
Probability Theory and Related Fields (2022) 182:807–848
https://doi.org/10.1007/s00440-021-01105-w

Finite free convolutions of polynomials

Adam W. Marcus1 · Daniel A. Spielman2 · Nikhil Srivastava3

Received: 18 August 2020 / Revised: 13 December 2021 / Accepted: 16 December 2021 /
Published online: 18 February 2022
© The Author(s) 2022

Abstract
We study three convolutions of polynomials in the context of free probability the-
ory. We prove that these convolutions can be written as the expected characteristic
polynomials of sums and products of unitarily invariant random matrices. The sym-
metric additive and multiplicative convolutions were introduced by Walsh and Szegö
in different contexts, and have been studied for a century. The asymmetric additive
convolution, and the connection of all of themwith randommatrices, is new. By devel-
oping the analogy with free probability, we prove that these convolutions produce real
rooted polynomials and provide strong bounds on the locations of the roots of these
polynomials.
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1 Introduction

We study three convolutions on polynomials that are inspired by free probability
theory. Instead of capturing the limiting spectral distributions of ensembles of random
matrices,we show that these capture the expected characteristic polynomials of random
matrices in afixeddimension.Wedevelop the analogywithFreeProbability by proving
thatVoiculescu’s R and S-transforms can be used to prove upper bounds on the extreme
roots of these polynomials. Two of the convolutions have been classically studied. The
third, and the connection of all of them with random matrices, is new. We begin by
defining the three convolutions and stating the algebraic identities that establish this
connection, as well as basic results regarding their real-rootedness properties.

1.1 Algebraic identities and real rootedness

Symmetric additive convolution

Definition 1.1 For complex univariate polynomials

p(x) =
d∑

i=0

xd−i (−1)i ai and q(x) =
d∑

i=0

xd−i (−1)i bi

of degree at most d, the dth symmetric additive convolution of p and q is defined as:

p(x) +d q(x)
def=

d∑

k=0

xd−k(−1)k
∑

i+ j=k

(d − i)!(d − j)!
d!(d − k)! aib j

= 1

d!
d∑

k=0

Dk p(x)Dd−kq(0)

= 1

d!
d∑

k=0

Dkq(x)Dd−k p(0), (1)

where D denotes differentiationwith respect to x . Note thatwe have defined a sequence
of convolutions parameterized by d, and in general p +c q �= p +d q, even if both p
and q have degree less than c and d; we will discuss this point more in Sect. 1.4.

Observe that the definition above has the compact form:

(p +d q)(x) = p̂(D)q̂(D)xd , (2)

where p̂ and q̂ are the unique polynomials satisfying p̂(D)xd = p(x) and q̂(D)xd =
q(x). This reveals that +d is symmetric, bilinear in its arguments, and commutes with
differentiation and translation; i.e.,

(Dp(x)) +d q(x) = D(p(x) +d q(x)) and p(x − t) +d q(x) = (p +d q)(x − t).
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Finite free convolutions of polynomials 809

Note that the identity element for +d is the polynomial xd .
For a square d × d complex matrix M , we define

χx (M)
def= det(x I − M),

its characteristic polynomial in the variable x . We show that for monic polynomials,
the operation +d can be realized as an expected characteristic polynomial of a sum of
random matrices.

Theorem 1.2 If p(x) = χx (A) and q(x) = χx (B) for d×d complex normal matrices
A, B, then

p(x) +d q(x) = E
Q

χx
(
A + QBQ∗) , (3)

where the expectation is over a random unitary matrix Q from the Haar measure on
U (d).

In fact, by unitary invariance the right hand side depends only on χx (A) and χx (B)

and not on the further details of A and B, so we may take them to be any normal
matrices with the same characteristic polynomials.

The convolution (1) was studied by Walsh [1], who proved results including the
following theorem (see also [2] and [3, Theorem 5.3.1]).

Theorem 1.3 If p and q are real rooted polynomials of degree d, then so is p +d q.
Moreover,

maxroot (p +d q) ≤ maxroot (p) + maxroot (q) .

In Theorem 1.12 we strengthen this bound on the maximum root. Our result is much
tighter in the case that most of the roots of p and q are far from their maximum roots.

Symmetric multiplicative convolution

Definition 1.4 For complex univariate polynomials

p(x) =
d∑

i=0

xd−i (−1)i ai and q(x) =
d∑

i=0

xd−i (−1)i bi

of degree at most d, the dth symmetric multiplicative convolution of p and q is defined
as:

p(x) ×d q(x)
def=

d∑

i=0

xd−i (−1)i
ai bi(d
i

) . (4)
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810 A. W. Marcus et al.

It is clear that ×d is also bilinear, though it does not commute with differentiation or
translation.

The following compact differential form of (4), analogous to (2), was discovered by
B.Mirabelli [4] who has kindly allowed us to include it here: if p(x) = P(xD)(x−1)d

and q(x) = Q(xD)(x − 1)d , then

(p ×d q)(x) = P(xD)Q(xD)(x − 1)d . (5)

Note that every polynomial of degree at most d can be written as P(xD)(x − 1)d ,
though it is not as obvious as in the additive case. The appearance of the polynomial
(x − 1)d is explained by the fact that it is the identity element for ×d , i.e., p(x) ×d

(x − 1)d = p(x) for every p of degree at most d.
We show that formonic polynomials the operation×d can be realized as an expected

characteristic polynomial of a product of random matrices.

Theorem 1.5 If p(x) = χx (A) and q(x) = χx (B) for d×d complex normal matrices
A, B, then

p(x) ×d q(x) = E
Q

χx
(
AQBQ∗) , (6)

where the expectation is over a Haar unitary Q.

The identity element (x − 1)d thereby corresponds to taking B = I in the above
formula.

This convolution was studied by Szegö [5], who proved the following theorem.

Theorem 1.6 If p and q have only nonnegative real roots, then the same is true of
p ×d q. Moreover,

maxroot (p ×d q) ≤ maxroot (p)maxroot (q) .

We give a quantitatively stronger bound in Theorem 1.13.

Asymmetric additive convolution

Definition 1.7 For complex univariate polynomials

p(x) =
d∑

i=0

xd−i (−1)i ai , and q(x) =
d∑

i=0

xd−i (−1)i bi ,

of degree at most d, we define the dth asymmetric additive convolution of p and q to
be:

p(x) ++d q(x) =
d∑

k=0

xd−k(−1)k
∑

i+ j=k

(
(d − i)!(d − j)!

d!(d − k)!
)2

aib j . (7)
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Finite free convolutions of polynomials 811

This is equivalent to the expression

p(x) ++d q(x) =
(
1

d!
)2 d∑

i=0

((d − i)!)2bi (DxD)i p(x),

which may also be written for p(x) = P(DxD)xd and q(x) = Q(DxD)xd as

p(x) ++d q(x) = P(DxD)Q(DxD)xd ,

the latter being an observation of [4].
We are not aware of previous studies of this convolution. We show that if p(x) and

q(x) are monic with all roots real and nonnegative, then p ++d q can be realized as
an expected characteristic polynomial.

Theorem 1.8 For two monic polynomials p(x) = χx (AA∗) and q(x) = χx (BB∗)
with A, B any d × d square complex matrices,

p(x) ++d q(x) = E
R,Q

χx
(
(A + RBQ)(A + RBQ)∗

)
. (8)

where the expectation is taken over independent Haar unitaries R and Q.

Theorem 1.8 is a consequence of Theorem 2.14, which we prove in Sect. 2.2.2.
We prove the following real-rootedness theorem in Sect. 3.

Theorem 1.9 If p and q have only nonnegative real roots, then the same is true of
p ++d q.

We obtain bounds on the roots of p ++d q in Theorem 1.14.

