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Università di Trieste, 34127 Trieste, Italy

Abstract—The objective of this paper is to present an approach to
electromagnetic field simulation based on the systematic use of the
global (i.e. integral) quantities. In this approach, the equations of
electromagnetism are obtained directly in a finite form starting from
experimental laws without resorting to the differential formulation.
This finite formulation is the natural extension of the network
theory to electromagnetic field and it is suitable for computational
electromagnetics.
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1. INTRODUCTION

The laws of electromagnetic phenomena were first formulated by their
discoverers using global quantities, such as charge, current, electric
and magnetic flux, electromotive and magnetomotive force. The
Kirchhoff’s network equations were also expressed using current and
voltage.

After the publication of Maxwell’s treatise, electromagnetic laws
were commonly written using differential formulation. From that
moment, electromagnetic field equations were identified with the
“Maxwell equations”, i.e. with partial differential equations.

When applied to field theories, numerical methods require the
solution of a system of algebraic equations. It is standard practice to
derive these equations starting from the differential equations resorting
one of many discretization methods. This is the case, for instance,
of finite difference methods, finite element methods, edge element
methods, etc. This is summarized in the upper part of Fig. 1.

Even when an integral formulation is used, as in the finite volume
method or in the finite integration theory (an extension of the finite-
difference time-domain method), standard practice is to use integrals
of field functions. Field functions are an indispensable ingredient of
differential formulation. At this point, one can pose the following
question: is it possible to express the laws of electromagnetism directly
by a set of algebraic equations, instead of obtaining them from a
discretization process applied to differential equations?

In this paper, we show that such a finite formulation is possible,
it is simple, and that it is useful for numerical computation.

In such formulation, the classical procedure of writing the laws
of physics in differential form is inverted. Instead, we start from
finite formulation and deduce differential formulation whenever it is
required. In traditional methods, one is forced to select one of many
discretization procedures. This is not the case of the finite formulation
as illustrated in the lower part of Fig. 1.
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Figure 1. (above) In traditional differential formulation to obtain
an approximate solution one is forced to pass through one of many
methods of discretization. (below) On the contrary, using global
variables and complexes, one obtain a finite formulation directly.

What we propose in this paper is not a refusal of the differential
formulation of electromagnetic laws but an alternative to it. Our
aim is to show that, for numerical purposes, it is more convenient
to describe electromagnetism in a finite form from the beginning and
later to obtain differential formulation as a consequence.

Exact and approximate solutions. To avoid differential formulation as
starting point we need to completely revise our attitude.
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In the paradigm formed by three centuries of differential
formulation of physical laws, we find the differential formulation so
prevalent that we are led to think that it is the natural formulation
for physics. Moreover, we are convinced that differential formulation
leads to an exact solution to physical problems.

However, we know full well that only in a few elementary cases
we can obtain a solution in closed form: hence the “exact solution”
promised by differential formulation, is almost never attained in
practice. Moreover the great scientific and technological advancement
obtained in our days by numerical solution of physical problems that do
not admit a solution in closed form, suggests that this progress arises
mainly because we have found the way to obtain approximate solutions
to our problems. In our culture, modelled on mathematical analysis,
the term “approximate” sounds flawed. Nevertheless the goal of a
numerical simulation is agreement with experimental measurements.

To reduce error of an approximate solution does not mean to make
the error as small as we like, as a limit process requires, but to make
error smaller than a preassigned tolerance.

We are well aware that all measurements are affected by a
tolerance: every measuring instrument belongs to a given class of
precision. In measurements an “infinite” precision, in the sense of a
limit process of mathematics, is not attainable. The same positioning
of the measuring probe in a field implies a tolerance.

The notion of precision in measuring apparatus plays the same
role of the notion of tolerance in manufacturing and of the notion of
error in numerical analysis.

In conclusion one cannot deny the satisfaction of knowing the
exact solution of a physical problem when the latter is available. What
we deny is the need to refer to an idealized exact solution when this is
not available in order to compare a numerical result with experience.

2. FINITE FORMULATION: THE PREMISES

A reformulation of field laws in a direct finite formulation must start
with an analysis of physical quantities in order to make explicit the
maximum of information content that is implicit in definition and in
measurement of physical quantities. To this end it is convenient to
introduce two classifications of physical quantities.

2.1. Configuration, Source and Energy Variables

A first classification criterion of great usefulness in teaching and in
research is that based on the role that every physical variable plays in
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Table 1. A classification of physical variables of electromagnetism.

configuration variables
gauge function χ

electric potential V
electric voltage U

electric field vector E
magnetic flux Φ

magnetic vector potential A
magnetic induction B, etc.

constitutive
equations

source variables
electric charge Q
electric current J
electric flux Ψ

electric induction D
magnetic field strength H

magnetic scalar potential Vm

energy variables
work, heat

electric energy density we

magnetic energy density wm

Poynting vector S, etc.

✲ ✛

magnetic voltage Um

a theory. Analysis of the role of physical variables in a theory leads to
three classes of variables: configuration, source and energy variables.
These three classes for electromagnetism are shown in Table 1. In
every field of physics one can find:

• Configuration variables that describe the configuration of the field
or of the system. These variables are linked one to another by
operations of sum, of difference, of limit, of derivative and integral.
• Source variables that describe the sources of the field or the forces

acting on the system. These variables are linked one to another by
operations of sum, of difference, of limit, of derivative and integral.

• Energy variables that are obtained as the product of a
configuration for a source variable. These variables are linked
one to another by operations of sum and difference, of limit, of
derivative and integration.

This classification has a pivotal role in physical theories. One
consequence is the fact that it permits constitutive equations to be
defined: they are equations that link configuration with source variables
of a physical field and contain material and system parameters. This
classification has been given by Hallen in 1947 [9, p.1]; by Penfield and
Haus in 1967 [21, p.155] and in 1972 by the present author [29, p.49].

2.2. Global Variables and Field Variables

To introduce a finite formulation for electromagnetics we take a radical
viewpoint: we search for a formulation completely independent from
the differential one. To this end we avoid introducing field functions,
and, as a consequence, we avoid the integration process. For this reason
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instead of the term “integral” quantity we shall use the equivalent term
global quantity.

We must emphasize that physical measurements deal mainly with
global variables, not with field variables. Field variables are needed in a
differential formulation because the very notion of derivative refers to a
point function. On the contrary a global quantity refers to a system, to
a space or time element like a line, a surface, a volume, an interval, i.e.
is a domain function. Thus a flow meter measures the electric charge
that crosses a given surface in a given time interval. A flux meter
measures the flux (=flow rate) associated with a surface at given time
instant. The corresponding physical quantities are associated with
space and time elements, not only with points and instants.

One fundamental advantage of global variables is that they are
continuous through the separation surface of two materials while the
field variables suffer discontinuity. This implies that the differential
formulation is restricted to regions of material homogeneity: one must
break the domain in subdomains, one for every material and introduce
jump conditions. If one reflects on the great number of different
materials present in a real device, one can see that the idealization
required by differential formulation is too restrictive.

This shows that differential formulation imposes differentiability
conditions on field functions that are restrictive from the physical point
of view .

Contrary to this, a direct finite formulation based on global
variables accepts material discontinuities, i.e. does not add regularity
conditions to those requested by the physical nature of the variable.

To help the reader, accustomed to thinking in terms of traditional
field variables ρ,J,B,D,E,H, we first examine corresponding integral
variables Qc, Qf ,Φ,Ψ ,U ,Um: these are collected in Table 2. This table
shows that integral variables arise by integration of field functions on
space domains i.e. lines, surfaces, volumes and on time intervals. The
time integral of a physical variable, say F , will be called its impulse and
will be denoted by the corresponding calligraphic letter, say F . The
last three variables of the left side, K, G, Λ deals with the hypothetical
magnetic monopole charge, monopole flow, monopole production. The
role of these variables and of the corresponding ones τ,Vm, η of the
right side is clarified in Table 2.

