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Abstract. This paper considers the integral equation

XY(t') = (2tt)~n f exp (—ia-t') [ 7(t) exp (io>■ t) dt d<o
Jq J t

as well as a more general one wherein the Fourier kernels are weighted. When Q and T
are ^-dimensional spherical domains, the eigenfunctions of the integral equation are
generalized prolate spheroidal functions for which a new nomenclature is proposed.
Many properties of the eigenfunctions are developed and summarized. Because of the
importance of these functions in Fourier transform theory, old as well as new properties
are included.

Introduction. In a series of papers Slepian, Landau and Pollak [1, 2, 3, 4] developed
many of the properties of a new set of functions which they called generalized prolate
spheroidal wave (GPSW) functions. These functions play an important role in the theory
of Fourier transforms. Since Fourier transforms are widely used in many fields, the
GPSW functions have found many applications, particularly in linear circuit theory and
diffraction. [11-18, 23] give a good sampling of such applications; others may be found
in [19]. Landau [20] used these functions in a paper on necessary density conditions for
sampling and interpolation of certain entire functions. The main mathematical properties
of the GPSW that most applications exploit is their double orthogonality, their extremal
properties and their usefulness in extrapolating band-limited functions.

The purpose of this paper is to develop and summarize the properties of a class of
functions which include the GPSW functions. For reasons explained in Sec. 14 of this
paper, we propose a different nomenclature for GPSW functions, namely Slepian func-
tions. The functions considered are solutions of the integral equation

X7(t').= (2*■)"* [ e'*"'*' f •y(tyu" dt dw.
Jq J t

We consider arbitrary and mainly finite domains 0 and T, and the corresponding eigen-
functions are termed finite Fourier self-transforms (FFST for short). Slepian func-
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tions correspond to iV-dimensional spherical domains. A more general integral equa-
tion is also considered, wherein the Fourier kernels are weighted. Solutions of the general
spheroidal equation (not to be confused with the GPSW) are also solutions of such
an integral equation. Several practical methods for calculating and using these functions
have been developed and will be presented in a subsequent paper.

The contents of the paper are summarized in the following. The notation is contained
in Sec. 1. Sec. 2 presents the integral equations whose solutions are the subject of this
paper. The double-orthogonality of the FFST and their Fourier transforms, which are
also FFST, is considered in Sec. 3. The conditions under which weighted Fourier kernels
have solutions with this property are developed and two examples, general spheroidal
functions and the bound state wave functions of the square potential well, are cited.
Sec. 4 considers domains 12- and T-sym metric about the origin or some other point, the
latter case yielding a theorem analogous to the shifting theorem in Fourier transforms.
An important consequence is that the eigenfunctions are of definite parity and are also
solutions of the same integral equation but with both Fourier kernels forming a complex
symmetric kernel. Sec. 5 shows that if domains 12 and T are the same up to scale factor
c (12 = ct) as well as symmetrical then the integral equation is the iterate of a simpler one.
The eigenfunctions corresponding to infinite domains which are the complements of
finite ones are treated in Sec. 6. This leads to the consideration in Sec. 7 of the space S
consisting of the union of all T-limited functions and 12 band-limited functions. It is
shown that the FFST and their T-limited versions span S and the projection operator
into this space is developed. The missing functions which are needed to span £2 (the
Hilbert space of all square-integrable functions) turns out to be null on T and their
Fourier transforms on 12. The extremal properties of the FFST are reviewed in Sec. 8
and a new one yields a different formulation of the uncertainty principle. Separation of
variables is treated in Sec. 9. Cartesian, polar and spherical coordinates are used in
Sees. 10 to 12. A synthesis of these coordinate systems is made in Sec. 13 and it is shown
that when the domains 12 and T consist of iV-dimensional spherical shells, then the
problem reduces to the solution of a set of one-dimensional radial integral equations.
The differential equation satisfied by GPSW functions is given in Sec. 14 and a change
of nomenclature is proposed. It is shown in Sec. 15 that no Sturm-Liouville differential
equation can exist when T is a more complicated domain than a simple interval.

1. Notation. Throughout this paper we will adopt the following notation: T, 12 are
two finite domains in the iV-dimensional euclidian space RN; t, <o are JV-dimensional real
variables: u-t = + w2t2 ■ • • + oiNtN ; dt — dt^ dt2 • • ■ dtN . J/ and 3~1F are the Fourier
transform and inverse Fourier transform of / and F:

5/ = F(«) = (2tt)-™ f me'"'1 dt,
J — oo

S~lF = /(t) = (2t)~n/2 [ F(«)e~l",t dio.
J — CO

ffr/ is the finite Fourier transform of /:

tfTf = (2irYN/2 [ /(t)e—1 dt.
J T
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The inner product and norm over finite and infinite domains are:

(J, 9) = [ dt; (/, g)T = f f(t)g*(t) dt;
J — a> J T

ll/ll = (/,/)I/2, ll/llr = (/, Z)1/2-
The characteristic functions 9C(i) are:

9Cr(t) = 1, t ET

= 0, t$r.
The time-limiting and_band-limiting operators Dr and Bn are:

DrKt) = m, t e T
= 0, t $r
= 9c,f;

Baf = (2t)~n [ f me""' dt do>
Jo J-»

= 5_1[a:fl(?F/)] = ffo'ff/.

£2 and are the spaces of all square-integrable functions in (Rw and T respectively.
SDr is the space of all T-limited functions, namely all functions / in £2 such that DTj = f.
©0 is the space of all 0 band-limited functions, namely all functions in £2 such that
Baf = / or, equivalently, DaF = F.

