtained accuracy due to round-off
errors.

V. COMPARATIVE ANALYSIS

The formulations described in Sections III and IV have some
remarkable similarities.

1) The methods advocate the use of integral models of the
electromagnetic field, the integration being carried out in
both space and time.

2) Both methods employ a complete set of complementary
field quantities.

3) Both methods compute quantities that are continuous
across material interfaces, thus preventing possible
detrimental round-off effects.

Notable differences between the two methods are as follows.
1) The main difference between the two methods concerns

the approach to modeling the constitutive relations. These
approaches aim at accommodating the choice for repre-
senting (integral) field quantities along lines and surfaces,
only, with the fact that the constitutive properties of the
matter always manifest themselves in a volume.

In the finite formulation of electromagnetic field, the
field is taken to be uniform in regions of space assimilated
to cells [2], [3] or micro-cells [9]. The uniformity condi-
tion amounts to assuming that the densities of field vari-
ables (assimilated to the local field quantities) are con-
stant over the relevant domains.

In the case of the domain-integrated field relations
method, following from the assumed mesoscopic struc-
ture of matter, the material parameters inside each cell
may differ from the ones in any of the neighboring cells.
Inside each cell, the material parameters are taken to
be constant, while the field quantities themselves may
vary. Since the field quantities were only defined on the
boundaries of the simplicial cells, an extrapolation of
these quantities into the interior of those cells is, thus,
required. For the assumed simplicial decomposition,
algebraic topology ensures the possibility to employ a
consistently linear spatial expansion, based on the lim-
iting values of the expanded quantities upon approaching
nodes, edges and faces. The expansion coefficients of
are then related to those of and , and the expansion
coefficients of are related to those of and ,
by taking the value of the relevant expansions upon
approaching the nodes of the mesh via the interior of
each cell. This approach allows for taking into account
electric and magnetic inhomogeneities that manifest
themselves simultaneously.

2) The distinction made in the finite formulation of the EM
field between “configuration” and “source” variables,
corroborated with the choice for inner and outer orienta-
tions of the space-time elements, calls, naturally, upon the
use of dual grids. The domain-integrated field relations
method makes no distinction between field quantities,
as long as integral relations are satisfied exactly and
interface boundary conditions are enforced. For meeting
these requirements, the use of a simplicial mesh suffices.

3) As far as the computational aspects are concerned, the
application of the finite formulation results in a square
system of linear, algebraic equations.

For the kind of configuration considered above, the do-
main-integrated field relations method does so, as well.
However, this method allows for more general variations
of material parameters and source distributions in each
cell. In such cases, a minimization of an energy type of
norm yields an overdetermined system, the solution of
which is computed in the least-squares sense. From a
computational point of view, this fact will not influence
too much the efficiency of the algorithm, the matrix-ma-
trix multiplications involved by the least-squares solution
being carried out at simplicial cell level. However, it can
be argued that this approach to solving the system results
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(a) (b)

Fig. 1. Primal mesh and its barycentric dual in the simplicial star of an
(interior) node; the thickness of the 2-D slice iss: (a) the complete simplicial
star and (b) one triangle in the simplicial star.

in the generation of an unphysical mixing of equations
originating from field and constitutive relations.

VI. PROPOSEDCOMPUTATIONAL PHILOSOPHY

Based on the arguments discussed above, it is tempting to try
to combine the two methods. The combined method should ben-
efit from the highly structured character of the equations per-
taining to the finite formulation of electromagnetic field. Fur-
ther, it should provide the possibility to compute the value of
local field quantities, with acceptable accuracy, at any location
inside the domain of computation (an aspect required by many
practical applications). Finally, the intrinsic pointwise, up to ma-
terial interfaces, character of the constitutive relations should be
clearly manifest in this method. The following computational
philosophy is, thus, proposed.

1) Employ integral field relations on the boundaries of
space-time elements; formulate these relations in terms
of field quantities that can be related without requiring
any reference to properties of the matter.

2) Select as supports for carrying out integrations the ele-
ments of adual grid, constituted from a primal simplicial
mesh and its barycentric dual.

3) Expand local field quantities on the primal mesh, only;
employ an expansion technique that is consistent with
the interface boundary conditions referring to local field
quantities; use these field expansions in integral field re-
lations.

4) Relate complementary field quantities by means of
constitutive relations derived from minimumvolume
energy arguments; use the constitutive relations for de-
riving one-to-one mappings of the expansion coefficients
pertaining to the relevant complementary quantities.

Note that the combination of the principles 1)–3) is, by and
large, equivalent to writing algebraic equations relating integral
field quantities of the type employed by the finite formulation
of the EM electromagnetic field.

This approach is illustrated by means of the two-dimensional
(2-D) configuration in Fig. 1. Material parameters can, in
principle, differ from one triangular prism to another. For
simplicity, all media in the investigated configuration are taken
to be isotropic. The EM field in the configuration is taken to be

-polarized. It then follows that and, consequently, are
orthogonal to the ground plane, while and are parallel to
that plane.

In view of complying to the interface boundary
conditions, the following spatial expansion is em-
ployed: consistently linear edge expansion,
consistently linear face expansion, Cartesian expansion,
with one degree of freedom (DoF) per each node and

local Cartesian expansion, with one DoF per each vertex
of each triangle. As for thetime discretizationis concerned,
linear interpolations based on the values ofand “sampled”
at instants ( ) and on the values of

and “sampled” at the instants (with
denoting a constant time step) are employed.

Relations of type (6) are now invoked for closed contours
along the primal mesh, enclosing the nodes whereis un-
known [for example, the contour of the complete simplicial
star in Fig. 1(a)]. Further, relations of type (5) are written
for closed contours along the dual mesh, such as the contour
{ } in Fig. 1(b). Since expansions of on
the primal mesh are available, only, the relevant contour
integrals are expressed for corresponding closed contours along
the edges of this mesh (for the contour { }
this being { }). To this end, (7) is applied
to quadrilateral prisms such as the one having the basis
{ }. Note that, by combining the relations of the
type (5) relative to the three shaded contours in Fig. 1(b), the
compatibility relation in (7), when applied to the triangular
prism, is automatically satisfied. (In view of the configuration
being 2-D, the compatibility relation in (8) is trivial.). These
relations are supplemented by and
mappings that follow from the constitutive relations. Finally, in
order to reduce the number of DoFs to be computed, the ones
associated with and are kept, while those associated with

and are eliminated.
Application of this algorithm, by also taking into account

the relevant boundary conditions, will yield a square system
of linear algebraic equations that can be solved using suitably
chosen standard (iterative) methods.
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