Remark 1.10 In an earlier version of this paper [6], we defined the operations +d , ×d ,

and ++d in terms of random matrices using the formulas (3), (6), (7), and stated the
formulas appearing in Definitions 1.1, 1.4, and 1.7 as theorems by showing that they
were equivalent. We have chosen to reverse this presentation since +d , ×d were in
fact already defined by Walsh and Szegö, albeit in a different context, and their basic
properties such as bilinearity aremore immediate from the purely algebraic definitions.

1.2 Motivation and related results

Before describing our analytic results on the locations of roots of the convolutions in
the next section, we explain the motivations for studying them in the context of several
other areas of mathematics.

Free probability Free probability theory (see e.g. [7–9]) studies among other things
the large d limits of random matrices such as those in (1.1), (1.4), and (1.7). In par-
ticular, it allows one to calculate the limiting spectral distribution of a sum or product
of two unitarily invariant random matrix ensembles in terms of the limiting spectral
distributions of the individual ensembles. For both the sum and the product, free prob-
ability provides a transform of the moments of the spectra of the individual matrices
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812 A. W. Marcus et al.

from which one can easily derive the transform of the moments of the limiting spectra
of the resulting matrices—these are known as the R- and S-transforms, which may be
viewed as generating functions for certain polynomials in the moments (known as free
cumulants) which are linear in the convolutions. We show in Theorems 1.12, 1.13, and
1.14 (discussed in Sect. 1.3) that for our “finite free convolutions” the same transforms
provide upper bounds on the roots of the corresponding expected polynomials in finite
dimensions, when evaluated at specific points on the real line.

Following the definitions in this paper, [10,11] have shown that by taking appro-
priate limits our finite free convolutions yield the standard free convolutions in free
probability theory. Thus, expected characteristic polynomials provide an alternative
“discretization” of free convolutions from the typical one involving random matrices.

The paper [12] shows that the real zeros of p +d q and p×d q may be interpreted as
the β → ∞ limit of certain generalizations of β−ensembles in randommatrix theory.

Combinatorics The original motivation for this work is the method of interlacing
families of polynomials [13–15], which reduces various combinatorial problems con-
cerning eigenvalues to problems of bounding the roots of the expected characteristic
polynomials of certain random matrices. In particular, the paper [15] studies bipartite
random regular graphs, whose expected characteristic polynomials turn out to be of
the type appearing in (1.7). The bound of Theorem 1.14 on the roots of these poly-
nomials then implies the existence of bipartite Ramanujan graphs of every size and
every degree (a result that was later turned into a polynomial time algorithm by Cohen
[16]). Hall, Puder, and Sawin [17] used some of the techniques in this paper to prove
the related result that every bipartite graph has a k−cover which is Ramanujan, for
every k ≥ 2, generalizing [13].

Remark 1.11 (Renumbered Theorems) The papers [15–17] cite theorems in the orig-
inal arxiv version of this work [6], which are numbered differently from the ones in
this paper. In particular, Theorems 1.7 and 1.8 of [6] correspond to Theorems 1.12
and 1.14 of this paper.

Representation theory As shown in Sect. 2, the unitary group may be replaced by
the orthogonal group or the group of signed permutations in Theorems 1.2, 1.5, and
1.8 without changing the expected characteristic polynomial and therefore any of their
statements. The ability to compute the average of a matrix function over the group of
unitarymatrices by instead computing an average over some smaller group of matrices
is a phenomenon we refer to as quadrature (see [15] for more details).

The proofs given Sect. 2 are different from those that appeared in the first version [6]
of this paper. The original proofs treat each of the convolutions as (specifically) being
an average over the unitary group, and then by explicit calculations show that one can
(in some cases) replace the unitary group with the signed permutation matrices and get
the same result. After posting that preprint, we were informed [17] that our quadrature
results were actually a manifestation of well-studied concepts in representation theory
(the Peter-Weyl theorem); the work [17] gave a more general sufficient condition for
a subgroup of the unitary group to have this property .

One subgroup that has been used specifically in an application is the n×n matrices
corresponding to the standard representation of Sn+1 (the symmetric group on n + 1
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Finite free convolutions of polynomials 813

elements). The fact that this group is a valid quadrature group plays a pivotal role in
the results on Ramanujan graphs [15] and [17] mentioned above.

Geometry of polynomialsTheorem1.3 implies that if p(x) is real-rooted of degreed,
then the linear transformation p+d (·) preserves real-rootedness of all real polynomials
of degree at most d. Leake and Ryder [18] observe that a partial converse is also true:
every differential operator T : R≤d [x] → R≤d [x] preserving real-rootedness can
be written as T (q) = p +d q for some p of degree at most d. Thus, our bounds on
the extreme roots of the additive convolution imply bounds on how much any such
operator can perturb the roots of its real rooted inputs. They also generalize our analytic
bounds on the roots of symmetric additive convolutions (Theorem 1.12) by showing
that they are a special case of submodularity relation.

Randommatrix theoryThe expected characteristic polynomials of symmetricGaus-
sian random matrices are Hermite polynomials (see, e.g. [19, Theorem 4.1]). If R is
an d-by-d matrix of independent Gaussian random variables of variance 1, then

Eχx

(
R + RT

√
2

)
= Hd(x),

where

Hd(x) = e−D2/2xd

is the dth Hermite polynomial. By applying Theorem 1.2, but taking the expectation
over orthogonal matrices, or by applying the formula (2), we may conclude that for
positive a and b and c = √

a2 + b2,

ad Hd(x/a) +d b
d Hd(x/b) = cd Hd(x/c).

Similarly, the expected characteristic polynomial of RRT is the dth Laguerre poly-
nomial [20, Sect. 9]

Ld(x) = (1 − D)d xd .

Thus, both Theorem 1.8 and the definition (7) can be used to show that for postive a
and b and c = a + b,

ad Ld(x/a) ++d b
d Ld(x/b) = cd Ld(x/c).

1.3 Transforms and root bounds

In free probability, each of the three convolutions comes equipped with a natural
transform of probability measures. We define analogous transforms on polynomials
and use them to bound the extreme roots of the convolutions of polynomials.

We will identify a vector (λ1, . . . , λd) with the discrete distribution that takes
each value λi with probability 1/d. The Cauchy/Hilbert/Stieltjes transform of such a
distribution is the function
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814 A. W. Marcus et al.

Gλ (x) = 1

d

d∑

i=1

1

x − λi
.

Given a polynomial p with roots λ1, . . . , λd , we similarly define

Gp (x) := Gλ (x) .

We will prove theorems about the inverse of the Cauchy transform, which we define
for real w > 0 by

Kp (w) := max
{
x : Gp (x) = w

}
.

For a real rooted polynomial p, and thus for real λ1, . . . , λd , this is the value of x that
is larger than all the λi for which Gp (x) = w. Since Gp (x) is decreasing above the
largest root of p, the maximum is uniquely attained for each w > 0.

As Gp (x) = 1
d

p′(x)
p(x) ,

Gp (x) = w ⇐⇒ p(x) − 1

wd
p′(x) = 0.

This tells us that

Kp (w) = maxroot
(
U1/wd p

)
,

where we define

Uα p(x) := p(x) − αDp(x).

Voiculescu’s R-transform of the probability distribution that is uniform onλ is given
byRλ (w) = Kλ (w)−1/w (though in free probability the inversion is typically done
at the level of power series). We use the same notation to define a transform on
polynomials

Rp (w) := Kp (w) − 1/w.

If λ and μ are compactly supported probability distributions on the reals, then their
free convolution λ + μ satisfies [7]:

Rλ+μ (w) = Rλ (w) + Rμ (w) .

For our finite additive convolution, we obtain an analogous inequality for w > 0.