2. Integral equations. We consider the following integral equation:

X-y(t') = (2tt)-n [ (J-''""' [ ydt do. (2.1)
J Q J T

Using abbreviated notation we can write this equation:

\T = Sr'iXotJKECr-y)]} = 5^5 Ty (2.2)

X7 = BaDT 7. (2.3)

We will refer to solutions of Eq. (2.1) as finite Fourier self-transforms (FFST for short).
The indices of the eigenfunctions and eigenvalues will be written explicitly only when
needed. When the indices are shown explicitly, often one index will denote the usual
Ar-tuple index associated with A'-dimensional eigenfunctions. By integrating over <0 in
Eq. (2.1) we can write:

\y(t') = f y(i)K(t - t') dt (2.4)
J J>

with the kernel K given by

K{t - t') = (2ir)~N [ (2.5)
J 0
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This kernel is Hermitian; that is, K(t — t') = K*(t' — t). It is also positive definite
since the expression

[ /*(t') f - t') dt dt' (2.6)
J j> J iji

is always positive for any /, as can be seen by using (2.5) for K. The integral equation
(2.1) is a special case of the following two integral equations:

X/ = (2.7)
X/ = u>*JTl [<y<y*[ff(9Crw/)]}. (2.8)

Here 'y(u) is a filter function corresponding to the following process: a function j(t) is
weighted and time-limited and the result is passed through a filter. Solutions to (2.7)
are those functions which reproduce themselves to a constant after being filtered. The
resulting function will not of course be time-limited. Those functions whose energy loss
after filtering is an extremum are solutions of (2.8). This has been proven by Chalk [11]
for the case w = 1 and the proof is easily extended to the more general case. If *y = 'ifiJ*
and w = 1 then the functions which reproduce themselves after weighting and filtering
and those whose energy is an extremum after this operation are the same. This is the case
for the FFST since for these functions w = 1 and <y = 9C0 = ■yy*.

The integral equations (2.1), (2.7) and (2.8) define y(t) for t £ T. Since finite Fourier
transforms are analytical, both -y and T, defined by

r(u) = 3>T(t), 7(f) = x~Vr(6>),
are analytical and defined in (R'v inasmuch as y(t) is found for t £ T. This is not neces-
sarily true for Eqs. (2.7) and (2.8). It is the case if ^(w) is null outside of some finite
domain 0. More generally the eigenfunctions of (2.7) and (2.8) will not be analytical.
In the following it will be assumed that 'y(aj) is such that the eigenfunctions will be
defined for all to by (2.7) and (2.8) and will be in £2.

3. Double orthogonality of the FFST. As has been noted by Slepian [1], perhaps
the most striking property of the FFST is their orthogonality over two different domains.
A generalization of this is orthogonality with two different weight functions, a property
posessed by some solutions of (2.7), (2.8). These properties are described more explicitly
below.

Since (2.1) is a Fredholm equation with Hermitian kernel, its solutions are orthogonal
over T: (y,- , yf)T — with the normalization 11-y,-!|r = 1. The 7's are complete in .
We define the functions r to be the finite Fourier transforms of the 7's:

r(co) = (2kYn/2 [ 7(t)e'"-t dt (3.1)
Jjt

or

r = o>7-
By Parseval's theorem the F's are orthonormal over <R'V: (r,- , T,) = 5,, . They are com-
plete in®r , the space of T band-limited functions. If we take the finite Fourier transform
of (2.1) we obtain:

Xr(co') = (2*-)-" [ e*'""' [ r(<o)e-'"" du dt. (3.2)
Jr Jq
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This is the same as the original equation with 0 and T exchanged. The T's therefore are
also FFST, and have the following orthogonality relation:

(r., r,)Q = Ijr.-HS su. (3.3)
By inserting the definition (3.1) of T into (2.1) we obtain

X7 = SqT. (3.4)

Therefore we also have the following orthogonality relation:

(7i , 7.) = ||t»I|2 Sn • (3.5)
It is seen that both sets of FFST are complete in two different spaces: the y's in £% and
®0 , and the T's in £q and <Br .

To complete the orthogonality relations (3.3) and (3.5) we shall find the normalization
factors on the right of both equations, namely ||r,||2 and ||r<||§ . By taking the inverse
Fourier transform of (3.1) we obtain XTyt = 5-1r,' ; we multiply this by the complex
conjugate of (3.4) and integrate to obtain \<(yi , y,)T = (3:-1ri , SF_19Cnr,)- By the use
of Parseval's theorem we finally obtain: |lP<|]i = X<, since ||7,||£ = 1. In the same fashion
one can show that ||r,||2 = X71 •

We summarize here the orthogonality properties of the -y's and T's as well as the
relationships between them:

(7< , 7#) = X71 Si,- , (3.6)

(7.• , 7,)r = Sit , (3.7)
(r,-, r,) = 5„., (3.8)
(r,-, r,)Q = x.- s^ , (3.9)

x,7.- = , (3.io)
9Cr7i = ^Ti , (3.11)

r, = , (3.12)
9Car, = x,37, • (3.13)

Solutions of (2.7) possess similar orthogonality properties. Let -y, be a solution of this
equation and let r< be its weighted finite Fourier transform, namely f1, = 3>u'7i . Then
in a similar fashion as for the FFST one can obtain the following relations:

(wji , 7,)t = Sh , (3-14)

Cyr., r,) = x,. 8^ . (3.i5)
The first relation follows from the fact that (2.7) is an integral equation in polar

form. Its kernel can be transformed into a Hermitian one by the transformation y' =
wU2y. The second relation is obtained by noting that (<yri, f,) = (kg-y{, ffaCrW-y,) =
X,(u>7i , 7,)r .If w = 1 we will have double orthogonality for the T's:

(I\ , r,) = (yi , 7j)r = Sif , (3.16)

and if Of = 9CQ the y's will be doubly orthogonal:

(■?<, 7-,) = xrvov, r,)a = xr1 si{. (3.17)
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In a similar fashion it is seen that solutions of (2.8) and their weighted finite Fourier
transforms possess the orthogonality relations