It is remarkable that the integral configuration variables all have
the dimension of a magnetic flux and that integral source variables all
have the dimension of a charge. The product of a global configuration
variable and a global source variable has the dimension of an action
(energy× time).

Table 3 shows the six integral variables that are measurable and
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Table 2. Integral physical variables of electromagnetism (global
variables) and corresponding field functions.Underlined variables are
the measurable ones.

configuration variables source variables
(SI units: weber=volt× second) (SI units: coulomb=ampere× second)

gauge function χ elec. charge prod. Qp =
∫
T̃

∫
Ṽ

σ dV dt

elec. potential impulse V =
∫
T

V dt elec. charge content Qc =
∫
Ṽ

ρ dV

electrokinetic momentum p =
∫
L
A · dL elec. charge flow Qf =

∫
T̃

∫
S̃
J · dS dt

impulse =
∫
T

∫
L
E · dL dt electric flux Ψ =

∫
S̃
D · dS

magnetic flux Φ =
∫
S
B · dS impulse m =

∫
T̃

∫
L̃
H · dLdt

(magn. charge flow) K =
∫
T

∫
S
k · dS dt (nameless) τ =

∫
L̃
T · dL

(magn. charge content) G =
∫
V

g dV magn. pot. imp. Vm =
∫
T̃

Vm dt

(magn. charge prod.) Λ =
∫
T

∫
V

λ dV dt (nameless) η

Table The global variables of electromagnetism to be used in
finite formulation and corresponding field functions of differential
formulation.

finite formulation differential formulation
global variables field functions

electric charge content Qc → ρ electric charge density
electric charge flow Qf → J electric current density

magnetic flux Φ → B magnetic induction
electric flux Ψ → D electric induction

impulse → E electric field strength
→ H magnetic field strength

3.

voltage U

magnetic voltage U

voltage U
impulse mmagnetic voltage U

electric

electric

the corresponding field functions.

3. PHYSICAL VARIABLES AND GEOMETRY

There is a strict link between physics and geometry. This is well known.
What does not seem to be well known is that global physical variables
are naturally associated with space and time elements, i.e. points,
lines, surfaces, volumes, instants and intervals. In order to examine
such association we need the notion of orientation of a space element.
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In differential formulation a fundamental role is played by points:
field functions are point functions. In order to associate points with
numbers we introduce coordinate systems.

In finite formulation we need to consider not only points (P) but
also lines (L), surfaces (S) and volumes (V). We shall call these
space elements. We use a boldface characters for reasons that will
be explained later. The natural substitute of coordinate systems are
cell complexes. They exhibit vertices, edges, faces and cells. The latter
are representative of the four spatial elements P,L,S,V.

3.1. Inner and Outer Orientation

The notions of inner and outer orientation of a space element play a
pivotal role in electromagnetism as well as in all physical theories. We
shall refer to the left side of Fig. 2.

Inner orientation of a line: it
is the basic notion used to give a 
meaning to the orientations of 
all other geometrical elements.

Inner orientation of a surface: it
is a compatible orientation of its 
edges, i.e. a direction to go 
along its boundary.

Inner orientation of a volume:
it is a compatible orientation of 
its faces. It is equivalent to the 
screw rule.

Outer orientation of a volume:
the choice of outward or inward 
normals. A positive orientation
has outwards normals.

Outer orientation of a surface:
it is the inner orientation 
of the line crossing the surface.

Outer orientation of a line:
it is  the inner orientation
of a surface crossing the line.

Outer orientation of a point: 
it is the inner orientation  
of the volume 
containing the point.

Inner orientation of a point:
a positive point is oriented as
a sink.  

 outer orientation inner orientation

P

L

S

V

P̃

L̃

S̃

Ṽ

Figure 2. The two notions of inner and outer orientations in three-
dimensional space.

Inner orientation. We shall refer to Fig. 2. Points can be oriented as
“sources” or “sinks”. The notion of source and sink, borrowed from
fluid dynamics, can be used to define an inner orientation of points
because it permits us to maintain the notion of incidence number from
lines and points. In particular we note that points are usually oriented
as sinks. This is never explicitly stated but it can be inferred from
the fact that space differences of a point function between two points
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P and Q are given by (+1)f(Q) + (−1)f(P). This means that the
line segment PQ, oriented from P to Q, is positively incident in Q
(incidence number +1) and negatively incident in P (incidence number
−1). In other words: in the expression (Q−P) signs can be interpreted
as incidence numbers between the orientation of the line segment and
those of its terminal points.

A line is endowed of inner orientation when a direction has been
chosen on the line. A surface is endowed with inner orientation when
its boundary has an inner orientation. A volume is endowed with inner
orientation when its boundary is so.

Outer orientation. To write a balance we need a notion of exterior of
a volume, because we speak of charge contained in the volume. This is
usually done by fixing outwards or inwards normals to its boundary, as
shown in Fig. 2 (right). A surface is equipped with outer orientation
when one of its faces has been chosen as positive and the other negative:
this is equivalent to fixing the direction of an arrow crossing the surface
from the negative to the positive face, as shown in Fig. 2 (right). We
need the outer orientation of a surface when we consider a flow crossing
the surface. A line is endowed with outer orientation when a direction
of rotation around the line has been defined: think to the rotation of
the plane of polarization of a light beam. A point is endowed with
outer orientation when all line segment with origin in the point have
an outer orientation. Think, for example, to the sign of the scalar
magnetic potential of a coil at a point: its sign depends on the direction
of the current in the coil.

The four space elements endowed with outer orientation will be
denoted P̃, L̃, S̃, Ṽ.

Contrary to inner orientation, outer orientation depends on the
dimension of the space in which the element is embedded, as shown
in Fig. 3. Hence exterior orientation of a line segment embedded in a
three-dimensional space is a direction of rotation around the segment;
in a two-dimensional space it is an arrow that crosses the line and when
the segment is embedded in a one-dimensional space, it is represented
by two arrows as if the segment were compressed or extended. This is
typical orientation used in mechanics to denote compression or traction
of a bar.

3.2. Time Elements

Let us consider a given interval of the time axis and divide it into small
intervals, as shown in Table 4. The primal instants, we shall denote
t0, t1, ..., tn−1, tn, tn+1, ... are oriented as sinks, such as space points.
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1

2

3D

D

D

Ṽ

S̃

S̃

L̃

L̃

L̃

P̃

P̃

P̃

Figure 3. The outer orientation of a space element depends on the
dimensions of the embedding space.

The primal intervals, we shall denote by τ 1, ..., τn, τn+1, ... will
be endowed with inner orientation, i.e. they are oriented towards
increasing time. The dual instants t̃1, ..., t̃n, t̃n+1, ... are endowed
with outer orientation, i.e. they have the same orientation as primal
intervals. The dual intervals τ̃ 1, ..., τ̃n, τ̃n+1, ... are endowed with outer
orientation that is, by definition, the inner orientation of the primal
instants.

3.3. Global Variables and Space-time Elements

From the analysis of a great number of physical variables of classical
fields one can infer the

First Principle. In a spatial description, global configuration
variables are associated with space and time elements endowed with
inner orientation. On the contrary, global source variables and global
energy variables are associated with space and time elements endowed
with outer orientation.