Theorem 1.12 For w > 0 and real-rooted polynomials p and q of degree d,

Rp+dq (w) ≤ Rp (w) + Rq (w) , (9)

with equality if and only if p(x) or q(x) has the form (x − λ)d .
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Finite free convolutions of polynomials 815

We will often write (9) as:

maxroot (Uα(p +d q)) + dα ≤ maxroot (Uα p) + maxroot (Uαq) ,

where α = 1/wd.
To bound the roots of the finite multiplicative convolution, we employ a variant of

Voiculescu’s S−transform. We first define a variant of the moment transform, which
we write as a power series in 1/z instead of in z:

M̃p (z) := zGp (z) − 1 = 1

d

d∑

i=1

∑

j≥1

(
λi

z

) j

.

For a polynomial p having only nonnegative real roots and a z > 0,

z > maxroot (p) ⇐⇒ M̃p (z) < ∞.

Wedefine the inverse of this transform,M̃(−1)
p (w), to be the largest z so thatM̃p (z) =

w, and

S̃p (w) = w

w + 1
M̃(−1)

p (w) .

This is the reciprocal of the usual S-transform. We prove the following bound on this
transformation in Sect. 4.2.

Theorem 1.13 For degree d polynomials p and q having only nonnegative real roots
and w > 0,

S̃p×dq
(w) ≤ S̃p (w) S̃q (w) ,

with equality only when p or q has only one distinct root.

One can ask whether an inequality similar to Theorem 1.13 could hold in more gen-
erality (i.e., for a larger collection of polynomials than just those with nonnegative
roots). While this seems possible, in this paper we will restrict to the case that both
polynomials have nonnegative roots (see Remark 4.10 in Sect. 4.2).

To define the relevant transform for the asymmetric additive convolution, we define
S to be the linear map taking a polynomial p(x) to p(x2). If p has only positive real
roots λi , then Sp has roots ±√

λi . If λ is a probability distribution supported on the
nonnegative reals, then we use Sλ to denote the corresponding symmetric probability
distribution on±√

λi . If λ and μ are compactly supported probability distributions on
the positive reals, then Benaych-Georges [21] showed that their appropriately defined
rectangular convolution λ ++ μ satisfies:

RSλ++Sμ (w) = RSλ (w) + RSμ (w) .

In Sect. 4.3 we derive an analog of this result in the form of the following inequality.
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Theorem 1.14 For degree d polynomials p and q having only nonnegative real roots
and w > 0,

RS(p++dq) (w) ≤ RSp (w) + RSq (w) .

Remark 1.15 The formulas above are stated only for polyomials of degree exactly d,
but they may be applied to polynomials of degree at most d by first applying the
degree-reduction formulas outlined in the next section.

1.4 Polynomials of different degrees

The operation p +d q is defined above for pairs of polynomials p and q of degree at
most d, but if one or both of the polynomials has degree c < d, it may be written in
terms of the lower degree operation +c.

Lemma 1.16 (Degree Reduction for +d ) Suppose deg(p) ≤ d and deg(q) ≤ d − 1.
Then:

p(x) +d q(x) = (D/d)p(x) +d−1 q(x) (10)

Proof By (2), the differential operator p(x) +d (·) : Rd−1(x) → Rd−1[x] is equal to
p̂(D) where p̂(D)xd = p(x). Differentiating, we have

p̂(D)xd−1 = (D/d) p̂(D)xd = (Dp/d)(x),

so we must have p(x) +d q(x) = (Dp/d)(x) +d−1 q(x) whenever deg(q) ≤ d − 1. �

This relationship between convolutions of different grades turns out to be a key tool
in the analytic proofs in Sect. 4, which induct on the degrees of the polynomials. We
prove similar degree reduction formulas for ×d and ++d in Lemmas 4.9 and 4.16, but
have chosen to present them in context along with the inductive proofs in Sect. 4.

It turns out that the operation +d can be naturally defined for polynomials of degree
strictly greater than d via the random matrix identity (3). The key observation is that
the expected characteristic polynomial of a random restriction of a d × d matrix is
proportional to a derivative of its characteristic polynomial.

Lemma 1.17 If a > d, A is an a × a matrix and Q is a random d × a complex matrix
with orthonormal rows (i.e., sampled from the Haar measure on the complex d × a
Stiefel manifold C

d
a ), then

EQχx
(
QAQ∗) = d!

a! D
a−dq(x).

We prove this lemma in Sect. 2. Lemma 1.17 yields the following corollary, which
may be viewed as a generalization of the definition of +d to polynomials of degree
greater than d.
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Finite free convolutions of polynomials 817

Corollary 1.18 If A and B are a × a and b × b Hermitian matrices with a, b ≥ d
and characteristic polynomials p(x) and q(x) respectively, and R, Q are uniformly
random from C

d
a and C

d
b respectively, then

p(x) +d q(x)
def= EQ,Rχx

(
RAR∗ + QBQ∗) = d!

a! D
a−d p(x) +d

d!
b! D

b−dq(x).

(11)

Proof Since the formula (1) is bilinear in the characteristic polynomials χx (A) and
χx (B), we have for fixed R:

EQ∈C
d
b
χx

(
RAR∗ + QBQ∗)

= EQ∈C
d
b
EU∈C

d
d
χx

(
RAR∗ +UQBQ∗U∗) by left invariance of Q

= EQ∈C
d
b
χx

(
RAR∗) +d χx

(
QBQ∗) by (1)

= χx
(
RAR∗) +d EQ∈C

d
b
χx

(
QBQ∗) by bilinearity of +d

= χx
(
RAR∗) +d

c!
d!D

b−dχx (B) by Lemma 1.17.

Averaging over R and invoking bilinearity and Lemma 1.17 once more finishes the
proof. �


Note that the definition (11) is consistent with Lemma 1.16, e.g. if b = d then the
right hand side of (11) is equal to p(x) +a q(x). As differentiation preserves real-
rootedness, the generalized definition of +d preserves real-rootedness of polynomials
of all degrees, and bounds on their roots may be obtained from our results by reducing
to the equal degree case by differentiating sufficiently many times.

While Lemma 1.17 can be used in conjunction with ×d and ++d just as easily
due to their bilinearity, this does not correspond to the appropriate degree-reduction
operators (see Lemmas 4.9 and 4.16) for those cases, so it does not lead to a satisfying
generalization of the definitions to higher degrees.

1.5 Notation and organization

Let P(d) be the family of real rooted polynomials of degree exactly d with positive
leading coefficient, and let P be the union over d of P(d). Let P+(d) be the subset of
these polynomials having only nonnegative roots. We let P+ be the union of P+(d)

over all d ≥ 1.
For a function f (x), we write the derivative as Df (x). For a number α, we let Uα

be the operator that maps f to f − αDf . That is, Uα is multiplication by 1 − αD.
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2 Equivalence of convolutions and E�

The goal of this section is to prove Theorems 1.2, 1.5, and 1.8 relating the three
convolutions to randommatrices. While we have so far only considered averages over
unitary matrices, it turns out that one can average over various other collections of
matrices and get the same formula. In Sect. 2.1, we will define a property that we call
minor-orthogonality and then in Sect. 2.2 we will show that the coefficients we are
interested can be computed using an average over any collection of minor-orthogonal
matrices. Also in Sect. 2.1, wewill show that the collection of n×n signed permutation
matrices (under a uniform distribution) is minor-orthogonal, and then we will use this
to show that the orthogonal matrices (under the Haar measure) is minor-orthogonal.

There are some advantages to being able to express the convolutions as averages
over different collections of matrices; in particular, a formula that is easily derived by
replacing a unitary average by one over signed permutation matrices will be used in
the proof of Lemma 4.25.

2.1 Minor-orthogonality

We will write [n] to denote the set {1, . . . , n} and for a set S, we write
(S
k

)
to denote

the collection of subsets of S that have exactly k elements. When our sets contain
integers (which they always will), we will consider the set to be ordered from smallest
to largest. Hence, for example, if S contains the elements {2, 5, 3}, then we will write

S = {s1, s2, s3} where s1 = 2, s2 = 3, s3 = 5.