(fi , 7i) T = Si, , (3.18)

eyr,, <yr,) = x, sti . (3.19)
The same double orthogonality as for solutions of (2.7) will hold if w = 1 or "y = 9Ca .
It should be noted that solutions of either (2.7) or (2.8) can be doubly orthogonal even
though w 1 and ^ 2Cn . The condition to be met is one of commutation of two
operators. Consider solutions of (2.8) and their inner product over the domain A. The
latter will be given by:

(?i , Y,)x = X7V [ f y(QK(t", t) dt [ 7*(t')K*(t", t') dt' dt" (3.20)
J A J T " T

= X7 V [ y(t) [ y*(t')HA(t', t) dt' dt
J T J t

= xr'xr1 f y(t)MAy*(t') dt,
J j>

where K is the kernel of (2.8) and HA is given by HA(t', t) = JA K(t", t)K*(t", t') dt".
Clearly the 7's are eigenfunctions of the operator MT . In order that they be orthogonal
over A as well, the operators MA and MT must commute, which means that we must have:

[ HA(t", t') [ HT(t', f)j{t) dt dt' = f HT(t", t') f HA(t', t)f(t) dt' (3.21)
J t J J 2* J y

where / is any function in £% . This commutation is easily verified for the FFST. Another
important case where this applies is the integral equation

\<f>(t') = f <£(0(1 ~ t'Y\ 1 - tY* f (c2 - a.2)V'"('-'') dco dt. (3.22)
This equation is seen to be of the same form as (2.8) with w = (1 — t2)a/2, 'y =

(c2 — co2)"/29Cq(6)) and 0 = (—c, c). Its solutions are weighted general spheroidal functions,
namely $ = (1 — t2)~a/2 S(t) where S is a solution of the general spheroidal differential
equation

(1 - t2)S" - 2(a + 1)S' + (6 - c2t2)S = 0 (3.23)

and which for special values of the parameter a reduces to spheroidal wave functions
and Mathieu functions. Their double orthogonality has been demonstrated by Rhodes
[5, 21] who used a Sturmian proof which is considerably simpler than the commutation
of the operators.

Another interesting case was considered by Chalk [11], The search for optimum pulse
shapes for communication channels led him to consider the integral equation (2.8) with
w — 1) "y = (1 + w2/c2)~1/2, T = (—1, 1) and 0 = (— °°, «>). The solutions are ele-
mentary functions

y(t) = cos aj, sin ant |/| < 1,

y(t) = ±cos ane_anl", sin ane-onl" \t\ > 1, (3.24)
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where a„ is a solution of:

tg an = c/an (even 7's),

ctg an = —c/an (odd 7's).

Referring to [13-16, 19], we see that the finite Fourier transforms of 7

r = ~ ^ ± sm (a" + (3.25)
\ an — co an + 00 /

are doubly orthogonal. These functions appear to be the only elementary functions
possessing such a property. It may be noted that these functions represent the bound
state eigenfunctions of the square well potential in quantum mechanics and the transverse
field distribution in one-dimensional dielectric waveguides.

4. Symmetry considerations. If in Eq. (2.4) we replace t by — t we obtain:

X/r.(t') = f 7<(-t)K(t + t') dt. (4.1)
J

If the 7's are either even or odd functions of t, then they also satisfy the integral equation
with the complex symmetric kernel K(t + t'). The only difference will be that the eigen-
values corresponding to odd 7's will become negative. The interest of the kernel K(t + t')
is that it appears often in practical applications, electromagnetic resonator theory and
iterated diffraction in particular.

A necessary and sufficient condition for the 7's to be odd or even is that the domains
T and 0 be symmetric about the origin: that is, T is symmetric if t £ T implies —t £ T.
If we change variables in (2.1) by replacing t, t', and w by their negatives, the kernel
remains unchanged as well as the limits of integration if il and T are symmetric. There-
fore 7(t) and 7(—t) are both solutions corresponding to the same eigenvalue X. If 7(t)
is not even or odd then there will be two independent solutions, one even and one odd,
corresponding to that eigenvalue, namely §[7(t) + t(—t)] and §[7(t) — 7(—t)].

To see that the symmetry condition is sufficient consider any 0 band-limited function
1(f):

/(t) = [ FCoy"' da>. (4.2)
J 0

If / is even then perform the change of variable t' = —t and subtract from 4.2 to obtain:

9Cb(<d)F(o>) sin <o-t d& = 0. (4.3)L,
This expression is zero for all t if and only if 0Ca(w)F(<o) is an even function. This implies
that F is even and 0. symmetric. The latter condition is of course unnecessary if F(u) =
0Ca.(o>) (?(«), where 0' is symmetric and W C 0. Similar reasoning shows that F must
be even and 12 symmetric if / is to be odd.

Now since X7 is the Q-limited inverse Fourier transform of the function 5>7, must
be symmetric and 5Ty of definite parity if 7 is to be of definite parity. The domain T
must also be symmetric since 5Ty is required to be of definite parity.

To summarize, all the eigenfunctions are of definite parity if and only if both Q and T
are symmetric about the origin. If one or both domains 0 and T is asymmetric, then
no eigenfunctions of definite parity exist.
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The FFST corresponding to domains 0 and T which are not symmetric about the
origin but about some other point are related in a simple fashion to those which are.
Let 0' and T' be two domains obtained by shifting the domains 0 and T by amounts
t0 and <a0 ; that is, if t £ T' then t — t0 £ T. If 7(t) is a FFST corresponding to T and
0, then

y'(t) = y(t - t0) exp (-Wt) (4.4)

is a FFST corresponding to 7" and 0'. This can be verified directly by inserting this
function into the integral equation (2.1) and making the change of variables t" =
t — t0 , t'" = t' — t0 and a)' = o) — w0 . Therefore if either of the domains T or 0 can
be simplified by a shift in origin, this should be done before proceeding to a solution.