The reason for associating source and energy variables with outer
orientation is that they are used in balance equations and a balance
require a volume with outer orientation (outwards or inwards normals).



Finite formulation of the electromagnetic field 11

Table A time cell complex and its dual.

✲ t
primal

✲ ✛ ✲ ✛ ✲ ✛
✲ ✲tn−1 tn tn+1

τn τn+1

dual t̃n t̃n+1

τ̃n

✲ ✲

✲ ✛

Table The global variables of electromagnetism and the asso-
ciated space and time elements.

global physical variable symbol time element space element symbol
(orientation) (orientation)

electric charge content Qc instant (outer) volume(outer) ĨṼ
electric charge flow Qf interval (outer) surface (outer) T̃S̃

impulse interval(inner) line (inner) TL
impulse m interval (outer) line(outer) T̃L̃

magnetic flux Φ instant (inner) surface(inner) IS
electric flux Ψ instant (outer) surface(outer) ĨS̃
electric potential impulse V interval (inner) point(inner) TP
magnetic potential impulse Vm interval (outer) point(outer) T̃P̃

Table The “descriptive” and the “formal” notations we use
for space and time elements.

descriptive formal descriptive formal
inner orientation primal complex outer orientation dual complex

point P ph vertex volume Ṽ ṽh cell

line L lα edge surface S̃ s̃α face

surface S sβ face line L̃ l̃β edge

volume V vk cell point P̃ p̃k vertex

instant I tn instant interval T̃ τ̃ n interval

interval T τm interval instant Ĩ t̃m instant

4.

5.

6.

U
U

electric voltage
magnetic voltage

In short:

configuration variables → inner orientation
source and energy variables → outer orientation.

This principle offers a rational criterion to associate global
variables of every physical theory to space and time elements and,
as such, it is useful in computational electromagnetism. Figure 4
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electric  field

magnetic  field
magnetic flux

refers to the surfaces
of the primal complex

electric flux
refers to the surfaces
of the dual complex

electric potential
refers to the points

of the primal complex

V

refers to the lines
of the primal complex

magnetic charge content
refers to the volumes

of the primal complex

Gc

electric charge content
refers to the volumes
of the dual complex

Qc

magnetic potential
refers to the points
of the dual complex

Vm

refers to the lines
of the dual complex

Φ

Ψ

m

electric voltage U

Umagnetic voltage

Figure 4. Global physical variables of electromagnetism and space
elements of primal and dual cell complex with which they are
associated.

shows this association for physical variables of electromagnetism. It
shows that a single cell complex is not sufficient but it is necessary to
introduce a dual complex .

To analyze this association we consider, first of all, the six
measurable global variables of electromagnetism. It is important
to note that each one of these six variables admits an operational
definition.

3.4. Operational Definition of Six Global Variables

Since we take a new approach to electromagnetism starting from
global variables rather than field functions, we are obliged to give an
operational definition of global variables as we do for field functions in
differential formulation. Fig. 5 shows the operational definitions of the
six global quantities.

Doing this we stress the fact that a finite formulation of
the electromagnetic field uses those global variables that can be
measured. In this way there is a direct link between measurements and
computational electromagnetism without the intermediation of field
functions and of differential equations.
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Electric charge content Qc. Electric charge is an extensive quantity:
from the material viewpoint it is associated with a system, a body, a
particle. From the spatial viewpoint we must distinguish three aspects
of charge: content Qc, outflow Qf and production Qp. It is a basic
physical law that electric charge cannot be produced, i.e. Qp = 0.
Charge content Qc is the amount of charge contained inside a volume
at a given instant. The notion of “inside” and “outside” presupposes
an outer orientation of volumes: for this reason we write Qc[Ṽ]: see
Fig. 5a. We put into square brackets the space and time element to
which global variables are referred because global variables are domain
functions not point functions.

Figure 5. The operational definition of the six measurable variables
of electromagnetism.

Electric charge flow Qf . Let us consider electrical conduction in a
medium. If we put in the medium two flat metal surfaces separated
by a dielectric and connected to an amperometer, as shown in Fig. 5b,
we obtain a device called a rheometer . In this way we can measure
the electric charge flow that enters one disk and leaves the other in
a given time interval. Since the notion of “entering” or “leaving” a
surface presupposes its outer orientation, we shall denote the surface
of the disk endowed with outer orientation by S̃ and we shall write
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Qf [S̃]. The rate of this quantity is the electric current I.

Electric flux Ψ. Let us consider an electrostatic field. If we put
a small metal disk somewhere in the field then charges of opposite
sign will be collected on the two faces as a consequence of electrical
induction. After selection of one face as positive we call electric flux
Ψ the charge collected on this positive face of the disk. The electric
flux is then related to an outer oriented surface. If we change the outer
orientation of the surface, the sign of the flux changes. As we see from
this definition, electric flux requires the notion of the outer orientation
of a surface and hence we shall write Ψ [S̃].

To measure electric flux, instead of one metal disk, it is better
to use two small metal disks. The disks will be held by an insulated
handle and brought into contact, as shown in Fig. 5c. If we separate the
two disks also the electric charges will be separated and each one can
be measured with an electrometer. The charge collected on a prefixed
disk is, by definition, electric flux (this direct measurement of electric
flux is often ignored in books of electromagnetism. It can be found in
Maxwell [18, p.47] and in [8, p.71]; [7, p.61]; [25, p.230]; [26, p.25]; [12,
p.80; p.225]).

Electromotive force E, voltage U . In an electrostatic field we can
measure the voltage along a line from point A to point B with a method
devised by Faraday. This runs as follows: let us put at A and B two
small metal spheres, as shown in Fig. 5d, say of radii rA and rB. If we
connect them by a wire of very small section, the charges move from
one sphere to another to maintain the whole set, spheres and wire, at
the same potential.

If the capacity of the wire can be neglected in comparison with
the capacities of the spheres we can neglect the charge on the wire.
In turn the spheres are small enough to make negligible the influence
of charges collected on the spheres on the sources of the surrounding
electric field. In these hypotheses let us denote qA the charge collected
on the sphere in A and qB the one collected on the sphere in B: it will
be qA = −qB.

If we break the connection between the two spheres the charges
remain trapped. In the center of a sphere the potential of the charges
q collected on its surfaces is q/(4πεr). The fact that the potential of
the two spheres connected by the wire are equal implies that

VA +
qA

4πεrA
= VB +

qB
4πεrB

(1)
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from which we obtain

VAB ≡ VB − VA =
−qA
4πε

(
1
rA

+
1
rB

)
. (2)

Hence we can measure voltage from measuring the charge collected on
one sphere.

In particular if we choose B on the grounds the “sphere” B
becomes the Earth and then VB = 0 and 1/rB = 0: it follows [22,
p.519]

VA =
−qA

4πεrA
. (3)

The voltage refers to a line endowed with inner orientation: V [L] as
shown in Fig. 5d.

Magnetic flux Φ. A magnetic field is completely described by two
global variables: magnetic flux and magnetic voltage. Magnetic flux
refers to surfaces while magnetic voltage refers to lines.

Magnetic flux is linked to a surface endowed with an inner
orientation and is defined as the magnetic voltage impulse induced
in a coil that binds the surface [23, p.67] when the magnetic field is
switched off. If the coil is connected with a ballistic voltmeter we
can measure the magnetic voltage impulse produced. The sign of the
magnetic flux depends on the direction chosen for the boundary of the
surface, as shown in Fig. 5e. Then Φ[S].

Magnetomotive force Fm, magnetic voltage Um. We want to introduce
a global physical variable that gives a measure of the magnetic field
along a line. To this end we consider a long solenoid with a small cross
section that has the line as its axis. Let N be the number of turns
and i the current. The magnetic field inside such a solenoid is almost
uniform and almost null outside it. The magnetic voltage Um along
the axis of the solenoid can be defined as N i: this is a global variable
in space.