Now let S = {s1, . . . , sk} ∈ ([n]
k

)
. For a set W ∈ ([k]

j

)
with j ≤ k, we will write

W (S) = {si : i ∈ W }.

Lastly, for a set of integers S, we will write

‖S‖1 =
∑

s∈S
s.

Example 2.1 For W = {1, 3} and S = {2, 4, 5} we have

W (S) = {2, 5} ∧ ‖W‖1 = 1 + 3 = 4 ∧ ‖S‖1 = 2 + 4 + 5 = 11.

Let m, n be positive integers. Given an m × n matrix A and sets S ⊆ [m], T ⊆ [n]
with |S| = |T |, we will write the (S, T )-minor of A as

[A]S,T = det
({ai, j }i∈S, j∈T

)

By definition, we will set [A]∅,∅ = 1. A well-known theorem of Cauchy and Binet
relates the minor of a product to the product of minors ( [22]):
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Finite free convolutions of polynomials 819

Theorem 2.2 For integers m, n, p, k and m × n matrix A and n × p matrix B, we
have

[AB]S,T =
∑

|U |∈([n]
k )

[A]S,U [B]U ,T (12)

for any sets S ∈ ([m]
k

)
and T ∈ ([p]

k

)
.

Definition 2.3 We will say that an m × n random matrix R is minor-orthogonal if
for all integers k, � ≤ max{m, n} and all sets S, T ,U , V with |S| = |T | = k and
|U | = |V | = �, we have

ER
{ [R]S,T [R∗]U ,V

} = 1
(max{m,n}

k

)δ{S=V }δ{T=U }.

Given a minor-orthogonal matrix R it is easy to see from the definition that

1. R∗ is minor orthogonal
2. any submatrix that preserves the largest dimension of R is minor orthogonal

Lemma 2.4 If R is minor-orthogonal and Q is a fixed matrix for which QQ∗ = I ,
then QR is minor-orthogonal. If Q∗Q = I then RQ is minor orthogonal.

Proof For any sets S, T with |S| = |T | = k, we have

[QR]S,T =
∑

|W |=k

[Q]S,W [R]W ,T

so for |U | = |V | = �, we have

ER
{ [QR]S,T [(QR)∗]U ,V

} = ER

⎧
⎨

⎩
∑

|W |=k

∑

|Z |=�

[Q]S,W [R]W ,T [R∗]U ,Z [Q∗]Z ,V

⎫
⎬

⎭

=
∑

|W |=k

∑

|Z |=�

[Q]S,W [Q∗]Z ,V
1

(max{m,n}
k

)δ{W=Z}δ{T=U }

=
∑

|W |=k

1
(max{m,n}

k

) [Q]S,W [Q∗]W ,V δ{T=U }

= 1
(max{m,n}

k

)δ{S=V }δ{T=U },

where the last line comes from the fact that [I ]S,V = δ{S=V }.
The other case RQ follows by repeating the argument with R∗ and noting that

RQ = (Q∗R∗)∗. �

Definition 2.5 A signed permutation matrix is a matrix that can be written EP where
E is a diagonal matrix with ±1 diagonal entries and P is a permutation matrix.
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820 A. W. Marcus et al.

Lemma 2.6 Auniformly randomn×n signed permutationmatrix isminor-orthogonal.

Proof We can write a uniformly random signed permutation matrix Q as Q = Eχ Pπ

where Pπ is a uniformly random permutation matrix and Eχ is a uniformly random
diagonal matrix with χ ∈ {±1}n on the diagonal (and the two are independent). Hence
for |S| = |T | = k and |U | = |V | = �, we have

EQ
{ [Q]S,T [Q∗]U ,V

} = Eχ,π

{ [Eχ Pπ ]S,T [P∗
π Eχ ]U ,V

}

=
∑

|W |=k

∑

|Z |=�

Eχ,π

{ [Eχ ]S,W [Pπ ]W ,T [P∗
π ]U ,Z [Eχ ]Z ,V

}
.

= Eχ,π

{ [Eχ ]S,S[Pπ ]S,T [P∗
π ]U ,V [Eχ ]V ,V

}

Eχ

⎧
⎨

⎩
∏

i∈S
χi

∏

j∈V
χ j

⎫
⎬

⎭Eπ

{ [Pπ ]S,T [P∗
π ]U ,V

}
.

where the penultimate line uses the fact that a diagonal matrix X satisfies [X ]A,B = 0
whenever A �= B. Now the χi are uniformly distributed {±1} random variables, so

Eχ

⎧
⎨

⎩
∏

i∈S
χi

∏

j∈V
χ j

⎫
⎬

⎭ = δ{S=V }

and so we have

EQ
{ [Q]S,T [Q∗]U ,V

} = Eπ

{ [Pπ ]S,T [P∗
π ]U ,V

}
δ{S=V }

= Eπ

{ [Pπ ]S,T [Pπ ]S,U
}
δ{S=V }

Furthermore, [Pπ ]S,T = 0 except when T = π(S), so in order for both [Pπ ]S,T and
[Pπ ]S,U to be nonzero simultaneously requires U = T . In the case that U = T =
π(S), [Pπ ]S,T = ±1, and so we have

EQ
{ [Q]S,T [Q∗]U ,V

} = Eπ

{
[Pπ ]2S,T

}
δ{S=V }δ{T=U }

= Eπ

{
δ{π(S)=T }

}
δ{S=V }δ{T=U }

The probability that a permutation of length n maps a set S to a set T with |S| =
|T | = k is

k!(n − k)!
n! = 1(n

k

)

and so for |S| = |T | = k, we have

EQ
{ [Q]S,T [Q∗]U ,V

} = 1(n
k

)δ{S=V }δ{T=U }
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as required. The case m > n follows by considering R∗ instead of R. �


Corollary 2.7 An m × n Haar random matrix from the Stiefel manifold C
m
n is minor-

orthogonal.

Proof Let R be such a random matrix, and assume m ≤ n. As a signed permutation
matrix is unitary, RQ is also Haar distributed for any fixed signed permutation matrix
Q. By Lemma 2.4 it is also minor-orthogonal. Hence

ER
{ [R]S,T [R∗]U ,V

} = ER
{ [RQ]S,T [(RQ)∗]U ,V

}

and so

ER
{ [R]S,T [R∗]U ,V

} = ER,Q
{ [R]S,T [R∗]U ,V

} = ER,Q
{ [RQ]S,T [(RQ)∗]U ,V

}
,

where Q is a uniform signed permutation independent from R. By Lemma 2.6, Q is
minor-orthogonal and so, for fixed R, Lemma2.4 implies that RQ isminor-orthogonal.
So

ER
{
EQ

{ [RQ]S,T [(RQ)∗]U ,V
} } = ER

{
1(n
k

)δ{S=V }δ{T=U }

}
= 1(n

k

)δ{S=V }δ{T=U }

as required. �


2.2 Formulas

We begin this section by mentioning a well-known formula for the determinants of a
sum of matrices (see [23]):

Theorem 2.8 For integers k ≤ n, n×n matrices A, B, and sets S, T ∈ ([n]
k

)
, we have

[A + B]S,T =
k∑

i=0

∑

U ,V∈([k]
i )

(−1)‖U‖1+‖V ‖1 [A]U (S),V (T )[B]U (S),V (T ), (13)

where U = [k] \U.

We denote the coefficient of (−1)k xd−k of the characteristic polynomial of a d-
dimensional matrix A by σk(A), which we recall is the kth elementary symmetric
function of the eigenvalues of A. We will repeatedly use the fact that

σk(A) =
∑

|S|=k

[A]S,S . (14)
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822 A. W. Marcus et al.