5. The case 0 = cT. When the domains T and 0 are the same up to a scale factor c,
we can write 0 = cT, meaning that t £ T if and only if ct £ 0. If we make the change
of variable o>' = <o/c then (2.1) becomes

AcfVt') = (2t)~n f y(t) [ e""'-"-4'' d(o'dt. (5.1)
J ]> J J!

If T is a symmetric domain then the y's will also be a solution of

iXcfVt') = (2t)-k [ y(t) [ [t+t'> da dt, (5.2)
J t» J

as was shown in the preceding section. This integral equation is the first iterate of:

KV(<o) = (2ir)~N/2 f 7(t)eiea't dt. (5.3)
Jep

The eigenvalues n are related to the X's through X = ±n2cN. The T's are now the
same functions as the y's up to a scale factor r(a>) = ny(u>/c). It should be emphasized
that the reduction to the simpler integral equation (5.3) is feasible only if T is symmetric.

Similar remarks hold for Eqs. (2.7) and (2.8). In particular, it is easily seen that
solutions of (3.22) are also solutions of:

ny(o>/c) = (2ir)_I/2(c2 - co2)o/J f tW(1 - tYV' dt. (5.4)

6. Domains 9. and T of infinite measure. Solutions of (2.1) corresponding to domains
of infinite measure which are the complements of finite domains may be expressed in
terms of the eigenfunctions of the latter. Specifically, we will consider the domains W
and T' given by T' = (R'v — T and = (Rw —- 12 where 12 and T are finite. Solutions
corresponding to the latter have been considered in the previous sections. For clarity's
sake, the dependence of the eigenfunctions and eigenvalues on the domains 12 and T
will be made explicit in places.

We shall consider the following three integral equations:

Bq.Dt7(0', T) = X(0', T)7(0', T), (6.1)
BQDT,y(n, T') = X(0, I")7(0, T'), (6.2)

Ba.Dr.7(0', T') = X(0', T')7(0', T'). (6.3)
The solutions can be found in terms of the functions 7(0, T) and eigenvalues X(0, T).
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We shall also find the T- or T'-limited Fourier transforms r of the 7's. The normalization
will be the same as the one used previously, namely | |-y||r or r. = 1. The choice of T or T'
depends on whether DT or is used in the integral equation.

The operators Ba■ and DT■ are given by Ba■ = I — Ba and DT■ = I — DT , as can be
verified through their definition. Solutions to all three equations can be found by assuming
them to be of the form aDTy(Sl, T) + by (9., T) and solving for a and b. With the con-
vention that in the right-hand side of the following equation 7 = 7(0, T) and X = X(0, T),
the results are:

7(0', T) = (1 - \)~\DTy - \y), (6.4)
X(fl', T) = 1 - X, (6.5)

T) = r, (6.6)
7(0, n = XI/2(1 - X)-1/27, (6.7)

x(n, T') = 1 - X, (6.8)
r(o, T') = X1/2(1 - x)"I/2(x",Z)ar - r), (6.9)

7(0', T>) = [X(l - X)]-1/2(Z)r7 - x7), (6.10)

X(fi', T') = X, (6.11)
r(o', T') = [x(i - x)rI/2(xr - z>ar). (6.12)

The question arises whether other solutions exist to (6.1), (6.2), (6.3). Clearly func-
tions / such that DTf = / are trivial solutions of (6.2), (6.3) with X = 0, while functions /
such that DT f = / are trivial solutions of (6.1). From the fact that the 7(0, T)'s are
complete in and in ffi0 one can deduce that all the solutions of (6.1), (6.2) have been
found. However, any functions in £2 which are zero on T and have a Fourier transform
zero on 0 are solutions of (6.3) with X(0', T') = 1, since these conditions imply DT f = /
and B^j = /. The set of all these functions forms a closed space which is described in
the next section.

7. The space + ® a and its complement. In the preceding sections it was found
that the functions Dy and 7 span the spaces 5)r and . Both spaces are closed and
orthogonal to their complements, J32 — $)r and £2 — ®a . Furthermore, they form a
least angle between them [2], namely 9m — cos-1 Xj/2, where the angle is defined by
d(d, 6) = cos-1 (Re (d, 6)/j|d|| ||6||) and d £ , b (E ffia. Let us now consider the space
6 = 3)rUffiii and its complement £' = £2 — £. Since 6' can also be written in the form
8' = £2 — (®a U 2Dr) we see that S' = ®Q' f~\ T)t. , where the primes denote the com-
plements of the spaces. This formulation shows that 8' contains all such / for which
D'j = / and B'f = /, namely all such functions which are null on T and whose Fourier
transforms are null on 0. There do not seem to be any known functions which possess
this property. However, such functions must clearly exist since S 9^ £2 and hence £' is
not empty.

The easiest way to construct such functions is to use the projection operator H'
into S' given by H' = I — H, where H is the projection operator into S. H can be ex-
pressed in terms of the operators B and D:

H = E (An + Cm) (7.1)
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where Am = (1 — B)(DB)mD, and Cm = (1 — D)(BD)mB. This operator has previously-
been used by Landau and Pollak [2]. It can be verified that H is a projection operator
by developing H2:

H2 = f; (AmAn + AjCn + G„Cn + CmAn).
m,n-0

Direct expansion shows that

AmAn — Am+n Am+n+i j CmCn ' Om+n Cm+n+i t AmCn CmAn 0,

therefore:
CO

-^-m+n + 1 I ^m + n ^m + n+1) •
m ,n-0

By putting m! = m + n we obtain:

H2 = E £ + l + c„. - Cm. + 1).
m«=0 m' — m

For m = fc, only two terms in the sum over m' do not cancel, namely Ak + C\ and the
end result is H2 = (Am + C„) = //. To show that H projects into S it suffices
to show that if / £ 8 then Hj = / and if / £ £' then Hj = 0. Any / in £ is of the form
/ = Bg + Z)/i where <7, h £ £2, and use of (7.1) verifies that Hj = /. If / £ S' then
/ = J5'/ = D'j, and again use of (7.1) shows that Hj = 0 since BB' = DD' = 0.