The sign of this variable depends on the direction of the current
in the solenoid, i.e. it requires an outer orientation of the line.
Accordingly, magnetic tension is associated with lines endowed with
outer orientation.

To measure the magnetic tension along a line segment in a static
magnetic field we introduce a small solenoid with N loops with a
section much smaller than its length, as shown in Fig. 5f.

We can adjust the direction and the intensity of the current i′ in
the solenoid in such a way that the component of the magnetic field
along the line vanishes. In such a way we have compensated the field
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in the interior region. Let us put I ′ = N i′: the magnetomotive force
along the line is then Fm = −I ′. This procedure is known as the
method of compensating coil [8, p.224]; [23, p.66]; [26, p.41].

This shows that magnetic tension is associated with a line with
the direction of rotation around it: the direction is opposite to the one
of the compensating current. Denoting by L̃ a line segment endowed
with an outer orientation we can write

Um[L̃] def= −I ′. (4)

An equivalent way to do the test is to consider a small tube of
superconducting material: the tube will be crossed by a uniform
current I ′ that automatically makes the interior field vanish [16, p.494].

It is obvious that physical variables that are global in space and
time are also associated with time elements such as instants and
intervals. Thus electric charge content Q, electric flux Ψ and magnetic
flux Φ refer to instants.

On the contrary the electric charge flow Qf refers to time intervals.
Electric voltage U can be integrated in time by giving the electric
voltage impulse E and for this reason it is associated with time
intervals. One argument for the introduction of electric voltage impulse
is that this quantity is used to measure magnetic flux via Faraday’s
law. Another argument is that Ohm law U = RI can be written in an
integrated form as U = R Qf .

Since magnetic voltage Um = Ni can be integrated in time the
corresponding global time variable Um = N Qf , the magnetic voltage
impulse, will refer to time intervals.

These associations do not specify, up to now, the kind of
orientation, inner or outer, of the time elements. This association
becomes clear if we consider a space-time complex and its dual. It is
obvious that if a physical variable refers to spatial elements of a space-
time cell complex it must also refer to time elements of the same cell
complex as shown in Table 5.

Classical “time reversal”, i.e. the operation of reversing the order
of events in time, corresponds to inversion of the orientation of the
primal time intervals and it coincides, by definition, with inversion of
the orientation of dual instants. It follows that if a physical variable
refers to primal time intervals or to dual time instants it changes sign
under time reversal . Inversely, if a physical variable refers to dual
intervals or to primal instants it does not change sign under time
reversal. An example is the impulse of a force: if a body A impacts a
body B the impulse that A gives to B is directed from A to B. When
we see the backward motion, as a movie running backward, we see
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V
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m

, Qf

Fm m, ,Qf

Fm

E,U

E,U

Figure 6. a) A space complex and associated variables; b) a three-
dimensional space-time and associated variables.

that velocities are inverted but the impulse that A gives to B is always
directed from A to B.

The space and time association of global electromagnetic variables
is summarized in Table 5.

The space and time association is made clearer from a geometrical
viewpoint, if we use a three-dimensional projection of four-dimensional
cube, as shown in Fig. 7. The two draws of the central level show that
the four variables Φ,Ψ,U ,Um are referred to surfaces: the first two to
space-like surfaces, the last two to space-time surfaces. The two draws
on the lower level shows that the eight Maxwell equations express a
balance on a volume: two of them (Gauss’ laws) express a balance on a
space volume, the other six express a balance on a space-time volume.

3.5. Physical Laws and Space-time Elements

The first Principle states that global physical variables refer to the
oriented space and time elements. From the analysis of a great number
of physical variables of classical fields one can infer [31]:

Second Principle: In every physical theory there are physical
laws that link global variables referred to an oriented space-time element
with others referred to its oriented boundary.

We shall show later that the fundamental laws of electromagnetism
satisfy this principle. To give an example from outside electromag-
netism, we mention the equilibrium of a body that links the volume
forces acting on a region of the body with the surface forces acting
on the boundary of the region. This principle gives the reason of the
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Figure 7. Space-time elements and global variables associated with
them. The picture in the last row is a four-dimensional cube exploded.

ubiquitous appearance of the exterior differential on differential forms.

3.6. The Field Laws in Finite Form

Experiments lead us to infer the following laws of electromagnetism:

• The magnetic flux referred to the boundary of a volume endowed
with inner orientation at any instant vanishes (magnetic Gauss’
law).

• The electromotive force impulse referred to the boundary of a
surface endowed with inner orientation during a time interval is
opposite to the magnetic flux variation across the surface in the
same interval (Faraday’s electromagnetic induction law).
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Figure 8. The four manifolds to which the four Maxwell equations
make reference.

• The electric flux across the boundary of a volume endowed
with outer orientation at any instant is equal to the electric
charge contained inside the volume at that instant (Faraday’s
electrostatic induction law = electric Gauss’ law).

• The magnetomotive force impulse referred to the boundary of a
surface endowed with outer orientation in a time interval is equal
to the sum of the electric charge flow across the surface in that
time interval and the electric flux variation across the surface in
that interval (Maxwell-Ampère’s law).
• The electric charge flow across the boundary of a volume endowed

with outer orientation in an interval is opposite to the variation of
the electric charge content inside the volume in the same interval
(conservation of charge).

These 4+1 laws can be written



Φ[∂V, I] = 0

E [∂S,T] = Φ[S, I−]− Φ[S, I+]

Ψ [∂Ṽ, Ĩ] = Qc[Ṽ, Ĩ]

Fm[∂S̃, T̃] = Ψ [S̃, Ĩ+]−Ψ [S̃, Ĩ−] + Qf [S̃, T̃]

Qf [∂Ṽ, Ĩ] = Qc[Ṽ, Ĩ−]−Qc[Ṽ, Ĩ+].

(5)

Equations (5) are the 4+1 laws of electromagnetism in a finite
formulation we are searching for. These are algebraic equations that
enjoy the following properties:

• they link physical variables of the same kind, i.e. configuration
variables with configuration variables and source variables with
source variables;
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• they are valid in whatever medium and then are free from any
material parameter;

• they do not involve metrical notions, i.e. lengths, areas, measures
of volumes and durations are not required [37].

These five equations, that are equivalent to the integral formulation
describe the “structure” of the field and we shall call them equation
of structure. Since they are valid for whatever volume and whatever
surface respectively they are of topological nature and we can name
them also topological equations [20, p.20] [36].

4. CELL COMPLEXES IN SPACE AND TIME

The equations (5) are the finite formulation of the electromagnetic
laws. How to apply them to solve field problems? The principle is a
very simple one: we build up a cell complex in the region in which
the field is considered and then apply the equations in finite form to
all cells of the complex. Some equations must be applied to the cells
others to their faces; some equations must be applied to the cells and
faces of the primal, some other to those of the dual complex. Doing
so we obtain a system of algebraic equations whose solution gives the
space and time distribution of the global variables of the field. In this
way we solve the fundamental problem of electromagnetism: given the
space and time distribution of charges and currents to find the resulting
field .

To pursue this goal we must introduce the notion of cell complex
and of its dual. Let us consider, first of all, a cell complex formed by
cubic cells, as shown in Fig. 9c.