Lemma 2.9 For integers m ≤ n, let B be an n × n matrix and let R be a m × n
minor-orthogonal matrix independent from B. Then for all |S| = |T | = k, we have

ER
{ [RBR∗]S,T

} = δ{S=T }
σk(B)(n

k

)

Proof By Theorem 2.2,

ER
{ [RBR∗]S,T

} =
∑

X ,Y∈([n]
k )

ER
{ [R]S,X [B]X ,Y [R∗]Y ,T

}

=
∑

X ,Y∈([n]
k )

[B]X ,YER
{ [R]S,X [R]T ,Y

}

=
∑

X ,Y∈([n]
k )

[B]X ,Y
1(n
k

)δ{X=Y }δ{S=T }

=
∑

X∈([n]
k )

[B]X ,X
1(n
k

)δ{S=T }.

�

The above lemma yields a quick proof of Lemma 1.17.

Proof of Lemma 1.17 Let A be an a × a matrix and let Q be Haar distributed on C
d
a .

The kth coefficient of Eχx (QAQ∗) is equal to

EQ
{
σk(QAQ∗)

} =
∑

|S|=k

EQ
{ [QAQ∗]S,S

}

=
∑

|S|=k

σk(A)(a
k

) by Lemma 2.9 and minor-orthogonality of Q

=
(d
k

)
(a
k

) ,

which is precisely the kth coefficient of d!
a! D

a−dχx (Q). �

2.2.1 Symmetric additive andmultiplicative convolutions

Using Lemma 2.9, we can easily prove Theorems 1.2 and 1.5 by showing equality of
each coefficient as per (14).

Theorem 2.10 (Implies Theorem 1.2) Let A and B be d × d matrices, and let R be a
random d × d minor-orthogonal matrix. Then

ER
{
σk(A + RBR∗)

} =
k∑

i=0

(d−i
k−i

)
( d
k−i

)σi (A)σk−i (B).
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Proof By (14), Theorem 2.8, and then Lemma 2.9, we have

ER
{
σk(A + RBR∗)

}

=
∑

S∈([d]
k )

ER
{ [A + RBR∗]S,S

}

=
∑

S∈([d]
k )

k∑

i=0

∑

U ,V∈([k]
i )

(−1)‖U‖1+‖V ‖1 [A]U (S),V (S)ER

{
[RBR∗]U (S),V (S)

}

=
∑

S∈([d]
k )

k∑

i=0

∑

U ,V∈([k]
i )

(−1)‖U‖1+‖V ‖1 [A]U (S),V (S)δ{U (S)=V (S)}
σk−i (B)
( d
k−i

)

=
k∑

i=0

σk−i (B)
( d
k−i

)
∑

S∈([d]
k )

∑

U∈([k]
i )

[A]U (S),U (S)

where the last equality uses the fact thatU (S) = V (S) if and only ifU = V . Finally,

∑

S∈([d]
k )

∑

U∈([k]
i )

[A]U (S),U (S) =
(
d − i

k − i

) ∑

V∈([d]
i )

[A]V ,V

as
(d−i
k−i

)
is the number of times a set V appears as V = U (S) for some S and some

U . That is, the number of ways we can add elements to a set of size V to obtain a set
of size k. �


Using Theorem 2.10 and Lemma 2.6 we can derive another useful formula for
the symmetric additive convolution, this time as a function of the roots. It states that
p(x) +d q(x) is the average of all polynomials you can form by adding the roots of p
and q pairwise.

Theorem 2.11 For p(x) = ∏d
i=0(x − ai ) and q(x) = ∏d

i=0(x − bi ) we have

p(x) +d q(x) = 1

d!
∑

σ

d∏

i=1

(x − ai − bσ(i))

where the sum is over permutations σ of [d].
Proof Let A be the diagonal matrix with diagonal elements {ai } and let B be the
diagonal matrix with diagonal elements {bi }. By Theorem 2.10, we have

p(x) +d q(x) = det (x I − A) +d det (x I − B)

= ER
{
det

(
x I − A − RBR∗) }

.
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where the expectation can be taken over any minor-orthogonal random matrix R. By
Lemma 2.6, we can take R to be a (uniformly random) signed permutation matrix.
Since A and B are diagonal, it is easy to compute (for each fixed value of R)

det
(
x I − A − RBR∗) =

∏

i

(x − ai − bσ(i))

where σ is the permutation part of R (all of the signs cancel). Averaging over these
gives the result. �


Theorem 2.12 (Implies Theorem 1.5) Let A and B be d × d matrices, and let R be
an d × d minor-orthogonal matrix. Then

ER
{
σk(ARBR∗)

} = σk(A)σk(B)
(d
k

) .

Proof By Theorem 2.2 and then Lemma 2.9, we have

ER
{
σk(ARBR∗)

} =
∑

S∈([d]
k )

ER
{ [ARBR∗]S,S

}

=
∑

S,T∈([d]
k )

[A]S,TER
{ [RBR∗]T ,S

}

=
∑

S,T∈([d]
k )

[A]S,T δ{T=S}
σk(B)
(d
k

)

= σk(A)σk(B)
(d
k

) .

�


2.2.2 Asymmetric additive convolution

The proof of the asymmetric convolution is a bit more involved, due to the appearance
of a second random matrix.

Lemma 2.13 Let B be a d×d matrix and let Q and R be d×d independently random
minor-orthogonal matrices. Then

EQ,R
{ [QBR∗]S,T [(QBR∗)∗]U ,V

} = δ{T=U }δ{S=V }(d
k

)(d
k

) σk(BB
∗)

for any |S| = |T | = k and |U | = |V | = �.
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Proof By Theorem 2.2 we have

[QBR∗]S,T [(QBR∗)∗]U ,V

=
∑

|W |=|Z |=k

∑

|W ′|=|Z ′|=�

[Q]S,W [B]W ,Z [R∗]Z ,T [R]U ,W ′ [B∗]W ′,Z ′ [Q∗]Z ′,V

where

EQ
{ [Q]S,W [Q∗]Z ′,V

} = 1
(d
k

)δ{S=V }δ{W=Z ′}

and

ER
{ [R∗]Z ,T [R]U ,W ′

} = 1
(d
�

)δ{T=U }δ{Z=W ′}.

Hence

EQ,R
{ [QBR∗]S,T [(QBR∗)∗]U ,V

} =
∑

|W |=|Z |=k

1
(d
k

)
1

(d
k

) [B]W ,Z [B∗]Z ,W δ{T=U }δ{S=V }

=
∑

|W |=k

1
(d
k

)
1

(d
k

) [BB∗]W ,W δ{T=U }δ{S=V }

= 1
(d
k

)
1

(d
k

)σk(BB
∗)δ{T=U }δ{S=V }

�

Theorem 2.14 (Implies Theorem 1.8) Let A and B be d×d matrices and let Q and R
be d × d minor-orthogonal matrices that are independent from A, B and each other.
Then

EQ,R
{
σk((A + QBR∗)(A + QBR∗)∗)

} =
∑

i

(d−i
k−i

)(d−i
k−i

)
( d
k−i

)( d
k−i

) σi (AA
∗)σk−i (BB

∗).

Proof Let |U | = k. Then by Theorem 2.2 we have

[(A + QBR∗)(A + QBR∗)∗]U ,U =
∑

|V |=k

[A + QBR∗]U ,V [(A + QBR∗)∗]V ,U .

By Theorem 2.8,

[A + QBR∗]U ,V =
k∑

i=0

∑

|W |=|Z |=i

(−1)‖W‖1+‖Z‖1[A]W (U ),Z(V )[QBR∗]W (U ),Z(V )
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826 A. W. Marcus et al.

and

[(A + QBR∗)∗]V ,U

=
k∑

i=0

∑

|W ′|=|Z ′|=i

(−1)‖W ′‖1+‖Z ′‖1 [A∗]W ′(V ),Z ′(U )[(QBR∗)∗]W ′(V ),Z ′(U )
.