A practical method for using H is the following. If / £ £2 then form the series Dj =
T. a,i Dji , Bf = 2 fr.Yi • Using (7.1) we will have:

Hf = S [(1 - B)(DB)ma{ Dy, + (1 - £)(££)" 6,7,]. (7.2)
m, »

Since BDy = X7 it follows that (BD)my = \my and (7.2) becomes

H1 = £ [a.XTtDr. - X7i] + bx<[y< - D7i]]. (7.3)
m, i

Now X™ = (1 — X,)-1, since 0 < X < 1, and we finally obtain

Hf = £ [(a. - 6,)(1 - X,)"1 Dy.- + (6, - X,a,)(l - X<)",7.].i
A complete set of functions /' forming a basis for 8' is given by /< = (/ — //)/,, where

/,• is a basis for £2. The three sets of functions {Dyt}, {74 — Dy<] and {/,•} together
span £2. The situation is analogous to one considered by Bergman [22] who constructed
functions of a complex variable orthogonal over two domains Ax and A2 in the complex
plane such that Al C A2. These functions were complete in Ax but not in A2. The func-
tions missing to form a complete set in A2 were null on A± . In our case the set Dy is
complete in ££ . By adding the sets {7 — Dy) and {/'}, functions null on T, we obtain
a complete set for £2.

8. Extremal properties of the FFST. Much of the interest of the FFST stems from
their extremal properties. Several papers have utilized these properties to solve problems
in apodization [12, 13], antenna radiation pattern synthesis [14], and optimum pulse
calculation in data transmission [11].

It is well known that the solutions of Mj = X/, where M is a Hermitian operator,
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are those functions which are extrema of the quantity E = (/, Mj) ||/||-2. The maximum
and minimum of E correspond to the solutions with largest and smallest eigenvalue,
and furthermore X = E. All other solutions give rise to E's which are either local minima
and maxima or analogues of inflection points. From these considerations we see that
since the y's are solutions of BDy = Ay, they are extrema of (/, BDj) ||/!|-2. In particular
it is seen that DTy0 is the function in £2 which loses the least energy after being first
T-limited and than band-limited. The loss of energy is 1 — A0 where X0 is the largest
eigenvalue of (2.1). An equivalent formulation of this fact is to say that Dy0 is the
function of norm one in £^ which maximizes the energy in fi of its Fourier transform,
namely HJ-DtoIIq , and that this energy is equal to X0 . Since DB(Dy) = \Dy it is also
seen that Dy0 is the function in £2 which loses the least energy after first being band-
limited and then ^-limited. Again, an equivalent statement is to say that y0 is the band-
limited function which concentrates the most energy in T. All of these properties have
already been noted by Slepian and Pollak.

Perhaps the most interesting extremal property of the FFST is the one which permits
a formulation of the uncertainty principle. Let / be a function in £2 of norm one and
having the Fourier transform F. The uncertainty principle used in quantum mechanics
states that:

(J, [t ~ toff) X (F, [co - cooTF) > §. (8.1)

While this result is very important in quantum mechanics, it is less useful in the general
theory of Fourier transforms since the inner products in (8.1) do not always converge.
This is the case for j(t) = sin t/t. A more useful method of measuring the concentration
of energy of / and F is to use the following quantities:

= 11/11 r = (J,DTf), (8.2)
/32 = ||F||S = (F, DaF). (8.3)

By Parseval's theorem (8.3) is also given by:

02 = (/, BJ). (8.4)
Landau and Pollak [2] have considered the quantities a, /32 and their application to the
uncertainty principle. They found the following relation:

cos-1 a + cos-1 /3 > cos-1 Xj/2, (8.5)

where again X0 is the largest eigenvalue of Ba Dry — Ay. This inequality permits one
to find the greatest /32 given a when Q and T are specified. Conversely, if a2 and /S2 are
given, then (8.5) tests whether these values are compatible with given domains 0 and T.
By taking the cosine of (8.5) one obtains the algebraic inequality

a/3 - [(1 - «2)(1 - 02)]1/2 < K/a, (8.6)

or, by first transferring cos-1 /3 to the right of (8.5),

« > 0AJ/2 + [(1 - /32)(1 - A„)]I/2. (8.7)

Now consider the quantities Ex = (a2 + /32)/2 and E2 = a2/32. Both are measures of the
simultaneous concentration of / in T and F in 0. It is thus of interest to find their max-,
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imum values. We first present the result, and then the proofs.

(a2 + /32)/2 < (1 + Xo/2)/2, (8.8)

aY < (1 + OV4. (8.9)
Equality holds for the function fopt :

U = [2(1 + \l/2)]u\DTy0 + \l/2y0) (8.10)

with the normalization ||/ODt|| = 1. Its Fourier transform Fopt is given by:

Fopt = [2(1 + x;/2)]1/2[Xo1/2-Dar0 + r„]. (8.11)

Furthermore, for the optimum function /opt we have:

a2 = f? = (1 + Xj/2)/2. (8.12)

The easiest path towards a proof is to see that for those values a and 0 which maximize
either Ex or E2, the equality sign in (8.5) must hold. To prove this, suppose that a and /3
are values for which Ex or E2 is maximum, but that cos-1 a + cos-1 /3 > cos-1 X'0/2. Then
it is possible to find a 0' > fi so that (8.5) holds, since cos-1 /S is a monotonically decreasing
function of /3. Clearly we will then have (a2 + /3'2) > (a2 + /S2) and a\3'2 > a(f, which
contradicts the hypothesis that a and /3 maximize Ex or E2 . A similar argument will
show that the same values of a and 0 maximize both Ei and E2 .