The elements of the same dimension can be numbered according
to any criterion. The number is a label that permits us to specify
the space element and play the same role of coordinates of a point in
a coordinate system. We shall consider cell complexes with a finite
number N0 of vertices. Since vertices are points we shall denote the
typical vertex by ph. At first it seems convenient to assign to every
edge a pair of numbers, the labels of its bounding points. Thus the
edge that connects the vertex ph with the vertex pk can be denoted
lhk. But this notation becomes cumbersome so that we have chosen to
denote the edge with a single Greek index, e.g. lα. If N1 is the number
of edges the Greek index takes the values 1, 2, ...N1. We shall denote
with a Greek index also the face, e.g. sβ while the typical cell will be
denoted with a Latin index, e.g. vk.

As in space we have four elements, so in time we have two elements:
instants I and intervals T. When we consider a cell complex on the time
axis we shall denote by tn the time instants and τm the intervals.
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Ĩ Ĩ Ĩ
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Figure 9. (a) A one-dimensional cell complex; (b) a two-dimensional
cell complex; (c) a three-dimensional cell complex; (d) a one-
dimensional cell complex on a time axis; (e) a cell complex in two-
dimensional space-time; (f) a cell complex in three-dimensional space-
time.

We shall use boldface letters to denote the elements of a cell
complex for two reasons: the first is to distinguish between the element
and its measure. Thus lα denotes an edge while lα denotes its length;
sβ denotes a face while sβ denotes its area; vk denotes a cell while vk
denotes its volume. On the time axis τn denotes a time interval while
τn denotes its extension (duration).

The second reason will be explained in connection with
orientation.

Cell complexes are basic tools of algebraic topology . In this
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branch of topology many notions were developed around cell complexes
including the notions of orientation, duality and incidence numbers. In
algebraic topology vertices, edges and faces of cells are considered as
cells of a lower dimension. The vertices are called 0-dimensional cells
or briefly 0-cells, edges 1-cells, faces 2-cells and original cells 3-cells.
It follows that a cell complex in space is not only a set of 3-cells but a
set of p -cells with p = 0, 1, 2, 3. In four-dimensional space-time a cell
complex is formed by cells of dimension p = 0, 1, 2, 3, 4.

Table 6 (left) collects the notations we use for space elements:
when we must mention points, lines, surfaces and volumes without
reference to a cell complex we shall use a “descriptive” notation with
boldface, uppercase letters. On the contrary, when we refer to a
cell complex we must specify the labels of the elements involved and
accordingly we shall use a “formal” notation with boldface, lowercase
letters with indices.

A cell complex can be based on a coordinate system: in such a
case the edges of the cells lie on the coordinate lines and the faces
on the coordinate surfaces. An example is shown in Fig. 12 (left). A
coordinate-based cell complex is useful when one aims to deduce the
differential formulation from a finite one.

Figure 10. Finite formulation permits different materials to be
treated assuring continuity at the separation surface automatically.

Conversely, for numerical applications it is convenient to give up
the coordinate based cell complex and to use simplicial complexes, i.e.
the ones formed by triangles in 2D and tetrahedra in 3D. Simplicial
complex have many advantages over the coordinate-based complexes.
A first advantage is that simplexes can be adapted to the boundary of
the domain, as shown in Fig. 10. A second advantage is that, when
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we have two or more subregions that contain different materials, the
vertices of the simplexes can be put on the separation surface, as shown
in Fig. 10. A third reason is that simplexes can change in size from
one region to another. This allows to adopt smaller simplexes in the
regions of large variations of the field.

Once we have introduced a cell complex we can consider the
dual complex. In a coordinated-based complex one can consider the
barycenter of every coordinate-cell as shown in Fig. 9. Connecting the
barycentres of the adjacent cells one obtains a dual complex. The term
“dual” refers to the fact that not only every barycenter (dual vertex)
corresponds to a cell (primal volume) but also every edge of the dual
complex (dual edge) intersects a face of the primal one (primal face).
Conversely, every primal edge intersects a dual face. Lastly, every
vertex of the primal lies inside a cell of the dual. In a simplicial

lα

lα

s̃α

s̃α

sβ
sβ

l̃β

l̃β

A

B

C

D

h

a part of

a part of

Figure 11. a) The six faces of a Voronoi cell contained in a tetraedron;
b) the dual Voronoi cell ṽh of a cluster of tetrahedra with a common
vertex.

complex the commonest choice are either the barycentres of every
simplex or the circumcentres (in 2D) and the circumspheres (in 3D): in
this paper we consider only circumcentres and circumspheres. Since the
straight line connecting the circumcentres of two adjacent simplexes in
2D is orthogonal to the common edge, the dual polygon thus obtained
has its sides orthogonal to the common edge. This is called Voronoi
polygon in 2D and Voronoi polyhedron in 3D. The circumcentres have
the disadvantage that in triangles with obtuse angles they lie outside
the triangle. This is inconvenient when the circumcentre of one obtuse
triangle goes beyond the one of the adjacent triangle with the common
sides. This is avoided when the triangulation satisfies the Delaunay
condition. This leads us to consider only Delaunay-Voronoi complexes,
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as we shall do in this paper. As in coordinate systems it is preferable
to deal with orthogonal coordinate systems, so in a simplicial complex
it is preferable to deal with a Delaunay complex and its associated
Voronoi complex as dual, as shown in Figure 12 (right).

The same can be done when we introduce a cell complex on a
time axis, as shown in Fig. 9d : the elements of time are instants (I)
and intervals (T). If we take the middle instants of intervals we can
call these dual instants (Ĩ) and the corresponding intervals as dual
intervals (T̃). It is evident that to every instant of the primal complex
there corresponds an interval of the dual and to every interval of the
primal there corresponds an instant of the dual. Thus we have the
correspondence I↔ T̃ and Ĩ↔ T and this is a duality map.

dual (Voronoi)primal dual primal (Delaunay)

Lx

Ly

Sxy

P

P̃

L̃y

L̃x

S̃xy

b)  simplicial complex and its duala)  cartesian cell complex

ph

h

lα lα

s pii ˜

s̃

˜

Figure 12. A two-dimensional cell complex (thin lines) and its dual
(thick lines). In the simplicial complex the vertices of dual complex
are the intersections of three axes of primal 1-cells. This gives the
advantage that 1-cells of dual are orthogonal to primal 1-cells.

A cell complex and its dual enjoy a peculiar property: once
the vertices, edges, faces and cells of the primal complex has been
endowed with inner orientation, this inner orientation induces an outer
orientation on the cells, faces, edges and vertices of its dual. It follows
that a pair formed by a cell complex and its dual are the natural frames
to exhibit all space elements with the two kind of orientations.

Since we have stated that the configuration variables are
associated with the space elements endowed with inner orientation,
it follows that the configuration variables can be associated with the
vertices, edges, faces and cells of the primal complex. Moreover since
the source and energy variables are associated with space elements
endowed with outer orientation, it follows that these variables can be
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associated with cells, faces, edges and vertices of the dual complex.
One can say that the role of the dual complex is to form a background
structure to which source and energy variables can be referred.

4.1. Classification Diagram of Space-time Elements

A cell complex and its dual in a space of dimension n permits a
classification of space elements of IRn, as shown in Fig. 9. Let us start
with Fig. 9a that shows a cell complex in IR1. The primal complex is
formed by points P and lines L; the dual one is formed by dual points
P̃ and dual lines L̃. The two complexes are shifted and to a dual point
there corresponds a primal line: P̃↔ L. Moreover L̃↔ P. These 2×2
elements can be collected in a diagram shown in Table 7a.

Fig. 9b shows a cell complex in IR2 and its dual. The primal
complex exhibits points, lines and surfaces and its dual exhibits the
same elements in reverse order. These 3×2 elements can be collected
in a diagram shown in Table 7b. From Fig. 9c we can infer the
corresponding diagram for IR3 that is shown in Table 7c.