Applying Lemma 2.13 then gives

EQ,R

{
[QBR∗]W (U ),Z(V )[(QBR∗)∗]W ′(V ),Z ′(U )

}

= δ{W ′(V )=Z(V )}δ{W (U )=Z ′(U )}( d
k−i

)( d
k−i

) σk−i (BB
∗)

= δ{W ′=Z}δ{W=Z ′}( d
k−i

)( d
k−i

) σk−i (BB
∗)

where again we use the fact that A(X) = B(X) if and only if A = B. Hence

EQ,R
{ [(A + QBR∗)(A + QBR∗)∗]U ,U

}

= 1
( d
k−i

)
1

( d
k−i

)σk−i (BB
∗)

∑

|V |=k

k∑

i=0

∑

|W |=|Z |=i

[A]W (U ),Z(V )[A∗]Z(V ),W (U ).

Similar to Theorem 2.10, we have

∑

|U |=|V |=k

∑

|W |=|Z |=i

[A]W (U ),Z(V )[A∗]Z(V ),W (U ) = θi,k
∑

|S|=|T |=i

[A]S,T [A∗]T ,S

= θi,k
∑

|S|=i

[AA∗]S,S

= θi,kσi (AA
∗),

where θi,k is the number of ways to complete S to a set of size k and complete T to a
set of size k. Since S ⊆ [d] and T ⊆ [d], this is precisely (d−i

k−i

)(d−i
k−i

)
, completing the

proof. �


3 Real rootedness of the asymmetric additive convolution

We will use the theory of stable polynomials to prove Theorem 1.9 (see e.g. [24] for
an introduction). Stability is a multivariate generalization of real-rootedness which is
preserved under a rich and well-understood class of linear transformations, and our
approach is to realize p ++d q(x) as a univariate restriction of a multivariate stable
polynomial. For this theorem, we will require Hurwitz stable polynomials. We recall
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that amultivariate polynomial p(z1, . . . , zm) ∈ IR[z1, . . . , zm] isHurwitz stable if it is
identically zero or ifwhenever the real part of zi is positive for all i , p(z1, . . . , zm) �= 0.

Instead of proving Theorem 1.9 directly, we prove the following theorem from
which it follows by substituting −x for x . We define P−(d) to be the subset of poly-
nomials in P(d) having only nonpositive roots and P− to be the union over P−(d) for
d ≥ 1.

Theorem 3.1 Let

p(x) =
d∑

i=0

xd−i ai and q(x) =
d∑

i=0

xd−i bi

be in P−(d). Then,

r(x)
def=

d∑

k=0

xd−k
∑

i+ j=k

(
(d − i)!(d − j)!
d!(d − i − j)!

)2

aib j

is also in P−(d).

We will use the following result to prove that a polynomial is in P
−.

Lemma 3.2 Let r(x) be a polynomial such that h(x, y) = r(xy) is Hurwitz stable.
Then, r ∈ P

−.

Proof Let ζ be any root of r . If ζ is neither zero or negative, then it has a square root
with positive real part. Setting both x and y to this square root would contradict the
Hurwitz stability of h. �


We will prove that r(x) is in P
− by constructing a Hurwitz stable polynomial and

applying Lemma 3.2. To this end, we need a few tools for constructing Hurwitz stable
polynomials.

The first is elementary.

Claim 3.3 If p(x) ∈ P
−, then the polynomial f (x, y) = p(xy) is Hurwitz stable.

Proof If both x and y have positive real part, then xy cannot be a nonpositive real, and
thus cannot be a root of p. �


The second tool is the following result of Borcea and Brändén, which is a conse-
quence of Corollary 5.9 of [25].

Proposition 3.4 (Polarization) Let

p(x, y) =
d∑

i=0

d∑

j=0

ci, j x
i y j
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be a Hurwitz stable polynomial. For each integer i , let σ x
i be the i th elementary

symmetric polynomial in the variables x1, . . . , xd , and let σ
y
i be the corresponding

polynomial in y1, . . . , yd . Then, the polynomial

P(x1, . . . , xd , y1, . . . , yd)
def=

d∑

i=0

d∑

j=0

ci, j
σ x
i σ

y
j(d

i

)(d
j

)

is Hurwitz stable.

Thepolynomial P is called thepolarizationof p.We remark that P(x, . . . , x, y, . . . , y)
= p(x, y).

The last result we need is due to Lieb and Sokal [26] (see also [27, Theorem 8.4]).

Theorem 3.5 Let P(z1, . . . , zd) and Q(z1, . . . , zd) be Hurwitz stable polynomials.
Let Dz

i denote the derivative with respect to zi . Then,

Q(Dz
1, . . . , D

z
d)P(z1, . . . , zd)

is Hurwitz stable.

Proof of Theorem 3.1 Define f (x, y) = p(xy) and g(x, y) = (xy)dq(1/xy).
Let F(x1, . . . , xd , y1, . . . , yd) be the polarization of f (x, y) in the variables
x1, . . . , xd , y1, . . . , yd . Let G(x1, . . . , xd , y1, . . . , yd) be the analogous polarization
of g(x, y).

Let σ x
i be the i th elementary symmetric function in x1, . . . , xd , and let δxi be the

i th elementary symmetric function in Dx
1 , . . . , Dx

d . Define σ
y
i and δ

y
i analogously.

Then,

F(x1, . . . , xd , y1, . . . , yd) =
d∑

i=0

ai
σ x
d−iσ

y
d−i

(d
i

)2 ,

and

G(Dx
1 , . . . , Dx

d , Dy
1 , . . . , Dy

d ) =
d∑

i=0

bi
δxi δ

y
i

(d
i

)2 .

Define

H(x1, . . . , xd , y1, . . . , yd)

= G(Dx
1 , . . . , Dx

d , Dy
1 , . . . , Dy

d )F(x1, . . . , xd , y1, . . . , yd).

We know from Theorem 3.5 that H is Hurwitz stable. Define

h(x, y) = H(x, . . . , x, y, . . . , y).
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It is immediate that h is Hurwitz stable too.Wewill prove that h(x, y) = r(xy), which
by Lemma 3.2 implies that r is in P−.

It will be convenient to know that

δxi σ x
j =

{(d+i− j
i

)
σ x
j−i if i ≤ j

0 otherwise.

We may now compute

H(x1, . . . xd , y1, . . . , yd) =
d∑

i=0

bi
δxi δ

y
i

(d
i

)2
d∑

j=0

a j
σ x
d− jσ

y
d− j

(d
j

)2

=
d∑

i=0

∑

j :i≤d− j

bi
(d
i

)2
a j

(d
j

)2 δxi δ
y
i σ x

d− jσ
y
d− j

=
∑

i+ j≤d

a j bi
(d
i

)2(d
j

)2 δxi δ
y
i σ x

d− jσ
y
d− j

=
∑

i+ j≤d

a j bi
(d
i

)2(d
j

)2

(
d + i − (d − j)

i

)2

σ x
d−i− jσ

y
d−i− j

=
∑

i+ j≤d

a j bi

(i+ j
i

)2
(d
i

)2(d
j

)2 σ x
d−i− jσ

y
d−i− j

=
d∑

k=0

∑

i+ j=k

a j bi

(k
i

)2
(d
i

)2(d
j

)2 σ x
d−kσ

y
d−k .

So,

h(x, y) =
d∑

k=0

∑

i+ j=k

a j bi

((d
k

)(k
i

)
(d
i

)(d
j

)

)2

xd−k yd−k .

=
d∑

k=0

∑

i+ j=k

a j bi

(
(d − i)!(d − j)!
d!(d − i − j)!