Since Eq. (8.5) and the definitions of Ex and E2 are symmetric in a and /3, this suggests
that the maximum occurs for a = /32. This is in fact the case. Denote by am , those
values of a, /S giving rise to the maximum value Elm of Ex. We have that a2 + 2 = 2Elm
and a = gr(/J), where g is the right-hand side of inequality (8.7). It is seen that am satisfies
am + = 2£"lra . If more than one distinct root exists, pick the greatest one between
zero and one. But /3„ satisfies exactly the same equation, namely /32 + </(/32) = 2Elm ,
and hence a2 = 02 . Using this fact in Eq. (8.5), we have 2 cos-1 a„ = cos"1 Xj/2, which
yields a2 = (1 + Xj/2)/2.

It may also be noted that a2 + /32 = (J, Ba + DTf). The eigenfunctions of the operator
Ba + Dr are given by (DTy< ± X'/27,) and its eigenvalues by 1 ± Xl-/2. This shows that
the extrema of Ex are (1 ± Xl-/2)/2.

To find all the extrema of a\32 is somewhat lengthier. One method is to expand the
arbitrary function in the series

/ = Z) a. Dyi + X) + Z) c.7! , (8.12)
where /< is a complete orthonormal set in £' = £2 — (SDr + (B0). It is clear that a,- =
bt = 0 is an extremum, since a = /82 = 0 for this case. This means that any function
in S' is a trivial extermum with E^ = E2 = 0. Therefore put c, = 0 in (8.12). Now a, /32
and ||/||2 will be given by:

a2 = ||Z)r/||2 = Z a2 + b2 + 2a^b, , (8.13)

fi* — \\Da1\\2 — aiX, + 2a,b{ + b2\ l, (8.14)

I l/l I2 = Z a2 + 2a,fit + b2\7\ (8.15)

In order for / to be an extremum we must have dv/dak = dv/dbt = 0 for all k, where
v = afff — C ||/||2 and C is a Lagrangian multiplier. The derivatives give rise to the
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a\d(?/dak) + f(da2/dak) = C(d \\j\\2/dat),

a\df?/dbk) + j82(da2/dbk) = C(d ll/H°/dbt)
or

a2(ak\k + bk) + /3 2(a* + bk) = C(a* + bk), (8.16)

+ bk\kl) + /32(a* + 2>t) = C(at + '). (8.17)

We have obtained an infinite set of pairs of equations for a and /32. Let a2 and denote
a solution to these equations. The constant C may depend on i but not on k. Application
of Cramer's rule to the /cth pair of equations yields:

a2 = Cbk( 1 — \k1)/Ak , fH2 = Cak(Xk — 1 )(a* + bk\k*)/Ak(ak + bk),

where Ak = ak(\k — 1) + bk( 1 — XJl). Since C may not vary with k, the only way to
satisfy all equations is to set all coefficients ak , bk to zero except for one index, k = i.
By using Eqs. (8.13), (8.14) relating a, (32 to ak , bk and simplifying, one finally obtains
ak = ±\k1/2bk . Therefore the functions Dyt ± Xj/27,- are also extrema of afi' with
a2fl2 given by (1 ± X1/2)/4. It may also be noted that these functions span 1)T + ffiD
and are infinite Fourier self-transforms if £2 = T.

9. Separation of variables in Cartesian coordinates. Solutions of (2.1) can be
written as a product, 7(t) = JJ," v'(li), if the domains 0 and T are such that the charac-
teristic functions 9Ca and SCr can be written as a product: 9Cr(t) = JI," 9(i,). For such
domains the limits of integration in the Ar-tuple integrals can be written:

/-/ / -/J T *> Tx T, Tjf

where are one-dimensional intervals of integration containing no variables. The
kernel (2.5) of (2.1) can then also be written as a product: K(t — t') = IL KSi - u)
with

KSi - <0 = I Ao( . (9.1)
It can easily be verified that if y(l) is a solution of

AV(0 = [ 7- I'd dt, (9.2)
JTi

then y' is a solution of (2.1) with eigenvalue JJ," X'. The same remarks hold for
solutions of (2.7) and (2.8) if ^(co) can be written as a product.

10. Polar coordinates. If ft and T are either circular or annular domains, then
the angular part of the solutions of (2.1) can be found directly, leaving one-dimensional
radial integral equations. We denote by ftp and Tr the one-dimensional domains consisting
of the intervals which are bounded by the inner and outer radii of the annular domains
of ft and T respectively. By changing to polar coordinates:

ti = r cos 0, t2 = r sin 0,

ui = p sin <t>, co2 = p sin <t>,
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the kernel K(t — t') of (2.1) will be given by:

K(r, r', 6, 0') = (2x)-2 [" f eiplr eo-c" P dp d4>. (10.1)
J 0 Jqp

Using the series

e"co,J = t (10.2)
— oo

and integrating over <j>, we obtain:

K(r,r', 6, <?') = (2x)"» £ [_£ Jn(rP)Jn(r'P)p (10.3)

The integral over p can be found in closed form:

Dn(rP, r'p) = / Jn(rp')Jn(r'p')p' dp', (10.4)

with Dn given by

Dn(rP> r'p) = [-[rJ„+1(rp)Jn(r'p) - r'/n+l(r'p) J„(rP)]] • (10.5)

The function D„ with n — 0 has previously been used by Lansraux and Boivin [12] for
the determination of encircled energy relative to a diffraction pattern of revolution.

The following notation will be used:

UUpr, pr')]a, = X) Dn(pr, pr')\\la, ,i

where a{ and b{ are the inner and outer radii of the annular regions of 0.
The complete integral equation can now be written:

\y(r', 6') = (2ir)_1 Z f f y(r, d)[Dn(rP, r'P)]n/"V dr dd e~inB. (10.6)
n JO J Tr

If we now expand y as a Fourier series:

y(r, 6) = E ame~im>

we find that am(r) = -ym„(r) and \ = X„„ where ymn and X„,„ are solutions of:

Kn1mn(r') = [ ^mJr)[Dm{rP, r'p)]a,r rfr (10.7)
J Tr

Through the use of the definition of Dm (10.4) and the identity J„ = (—1)"./_„ we
see that = Z)_m . Therefore = ym,„ and only positive indices m need be used.
The complete eigenfunctions will then be expressed in terms of the radial eigenfunctions:

ymn{r, 6) = 7|m|„(r)e-""'.