Fig. 9d shows a cell complex on a time axis: the corresponding
diagram is shown in Table 7d .

Fig. 9e shows a two-dimensional space-time complex whose
corresponding classification diagram is reported in Table 7e. In the
case of space-time complexes we shift the columns so as to obtain a
kind of assonometric view that will make the diagrams we shall present
later more readable. The points of these space-time diagrams, which
in relativity are called events, will be denoted IP to mean that they
combine an instant I with a space point P.

A three-dimensional space-time is shown in Fig. 9f : the
corresponding diagram is shown in Table 7f . A complete four-
dimensional space-time diagram is shown in Table 7g .

These classification diagrams play a remarkable role in the
description of physical properties. In fact the natural association
of configuration variables to elements of a complex and of source
and energy variables to its dual respectively, lead to an analogous
classification diagram for physical variables, as we shall show later.

4.2. Incidence Numbers

In network theory one introduces the node-edge and edge-loop
incidence matrices with their dual. Following the notations of Fig.
13 we are now in a position to define the incidence number of a p -cell
ch with a (p-1)-cell bk. This is a relative integer ihk=[ch : bk] whose
values are:
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Table 7. Classification of geometrical elements of spaces and space-
time of various dimensions.

• +1 if bk is a face of ch and the orientations of bk and ch are
compatible;

• -1 if bk is a face of ch and the orientation of bk and ch are not
compatible;

• 0 if bk is not a face of ch.

We point out that in the notation ikh the first index k refers to
the cell of greatest dimension.
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Figure 13. The incidence numbers of a pair of cells are equal to those
of the dual pair.

In three-dimensional space three matrices G,C,D can be
introduced for the primal complex K and three matrices G̃, C̃, D̃
for the dual complex K̃. We choose these three letters because they
are the initial of the names of the three formal differential operators
gradient , curl and divergence to which they reduce in the differential.
In summary:



G

def= ||gαh|| C
def= ||cβα|| D def= ||dkβ ||

D̃
def= ||d̃hα|| C̃ def= ||c̃αβ || G̃ def= ||g̃βk||.

(6)

From Fig. 13 we can see the important fact that, apart from the
case point-line, the incidence number between a p -cell and a (p-1)-cell
of the primal cell complex is equal to the incidence number between
the corresponding dual cells. The exception of the incidence point-line
is due to historical reasons: points are implicitly considered as sinks
(inwards normals) while volumes have outwards normals.

Note that the indices of the matrix elements d̃hα and gαh are
reversed and then the corresponding matrices are transpose to one
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another. We have


−gαh
def= −[lα :ph] = [ṽh : s̃α] = d̃hα → −G = D̃

T

cβα
def= [sβ : lα] = [s̃α : l̃β] = c̃αβ → C = C̃

T

dkβ
def= [vk :sβ] = [̃lβ : p̃k] = g̃βk → D = G̃

T
.
(7)

When the equations (5) are applied to the corresponding cells of
the two complexes, we obtain a local form of the field equations of the
electromagnetic field in a finite setting, i.e.



∑
α

cβα U [τn+1, lα] +
{
Φ[tn+1, sβ]− Φ[tn, sβ]

}
= 0

∑
β

dkβ Φ[tn, sβ] = 0

∑
β

c̃αβ Um[τ̃n, l̃β]−
{
Ψ [t̃n+1, s̃α]−Ψ [t̃n, s̃α]

}
= Qf [τ̃n, s̃α]

∑
α

d̃hα Ψ [t̃n, s̃α] = Qc[t̃n, ṽh]

∑
α

d̃hα Qf [τ̃n, s̃α] +
{
Qc[t̃n+1, ṽh]−Qc[t̃n, ṽh]

}
= 0.

(8)
For computational purposes it is useful to make the following changes of
symbols: tn → n; t̃n → n+1/2; Φ[tn, sβ]→ Φn

β ; etc. In particular the
two evolution equations can be written as (remember that c̃αβ = cβα)




Φn+1
β = Φn

β −
∑
α

cβα Un+1/2
α

Ψn+1/2
α = Ψn−1/2

α +
∑
β

cβα (Um)nβ − (Qf)nα.
(9)

It is convenient to introduce the rates of the five global variables
U ,Um, Qf ,V,Vm that are associated with time intervals.

The ratio of a global variable, associated with a time interval, with
the duration of the interval gives a mean rate. If the interval is small the
global variable can be considered to depend linearly on the duration
and then the mean rate approximate the value of the instantaneous
rate at the middle instant of the interval. Since the middle instant of
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an interval is the instant of the dual time complex one can write

U [τn, lα]
τn

≈ Uα(t̃n)
Um[τ̃n, l̃β]

τ̃n
≈ Umβ(tn)

Qf [τ̃n, s̃α]
τ̃n

≈ Iα(tn) etc.

(10)
The round brackets denote that the rates are functions of the time
instants.

Voltages and fluxes are the most natural variables to be used in
computational electromagnetism. In particular the equations (9) are
simple to use in numerical solutions. They can be written in a simpler

Figure 14. The leapfrog algorithm is a general algorithm to be
used in finite formulation for every field of physics, not only in
electromagnetism.

form as


∑
α

cβα Uα(t̃n) +
Φβ(tn)− Φβ(tn−1)

τn
= 0

∑
β

dkβ Φβ(tn) = 0

∑
β

c̃αβ Umβ(tn)−
Ψα(t̃n+1)−Ψα(t̃n)

τ̃n
= Iα(tn)

∑
α

d̃hα Ψα(t̃n) = Qc
h(t̃n)

∑
α

d̃hα Iα(tn) +
Qc
h(t̃n+1)−Qc

h(t̃n)
τ̃n

= 0.

(11)

This shows that while magnetic voltage, magnetic flux and electric
current must be evaluated on the instants of the primal time cell
complex, electric voltage and electric flux must be evaluated in the
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intermediate instants i.e. the dual instants. This is the “leapfrog”
algorithm shown in Fig. 14.

4.3. Constitutive Laws in Finite Form

The equations that link the source variables with the configuration
ones are the constitutive or material equations. In a region of uniform
field the three material equations of electromagnetism in finite form
are


Ψ [t̃n, s̃α]
s̃α

≈ ε
U [τn, lα]

τn lα
when s̃α ⊥ lα

Φ[tn, sβ]
sβ

≈ µ
Um[τ̃n, l̃β]

τ̃n l̃β
when l̃β ⊥ sβ

Qf [τ̃n, s̃α]
τ̃n s̃α

≈ σ
1
2

(U [τn, lα]
τn lα

+
U [τn+1, lα]

τn+1 lα

)
when s̃α ⊥ lα

(12)
in which τn, τ̃n, lα, l̃β, sβ, s̃α are the extensions of the corresponding
cells. We note that the notion of uniformity of a field does not imply
the introduction of vectors: a field is uniform when the global variables
associated with space elements are invariant under translation of the
element.

To explain the particular form of Ohm’s law let us remark that
while the electric current Iα(tn) is function of the primal instant tn
the voltage is function of the dual instant t̃n, i.e. Uα(t̃n), as shown in
Eq. (10). Since the constitutive equations link variables referred to the
same instant we need to evaluate the voltage at the primal instant tn.
Then we write

Uα(tn) ≈
Uα(t̃n) + Uα(t̃n+1)

2
. (13)

These equations are valid if cells are cubes or if the simplicial complex
is a Delaunay complex and its dual a Voronoi complex, as is shown
in Fig. 11. In these cases 1-cells of the dual are orthogonal to the
primal 2-cells and vice versa. It is possible to avoid the orthogonality
condition and then to avoid the Voronoi complex using the barycenter
[17].