)2

xd−k yd−k .

So, r(xy) = h(x, y) and therefore must have only nonpositive real roots. �


4 Transform bounds

In this section we prove Theorems 1.12, 1.13, and 1.14. All of our transform bounds
are proved using the following lemma. It allows us to pinch together two of the roots
of a polynomial without changing the value of the Cauchy transform at a particular
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point. Through judicious use of this lemma, we are able to reduce statements about
arbitrary polynomials to statements about polynomials with just one root.

Lemma 4.1 (Pinching) Let α > 0, d ≥ 2, and let p(x) ∈ P(d) have at least two
distinct roots. Write p(x) = ∏d

i=1(x − λi ) where λ1 ≥ λ2 ≥ · · · ≥ λd and λ1 > λk
for some k. Then there exist real μ and ρ so that p(x) = p̂(x) + p̃(x), where

p̃(x) = (x − μ)2
∏

i /∈{1,k}
(x − λi ) ∈ P(d) and

p̂(x) = (x − ρ)
∏

i /∈{1,k}
(x − λi ) ∈ P(d − 1),

and

a. maxroot (Uα p̃) = maxroot (Uα p̂) = maxroot (Uα p),
b. λ1 > μ > λk , and
c. ρ > λ1. In particular, if d ≥ 3 then p̂ has at least two distinct roots.

Proof Let t = maxroot (Uα p) and set

μ = t − 2

1/(t − λ1) + 1/(t − λk)
.

We have chosen μ so that

2

t − μ
= 1

t − λ1
+ 1

t − λk
,

which implies

D p̃(t)

p̃(t)
= Dp(t)

p(t)
= 1

α
,

and thus maxroot (Uα p̃) = t . Our choice of μ also guarantees that t − μ is the
harmonic average of t − λ1 and t − λk . Thus, μ must lie strictly between λ1 and λk ,
which implies part b. As the harmonic mean of distinct numbers is less than their
average, t − μ < (1/2)(2t − (λ1 + λk)), which implies that

μ > (λ1 + λk)/2. (15)

We have

p̂(x) = p(x) − p̃(x) =
(
(2μ − (λ1 + λk))x − (μ2 − λ1λk)

) ∏

i /∈{1,k}
(x − λi ).

This and inequality (15) imply that p̂(x) ∈ P(d − 1). As Uα is linear, we also have
(Uα p̂)(t) = 0. To finish the proof of part a, we need to show that the maximum root
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of Uα p̂ is less than t . The one root of p̂ that is not a root of p is

ρ
def= μ2 − λ1λk

2μ − (λ1 + λk)
.

To see that t > ρ, compute

t − ρ = (λ1 − μ)(μ − λk)

2μ − λ1 − λk
,

which we know is greater than 0 because of (15) and the fact that μ is between λ1 and
λk . This completes the proof of part a.

To prove part c, note that 2μ − (λ1 + λk) > 0, and

(2μ − (λ1 + λk))(ρ − λ1) = μ2 − 2λ1μ + λ21 = (μ − λ1)
2 > 0.

�

The following lemma provides one of the facts we exploit about the decomposition

p(x) = p̃(x) + p̂(x)

Lemma 4.2 Let f , g, h be real rooted polynomials with positive leading coefficients
such that f = g + h. Then

maxroot ( f ) ≤ max {maxroot (g) ,maxroot (h)} (16)

with equality if and only if

maxroot ( f ) = maxroot (g) = maxroot (h) . (17)

Proof Note that equality in (17) clearly implies equality in (16). Now, assume by way
of contradiction that (16) is false, and let x = maxroot ( f ). Since g and h have positive
leading terms, g(x), h(x) > 0. Thus, f (x) = g(x) + h(x) > 0, a contradiction . �


4.1 Symmetric additive convolution

We now prove the upper bound on the R-transform of p +d q.

Theorem 4.3 (Restatement of Theorem 1.12) For p, q ∈ P(d) and α > 0,

maxroot (Uα(p +d q)) + dα ≤ maxroot (Uα p) + maxroot (Uαq) ,

with equality only if p(x) or q(x) has the form (x − λ)d .

Theorem 1.2 and Lemma 1.16 tell us that if q(x) ∈ P(d) and p(x) = xd−1, then
p(x) +d−1 q(x) = (1/d)Dq(x). As maxroot

(
Uαxd−1

) = (d − 1)α, the following
lemma may be viewed as a restriction of Theorem 4.3 to the case that q(x) = xd−1.
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Lemma 4.4 For α ≥ 0, d ≥ 2, and p ∈ P(d),

maxroot (UαDp) ≤ maxroot (Uα p) − α. (18)

with equality if and only if p = (x − λ)d for some real number λ.

Proof If p = (x − λ)d , then maxroot (Uα p) = λ + dα and maxroot (UαDp) =
λ + (d − 1)α, giving equality in (18).

We now prove the rest of the lemma by induction on d, with d = 2 being the base
case. To establish the lemma in the case that d = 2 and p has roots λ1 > λ2, note that

r
def= maxroot (UαDp) + α = 2α + (λ1 + λ2)/2

and

Uα p(x) = x2 − (λ1 + λ2 + 2α)x + α(λ1 + λ2) + λ1λ2.

As this polynomial has a positive leading term, the fact that maxroot (Uα p) > r
follows from

Uα p(r) = −(λ1 − λ2)
2/4 < 0.

For a real rooted polynomial p, define

φ(p) = maxroot (Uα p) − α − maxroot (UαDp) .

We will prove by induction on d that φ(p) > 0 for all polynomials p ∈ P(d) that
have more than one root.

Assume byway of contradiction that there exists amonic (without loss of generality,
since φ is independent of scaling) polynomial p ∈ P(d)with at least two distinct roots
for which φ(p) ≤ 0. Let [−R, R] be an interval containing all of the roots of p, and
define P(d)[−R, R] to be all monic polynomials in P(d)with all roots in this interval.
Since [−R, R]d is a compact set and φ is a continuous function of the roots of p, there
is a monic polynomial p0 ∈ P(d)[−R, R] at which φ obtains its minimum. Let p0 be
such a polynomial, so φ(p0) ≤ φ(p) ≤ 0. We may assume that p0 has at least two
distinct roots, because it is true if φ(p0) < 0 whereas if φ(p0) = 0 we may assume
p0 = p.

Lemma 4.1 implies that there exist polynomials p̂ and p̃ with p0 = p̂ + p̃ such
that

1. p̂ and p̃ have positive first coefficients
2. p̂ has degree d − 1, and if d ≥ 3 it has at least two distinct roots.
3. p̃ ∈ P(d)[−R, R].
4. maxroot (Uα p̃) = maxroot (Uα p̂) = maxroot (Uα p0)

By linearity we have

UαD p̃ +UαD p̂ = UαDp0.
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Ifmaxroot (UαDp0) ≤ maxroot (UαD p̂), then

φ(p0) = maxroot (Uα p0) − α − maxroot (UαDp0)

≥ maxroot (Uα p̂) − α − maxroot (UαD p̂)

= φ( p̂)

> 0,

by the inductive hypothesis, as p̂ has degree d−1.As thiswould contradict our assump-
tion thatφ(p) ≤ 0,wemay assumemaxroot (UαDp0) > maxroot (UαD p̂) and apply
Lemma 4.2 to conclude maxroot (UαDp0) < maxroot (UαD p̃). This implies

φ(p0) = maxroot (Uα p0) − α − maxroot (UαDp0)

> maxroot (Uα p̂) − α − maxroot (UαD p̃)

= φ( p̃),

contradicting the minimality of p0. Thus, we may conclude that φ(p) > 0 for all
p ∈ P(d) with at least two roots.