11. Spherical coordinates. If the domains Q and T are either spherical or composed
of spherical shells, the angular part of the solution of (2.1) can again be found explicitly.
The procedure is essentially the same as for polar coordinates. The spherical coordinates
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used are:

/, = r sin 0 cos <t>, t2 = r sin 6 sin <f>, t3 = r cos 6,

toj — p sin a cos /3, oj2 = p sin a sin /J, co3 — p cos a.

The Fourier kernel can be expanded in spherical harmonics [10]:

e""' = 4a- £ £ 0)^(0, <t>)^2 (2rp)"1/2 Jl+1/2(rp), (11.1)
Z »0 m — l

where cy7 is a spherical harmonic:

cy7(0,<t>) = {(2l^rn)? ~)m))'/2p'(cos (1L2)

These harmonics are orthonormal
/*2 it

/r it ■yr'fa, mmr(<x, /s) sin a da dp = Smm. . (11.3)
•T *>0

Putting the expansion (11.1) into expression (2.5) for the kernel and integrating over
the angular variables, we obtain:

k(t - to = £ [ m mr'(e', m+m jl+uPr')(rrr1/2P aP (11.4)
Itn J Q/,

= £ W(0, 4>')[DM/a(pr, pr%p(rrT1/a, (11.5)
ml

where D, + U2 has previously been defined by (10.4).
If we now expand the solutions of (2.1) in spherical harmonics:

7(r, e, 0) = £ £ a7(r)-yr*(0,0),
i m— — I

it is seen that a7(/') = y7m(r) ar»d X = X"„ where 7 and are solutions of

X?„7r„(r') = [ yUr)[Dl+U2(Pr, prO]*("T,/V dr. (11.6)
J T,

Furthermore, 7,™ = 7 7^ , X,™ = \"'n , and therefore the index m is not needed for the
radial functions 7. The complete eigenfunctions of (2.1) can then be expressed in terms
of the radial eigenfunctions

yUr, 9, 0) = lUrYU?X», *)■
12. Synthesis of the three coordinate systems. Solutions of (2.1) in the three

coordinate systems can be expressed in terms of eigenfunctions of the same one-dimen-
sional integral equation if 9. and T are domains symmetric about the origin. The domains
we considered in polar and spherical coordinates already possess this symmetry. Let
us consider the one-dimensional case of (2.1):

X7(0 = (27T)-1 [ y(t) [ e'""-1'1 dcodl. (12.1)
J T "Q

Using the identity
e'"' = 2"/2(™01/V-v2(<o0 + iJvM)\, (12-2)
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we obtain, for the kernel of (12.1):

K{t - /') = \(tt')U2 [ [J-uM)J-uM') + JuMVuM)

"I- iJ 1/2(01 f) J) zJ—1/2(011') J 1/2(01^ )]co doi. (12.3)

If ft is symmetric about the origin then the terms J-1/2J1/2 will drop out in the integra-
tion, since multiplied by co they will become odd. The kernel will then become:

K(t - t') = \(tt)U2[D.U2(a, oil') + DU2(ut, a>t')\a+ (12.4)

where 0+ is the positive part of the domain Q. If T is also symmetric about the origin,
then the y's will be either even or odd and solutions of

Un(t') = [ y2n(t)[D.U2(oit, 0>t')}a,(tt')U2 dt (12.5)
J T +

for the even 7's, and

^2n+lT2n + l(^') = f 'V2n+1 (0 [Di/zfat, Olt')]a+(tt') dt (12.6)
•> T +

for the odd y's.
Turning now to the radial equation (10.7) in polar coordinates and writing 0m„(r) =

r1/2ymn(r), we obtain an equation for the 4>mn :

Xmn4>Ur') = [ 4>mn(r)[Dm(rp, rP')]o,(rr')1/2 dr (12.7)
J Tr

which is the same as (12.6) except for the index m. The same thing is true of the radial
equation (11.6) in spherical coordinates. By writing <^mn(r) = rymn(r) we obtain:

hn+in(r) = [ <t>in(r)[Di+W2(rp,r'p)]af(rr'Y/2 dr. (12.8)
J Tr

The reason why the three coordinate systems yield the same kernel is that all three
are special cases of the Ar-dimenaional spherical coordinate system. This system is de-
scribed by Erdelyi [6]. In one dimension there is a positive variable r and a discrete
angular variable 6, taking only the values ±7r, corresponding to positive or negative
values of the cartesian variable x. For dimensions higher than 3, (2.1) would again
reduce to radial equations with kernels involving the functions Z>(jv+2i-2)/2 with I =
0, 1, 2 ■ • • , except in one dimension where I = 0, 1. This is shown by Slepian [4],

We shall henceforth concern ourselves mainly with the solutions of

\n<t>J.r') = [ 4>,n(r)[D,(rp, r'fi)]Bf(rr')1/2 dr (12.9)
JTr

for v > — §.
13. The case 0 = cT for the radial integral equation. It has been shown in Sec. 4

that when 2 = cT and both domains are symmetric about the origin, then solutions of
(2.1) are also solutions of a simpler integral equation. If we make the change of variable
p' = p/c in (12.9) we obtain:

\n4>,n(r') = [ 4>Jr)[D,(cpr, cpr')}Tr(rr')U2 dr. (13.1)
JTr
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This equation is seen to be the first iterate of:

n,n<t>,n(r') = [ Xcrr')(crr')l/2 dr, (13.2)
J Tr

and cnln = A,„ . Eq. (13.2) can also be written as a finite Hankel transform of order v\

n,n<t>,«(r'/c) = [ <t>„n{r)J,{rr')(rr')u2 dr. (13-3)
J j>r

14. Relationship of the FFST to Slepian functions. Slepian [4] has studied exten-
sively the solutions of the integral equation:

= [ 4>„,(r)J,(c.rr')(crr')U2 dr. (14.1)

In a previous paper Slepian and Pollak [1] studied the eigenfunctions of (14.1) for
v = ±.j. One of the main results found by Slepian was that solutions of (14.1) were also
the eigenfunctions of the following Sturm-Liouville equation:

[I (' ~*i~ (cV + ' *■*- ■ <14-2>
This equation is similar to the one for the prolate spherical wave functions Smn(c, x):

[I <' "*>£- (cV + r^)]s~ " *-«- • <14-3>
This latter lacks the regular singular point of (14.2) at x — 0. Slepian called the solutions
of (14.2) generalized prolate spheroidal functions. Hurtley [7] has also found that solutions
of (14.1) are the same as those of (14.2). He called these functions hyperspheroidal
functions. Since (14.2) is not really a generalization of (14.3) it would be proper, in
our opinion, to call the solutions of (14.2) Slepian functions. An acceptable notation
might be Sl.H with the normalization:

I 1

Shn(c, x)Slvm(c, x) dx = 5„

For the special case v = ±| we will have

SI-1/2.nC^) = C2„S0i2n{x) , <$^1/2.nO^) = C^n+i So ,2n + l(x)

where S0.„ is a prolate spheroidal wave function of order 0 and C„ a constant which
depends on the normalization of S0.„ .

To see the relationship between the FFST and spheroidal functions compare the
integral equation (2.1) with Eq. (3.22).

We see from Sees. 12 and 13 that when T is an Ar-dimensional sphere and Q= cT the
radial part y of y is related to solutions of (14.1) through y = r"<t> where a and the param-
eter v in (14.1) depend on N. Morrison [8] has generalized this to iV-dimensional ellipses
and found the y's to be separable in ellipsoidal coordinates. He found differential equa-
tions for the functions thus obtained.

15. No differential equation for more general cases. It seems that no second-order
differential equation exists for the more general cases of (12.9) or (13.2). Morrison [9]
mentions that Slepian has indicated to him in a private communication that no second-
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or fourth-order self-adjoint (Sturm-Liouville) differential operator with polynomial
coefficients commutes with the band pass kernel K(t) — bt'1 sin (at) cos (bt). This
corresponds to the case T = [— 1, 1], 0 = [ — 6, —a] \J [a, b]. Morrison then shows that
eigenfunctions of this kernel which are of the same parity and possess a degenerate
eigenvalue satisfy a fourth-order differential equation. Slepian and Pollak have indicated
[1] that they found degeneracy but not whether these eigenfunctions were of the same
parity. Our calculations, to be reported in a subsequent paper, show that there exist
degenerate eigenfunctions, but only of opposite parity. Their existence can in fact be
shown without computation.

We will show that if T is symmetric about the origin and not a simple interval [—c, c]
then there exists no second-order Sturm-Liouville equation for the 7's. If T is a non-
symmetric simple interval, then the eigenfunctions are related through the shifting
theorem (4.4) to those with a symmetric domain.

Let us assume for simplicity that T is composed of only two intervals, [ — 6, —a] U
[a, b], while 0 is arbitrary but bounded. The 7's are band-limited and orthogonal over T.
The Sturm-Liouville equation is of the form:

id/dx) p (d/dx)yi + qy, = 9C,7V . (15.1)

Multiplying this equation by 7,- , substracting from it the same expression with i and j
interchanged and integrating over T yields

(9Ci - 9C,)(Y< ,7i)r = Wit
where P - 2p(y,y' — 7,7!)- Now P(b) — P(a) = 0 since the 7's are orthogonal over T.
If either p(a) or p{b) is zero, this would imply that P(a) = P(b) =0 and one could use
this fact to show that the 7's are orthogonal over [—a, a] and [—b, 6]. This in turn would
imply that the 7's are extrema of

11/ir. imum ii/iio2,
and hence that the FFST corresponding to two different domains T were identical. This
is clearly not the case. Suppose 7 is an eigenfunction corresponding to two different
domains, T and T'\

X.7(f) = f T(QK(t - t') dt, (15.2)
J y

x2y(t') = [ 7(t)K(t - /') dt. (15.3)
J T'

Multiplying Eq. (15.2) by X2 and Eq. (15.3) by Ai and subtracting one equation from the
other yields

[ h(t)K(t - t') dt = 0, (15.4)
J t\JT'

where

h(t) = \2y(t) t£T - T'

= (A. - \h(t) tETHT'
= ~Xi7(0 tET' -T.
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Rewrite (15.4) in the form

f[ h(/)e'"' dt (Li = 0. (15.5)
jq Jtkjt'

This equation can be satisfied for all t! if and only if the integral over t is identically
zero for u £ Q. Since T U 7" is a finite domain the function defined by the integral is
analytical and therefore zero everywhere if it is zero in 0. Since y itself is analytical the
only solution is that T = T' and Xi = X2. Hence neither p(a) or p(b) is zero. We are left
with the infinite set of equations = 0 where /,,• = ^[7,7- — 7,7(16 .

Now let / and g be any two 12-1 i mi ted Fourier transforms of some functions F and G
in £2. Both functions can be written as series in terms of 7's: / = 23 , <7 = &»7» •
The series a,6,/,, will converge to:

p(b)[f(b)g'(b) - g(Jb)f(Jb)) - p(a)\j(a)g'(a) + ff(a)/'(a)] = 0 (15.6)

Since F and G are arbitrary (15.6) must hold for all ^-limited Fourier transforms and
this is not the case. Hence the 7's cannot satisfy a Sturm-Liouville equation. The proof
is also valid for more complicated domains T.
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