With reference to Fig. 15 the main properties are:

• They are valid in regions in which the field is uniform because
these are the experimental conditions under which they can be
tested;
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• They link a variable referred to a p -cell of a complex with the dual
(n− p)-cell of the dual complex. This geometrical property is not
clear in differential formulation.

• They contain material parameters.
• They require metrical notions such as length, areas, volumes and

orthogonality.

We emphasize that Ohm’s law, written in terms of global variables,
links two variables that refer to the primal and dual time intervals
respectively. This implies that under time reversal (τn → −τn) e.m.f.
impulses change sign while electric charge flow does not. It follows that
Ohm’s law is not invariant under time reversal and this corresponds to
the fact that electric conduction is an irreversible phenomenon.

Velectric tension

Fmagnetic tension

magnetic flux Φ

electric flux Ψ
electric current I

primal cell
inner orientation

dual cell
outer orientation

l

β

s
α

l̃

α
s̃β

Figure 15. Constitutive equations link a variable associated with a
cell of primal complex with a variable associated with the dual cell.

While the field equations in finite form describe the corresponding
physical laws exactly , the constitutive ones in finite form describe
the corresponding physical laws approximately because they are
experienced only in regions of uniform field.

4.4. Computational Procedure

When one combines the equations of structure (9) with the constitutive
equations (12), one obtains the fundamental system, i.e. the system
whose solution is solution of the fundamental problem of the
electromagnetic field (to find the field given its sources).

The computational procedure is collected in Table 8. The notation
“II ord” means that with these approximations the convergence in time
is of second order.
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Table 8. Computational sequence using a Delaunay-Voronoi complex.

4.5. Classification Diagrams of Physical Variables

As we have seen by using a cell complex and its dual we can classify
space elements, time elements and space-time elements, as shown in the
diagrams of Tables 9 and 10. Since configuration and source variables
of a physical theory naturally refer to space and time elements, it
follows that we may use the same classification diagram for physical
variables.

The diagram is valid for finite and differential formulation. It
clearly separates the field equations that link the variables of the same
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vertical column, from the material or constitutive equations that link
the two columns. The horizontal links describe reversible phenomena
while the oblique ones describe irreversible phenomena.

The space-time diagrams can be conceived as an assonometric
view of a building whose “pillars” are the vertical columns and whose
“beams” are the material equations. In the space-time diagrams we
can see a front and a back. The links from back to front, which are
horizontal in the assonometric view, contain time variations. In the
diagrams we can see that boxes at the front describe electrostatics
while those at the back describe magnetostatics.

The variables on the same horizontal link are conjugated with
respect to energy. This classification diagram valid for many physical
theories has been presented in [29, 30, 32, 31, 33]. A similar diagram for
electromagnetism, without a topological basis, appears in the papers
by Deschamps [5, 6].

5. THE RELATION WITH DIFFERENTIAL
FORMULATION

The differential formulation of Maxwell equations does not require two
cell complexes in space or in time. Balance equations are applied
to an infinitesimal cell bounded by coordinate surfaces and circuital
equations are written on an infinitesimal circuit formed by coordinate
lines. This is easily forgotten because infinitesimal dimensions permit
the use of partial derivatives. The notion of derivative of a function
of one variable at a point presupposes the existence of the limit of
the incremental ratio on the left and on the right and their equalities.
This property is violated in the space region in the direction normal
to the surface of separation of two different media. It is for this reason
that Maxwell equations are valid only in regions in which the properties
of material media are differential functions of the position. It follows
that, in the differential approach, the study of electromagnetic fields
in regions that contain different materials requires the separation into
subregions and the use of jump conditions.

Finite formulation requires the introduction of a primal cell-
complex in such a way that on the separation surface between two
media the 2-cells (faces) lie on the surface, as shown in Fig. 10. Doing
so, the very fact that we consider the e.m.f. on the edges that bound
the faces and that lie also on the separation surface, assures continuity
of the e.m.f.: this corresponds to the continuity of the tangential
component Et of differential formulation. At the same time considering
the magnetic flux referred to the faces we assure continuity of the
magnetic flux that amounts to continuity of the normal component Bn
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Table 9. The differential structure of electromagnetism.

of differential formulation.
Thus finite formulation avoids jump conditions and hence permits

a unified treatment of field equations and of material discontinuities.
This is a significant advantage over differential formulation.

We may note that the description of physical laws in finite
form contains information which is normally ignored in differential
form. Differential formulation, by ignoring the association of physical
variables with space elements, consequently ignores the distinction
between two orientations and accordingly does not need a pair of cell
complexes.
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Table 10. The discrete structure of electromagnetism.

The laws of electromagnetic field can thus be expressed in finite
form without losing any physical content and without adding any
differentiability condition to the physical phenomenon described [34].

5.1. Relation with Other Numerical Methods

Finite element method (FEM) was first developed in the sixties in the
field of solid mechanics: the unknown were the nodal displacements.
FEM was introduced in electromagnetism around 1969 by Silvester
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Table 11. Correspondence between finite and differential formulation
of the electromagnetic equations.

[27]. The application of FEM to electromagnetism followed this line of
thought: since in continuum mechanics the displacements, i.e. vectors,
refer to nodes it appeared natural to consider the vectors E and H as
homologous and hence considered as nodal unknowns.

This identification can be criticized for the following reasons. Since
the sources of the electromagnetic field are charges and these are scalar
quantities, it follows that all the integral quantities of electromagnetism
are scalars. These are charge, current, electric and magnetic fluxes,
electric and magnetic voltages. The laws of electromagnetism, when
one uses integral quantities, are all relation between scalar variables
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and then they are expressed by scalar equations. If this is so, why do
we commonly use vector quantities? The reason can be found in the
fact that there are physical variables that refer to lines and surfaces:
this is the case of electric and magnetic voltages, electric and magnetic
fluxes alongside with currents. Since for every space point there is
an infinity of directions one is led to introduce at every space point
a vector to evaluate the integral variable referred to a line and to a
surface by the scalar product of the field vector at the point and the
vectors dL and dS that describe the geometrical elements, i.e,


U [L] =

∫
L
E · dL Φ[S] =

∫
S
B · dS

Um[L̃] =
∫
L̃
H · dL Ψ [S̃] =

∫
S̃
D · dS I[S̃] =

∫
S̃
J · dS.

(14)
On the contrary in continuum mechanics the sources of the field

are forces, i.e. vectors. This implies that all global variables of
continuum mechanics are vectors. Such are displacements, velocities,
relative displacements, relative velocities, surface and volume forces,
momenta, etc. The relative displacements of two points depend on the
vector connecting the points. The force across a surface depends on
the space orientation of the surface. This fact leads us to introduce
second rank tensors to express the dependence of such vector quantities
on the vectors that describe the lines and the surfaces: such are
the strain tensor, the strain-rate tensor and the stress tensor. In
continuum mechanics, where finite elements were born, displacements
u and forces f are vectors associated with points (mesh nodes). In
electromagnetism the vectors E and H, which are associated with
lines are not homologous to the vectors of continuum mechanics. The
vectors in electromagnetism play the same role as tensors in continuum
mechanics. Stated in other words: the vectors of electromagnetism are
not the homologous of the vectors of continuous mechanics.

A numerical treatment of physical phenomena that does not take
into account these differences is an “act of violence” on the physics
of the problem and gives rise to inconvenients. This was the case of
numerical treatment of electromagnetism by the finite element method:
the vectors E and H have been applied to nodes. This gives rise to
spurious solutions in electromagnetic guide waves with two dielectrics
as well as in three-dimensional electromagnetic problems [28, 11].
Much time and ingenuity has been spent on finding the reason for
such spurious solutions.

A further negative feature connected with field vectors is
encountered in the solution of diffraction problems, where it is found
that the electromagnetic field vectors may become infinite at sharp



38 Tonti

edges of a diffracting obstacle while electromagnetic energy in any finite
domain must be finite: this is the so called edge condition [19].

Faced with the appearance of spurious solutions, in 1982 Bossavit
and Vérité [1] suggested abandoning the nodal values of field vectors
E,H. Using tetrahedral meshes, they introduced, in electromagnetic
computations, electromotive and m.m.f. along the edges of the
tetrahedra [4, p.XV]. This was the birth of the edge element method
(EEM) introduced by Bossavit in 1988 [2]. This method is an extension
of FEM and it uses a single mesh. The same authors realized that the
use of such global variables is in harmony with the use of the exterior
differential forms. Taking the latter as a starting point, the finite form
was achieved via special differential forms, the so called Whitney forms
following a suggestion of Kotiuga [13].

A completely different method to give a finite formulation to
Maxwell equations was introduced in 1966 by Yee [43]. He started
considering a Cartesian mesh and associating the three components
Ex, Ey, Ez located in the middle of the edges and the three components
Hx, Hy, Hz located in the center of the faces. Doing so he introduced a
pair of dual grids, G and G̃, later called the electric and magnetic grids.
He considered the two differential equations containing curlE and
curlH and discretized them using finite differences. Yee’s method was
called Finite Differences in Time Domain (FDTD). It is a refinement
of FDM based on a pair of dual Cartesian meshes and on an ad hoc
association of physical variables to the two meshes.

The FDTD method of Yee has been developed by Weiland since
1977 [39]. The author, in a paper of 1984 [40], [41] initiated the use
of Maxwell equations in integral form. The method has been named
Finite Integration Theory (FIT) and is the method used in the program
MAxwell Finite Integration Algoritm (MAFIA). The integral form was
approximated considering the tangential component Et in the middle
of the edges of G and the normal component Bn in the middle of the
faces of G. The dual mesh G̃, called the magnetic grid , appeared as a
natural completion of the mesh G, called the electric grid to make the
normal component Bn, which is normal to the faces of G, tangential
to the edges of G̃ [40, p.250]. In the FIT method spurious solutions do
not appear [41, p.229].

In 1996 Weiland [42] takes an important step forward when
he introduces integrated field as state variables rather than directly
field components. In other words the unknowns are now vectors
like (e1, e2, ...en) where ek are voltages along the edges. Doing so
he obtained an exact implementation of Maxwell’s equations. In
the words of Weiland “The outstanding features of Maxwell’s Grid
Equations (MGE) when compared with other numerical methods for
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solving field problems is that this set of matrix equations is a consistent
finite representation of the original field equations in that sense that
basic properties of analytical fields are maintained when moving from
IR3 to {G, G̃}.” Weiland went on in 1996 to consider electric and
magnetic voltages using a pair of dual meshes while Bossavit [1] did
the same in 1982 but on a single mesh. We can see that, starting from
different points of departure, computational electromagnetism evolved
towards the use of a pair of dual meshes and the use of global variables.

Outside electromagnetism, in fluid dynamics, the Finite Volume
Method (FVM) evolved in the same direction. Here one use a pair of
dual meshes and make use of global variables. We remark that FDM,
FDTD, FIT and FVM use mainly cartesian meshes while EEM uses
simplicial complexes.

The finite formulation of electromagnetism we have presented in
this paper, starting from an analysis of global physical variables, joins
the methods inaugurated by Yee and Bossavit.

5.2. The Cell Method

The main feature of finite formulation we have presented is the use of
global variables that are domain functions instead of local variables,
i.e. field functions. This implies that we do not use differential
equations or differential forms. The solutions to field problems can be
achieved considering a simplicial complex K of Delaunay type and its
orthogonal dual K̃ of Voronoi. This presupposes a Delaunay-Voronoi
mesh generator in two or in three dimensions. This choice permits
a simple implementation of material equations, at least for isotropic
media, because they link a physical variable associated with a p -cell
with another variable associated with the dual (n − p)-cell when the
cells are orthogonal.

Variables. The variables used are: magnetic flux Φ; electric flux Ψ ;
electric voltage impulse U and magnetic voltage impulse Um.

Field equations. Field equations are implemented as follows:

• the Maxwell-Ampère’s and Gauss’ magnetic laws on dual cells;
• the Faraday’s law and Gauss’ electric laws on primal cells.

Field equations have an exact implementation because we use global
variables in space and time.

Constitutive equations. The field inside every simplex is
supposed to be uniform and the material homogeneous so that the
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material equations are exact in every simplex: the only approximation
we carry out is to assume uniformity of the field inside simplexes.

Material discontinuities. The working region can be filled
with different materials. It is always possible to construct a simplicial
complex whose simplexes do not cross the separation surfaces but have
a face that laying on them, as shown in Fig. 10. This automatically
assures that jump conditions will be satisfied because voltages and
fluxes on the edges and faces respectively are the same for two adjacent
cells.

A numerical method based on these rules will be called the cell
method.

6. CONCLUSION

We have shown that it is possible to build a finite formulation to
the electromagnetic equations directly based on experimental laws,
i.e. without passing from the differential formulation. This put into
evidence some features that are not commonly considered in the
differential formulation. First of all we use global variables instead of
(local) field variables. The global variables are associated with space
and time elements endowed with inner and outer orientation. These
two kind of orientations are not explicit in the differential formulation.
As a consequence of this association, global variables are domain
functions while field functions are point functions. Coordinate systems,
that are a natural framework for field functions, are substituted by
cell-complexes. The role of orthogonal coordinate systems is played
by a pair of Delaunay-Voronoi complexes for which the p -cells of one
complex are orthogonal to the (n−p)-cells of the other.

The fact that some global variables are referred to space and time
elements endowed with inner orientation and other to outer orientation
implies that some global variables are naturally referred to the elements
of the primal complex and other to the elements of the dual one. This
gives a fundamental role to a pair of cell complexes, a notion that is
lacking in the differential formulation.

The analysis we have done permits to clearly separate topological
equations from phenomenological equations.

The topological equations link physical variables referred to the
same cell complex, primal or dual, and are expressed by the operators
gradient, curl and divergence in the differential setting. Topological
equations are independent of metrical notions: a fact that is not
usually stressed in the differential formulation. In fact the notion
of gradient, curl and divergence are usually presented in a metrical
context. This metric-independence, on the contrary, it stressed using
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exterior differential forms.
The phenomenological equations, i.e. the so called material or

constitutive equations, link a variable associated with a p -dimensional
cell with another variable associated with the dual (n−p)-dimensional
cell. Contrary to the topological equations they depend on metrical
notions. This is another feature hidden by differential formulation.

In the theory of differential forms the topological equations on
the primal complex (inner orientation) are expressed by exterior
differential forms while those on the dual complex (outer orientation)
are expressed by twisted or odd or impair exterior differential forms.

The natural role of two cell complexes is of primary importance
in computational electromagnetism and gives a justification to the use
of staggered meshes as done in FDTD.
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système d’unités électriques,” Bull. Soc. Française de Physique,
Vol. 164, 9, 1922. Reprinted in Oeuvres Scientifiques de Paul
Langevin, 493–505, Centre Nationale de la Recerque Scientifique,
1950.

17. Marrone, M., “Computational aspects of cell method in
electrodynamics,” this volume.
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