�

Lemma 4.5 For α ≥ 0, q = (x − λ)d for some real λ and p ∈ P(d),

maxroot (Uα(p +d q)) = maxroot (Uα p) + maxroot (Uαq) − αd.

Proof We can prove this either by manipulating the identity in (1) and those following
it, or bygoing through the defintion (1.1). Topursue the latter route, let A be aHermitian
matrix whose characteristic polynomials is p and let B = λI . We then have

p(x) +d q(x) = E
Q

χx (A + λI ) = p(x − λ).

Thus,

maxroot (Uα(p +d q)) = λ + maxroot (Uα p) .

On the other hand, maxroot (Uαq) = λ + αd. �

Lemma 4.6 If p ∈ P(d) for d ≥ 3 and Dp has just one root, then p has just one root.

Proof If Dp = (x − λ)d−1, then p can be written in the form (x − λ)d + c for some
constant c. If d ≥ 3 and c were a constant other than zero, then this polynomial would
have at least two complex roots. �


Our proof of Theorem 4.3 will be very similar to our proof of Lemma 4.4.
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Proof of Theorem 4.3 Lemma 4.5 proves the theorem in the case that either p or q can
be written in the form (x −λ)d . So, we will prove that if neither p nor q is of the form
(x − λ)d then

maxroot (Uα(p +d q)) + dα < maxroot (Uα p) + maxroot (Uαq) . (19)

We will prove this by induction on d, the maximum degree of p and q. The base case
d = 1 is handled by Lemma 4.5. Assume d ≥ 2 and fix a polynomial q ∈ P(d) with
at least two roots. For any polynomial p in P(d), define

φ(p) = maxroot (Uα p) + maxroot (Uαq) − dα − maxroot (Uα(p +d q)) .

As before, assume for contradiction that there exists a monic polynomial p with at
least two roots for which φ(p) ≤ 0. Let [−R, R] be an interval containing the roots
of p and let p0 minimize φ over all monic polynomials whose roots are contained in
this interval. We may assume that p0 has at least two roots because Lemma 4.5 says
it must if φ(p0) < 0, and otherwise we may take p0 = p.

Thus, we can apply Lemma 4.1 to p0 to obtain polynomials p̂ ∈ P(d − 1) and
p̃ ∈ P(d) such that

a. p0 = p̂ + p̃, which by the linearity of +d and Uα implies

Uα p0 +d q = Uα p̂ +d q +Uα p̃ +d q;

b. the roots of p̃ lie inside [−R, R], and so φ( p̃) ≥ φ(p0); and
c. maxroot (Uα p̃) = maxroot (Uα p̂) = maxroot (Uα p0).

By Lemma 1.16

maxroot (Uα p̂ +d q) = maxroot (Uα p̂ +d−1 Dq) .

As the degree of Dq is less than d, and Dq has at least two distinct roots by Lemma
4.6 we may apply our inductive hypothesis to conclude that

maxroot (Uα p̂ +d−1 Dq) ≤ maxroot (Uα p̂) + maxroot (UαDq) − (d − 1)α

< maxroot (Uα p̂) + maxroot (Uαq) − dα by Lemma 4.4

= maxroot (Uα p0) + maxroot (Uαq) − dα by property (c)

≤ maxroot (Uα p0 +d q) ,

as φ(p0) ≤ 0. Thus, property (a) above and Lemma 4.2 imply that

maxroot (Uα p̃ +d q) > maxroot (Uα p0 +d q) .

As maxroot (Uα p̃) = maxroot (Uα p0), this implies φ( p̃) < φ(p0), a contradiction.
Thus, (19) holds when both polynomials have at least two roots.

�
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4.2 Symmetric multiplicative convolution

In this section we prove the following upperbound on the variant of the S−transform
of p ×d q, defined in Sect. 1.3.

Theorem 4.7 (Restatement of Theorem 1.13) For p, q ∈ P
+(d) having only nonneg-

ative real roots and w > 0,

S̃p×dq
(w) ≤ S̃p (w) S̃q (w) ,

with equality only when p or q has only one distinct root.

We begin by considering the case in which p = (x − λ)d . We then have that

M̃p (z) =
∑

j≥1

(λ/z) j = λ

z − λ
.

Thus,

M̃(−1)
p (w) = 1 + w

w
λ,

and

S̃p (w) = λ.

Lemma 4.8 If λ > 0, p(x) = (x − λ)d and q(x) ∈ P
+(d), then for all w ≥ 0

S̃p×dq
(w) = S̃p (w) S̃q (w) .

Proof For p(x) = (x − λ)d , one may use either the definition (1.4) or Theorem 1.5
to compute

p(x) ×d q(x) = λdq(x/λ).

As, M̃q(x/λ) (λz) = M̃q(x) (z),

S̃p(x)×dq(x) (w) = λS̃q(x) (w) .

�

The finite multiplicative convolution of polynomials of different degrees may be

computed by taking the polar derivative with respect to 0 of the polynomial of higher
degree. We recall that the polar derivative at 0 of a polynomial p of degree d is given
by dp − xDp (see [2, p. 44]).
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Lemma 4.9 (Degree Reduction for ×d )For p(x) ∈ P(d) and q(x) ∈ P(k), for k < d,

p(x) ×d q(x) = 1

d
(dp(x) − xDp(x)) ×d−1 q(x).

Proof Follows from equation (5) by an elementary computation. �

Remark 4.10 If we let R be the operation on polynomials in P+(d) that maps p(x) to
xd p(1/x). The polar derivative of a degree d polynomial may be expressed in terms
of R by

dp − xDp = RDRp.

In particular, the polar derivative has a discontinuity at ∞ that occurs as a root of
DRp passes 0, causing technical issues when considering polynomials p(x) with
both positive and negative roots (especially given that the root we are concerned in
is the largest one). This prevents our proof method (which we chose to highlight the
parallel between the additive and multiplicative case) from generalizing to a larger
collection of polynomials. We therefore leave the possibility of a generalization as an
open problem.

Claim 4.11 For p = (x − λ)d ,

xDp − dp = λd(x − λ)d−1.

For p ∈ P
+(d), (xD − d)p ∈ P

+(d − 1) and

maxroot (p) ≥ maxroot (xDp − dp) . (20)

In the special case of p ∈ P
+(2) with distinct roots, strict inequality holds:

maxroot (p) > maxroot (xDp − 2p) . (21)

Proof The first part is a simple calculation. Inequality (20) follows from the fact that
p ∈ P

+(d) implies that Rp ∈ P
+(d) and the fact that the roots of DRp interlace

those of Rp. To see that (xD − d)p ∈ P
+(d − 1), observe that its lead coefficient is

positive.
The last claim follows by noting that Rp is quadratic polynomial with distinct roots

and so DRp strictly interlaces Rp. �

As we did with the symmetric additive convolution, we relate the M̃-transform to

the maximum root of a polynomial. We have

M̃p (z) = w ⇐⇒ maxroot
((

1 − xD

d(w + 1)

)
p(x)

)
= 0.
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We therefore define the operator Vw by

Vw p(x) =
(
1 − xD

d(w + 1)

)
p(x),

which gives

M̃p (z) = w ⇐⇒ maxroot (Vw p) = z.

Note that the polar derivative is dV0.
Our proof of Theorem 4.7 will also employ the following consequence of

Lemma 4.1.

Corollary 4.12 Let w > 0, d ≥ 2, and let p(x) ∈ P
+(d) have at least two distinct

roots. Then there exist p̃ ∈ P
+(d) and p̂ ∈ P

+(d − 1) so that p(x) = p̂(x) + p̃(x),
the largest root of p̃ is at most the largest root of p,

maxroot (Vw p) = maxroot (Vw p̃) = maxroot (Vw p̂) ,

and if d ≥ 3 then p̂ has two distinct roots.

Proof To derive this from Lemma 4.1, let t = maxroot (Vw p) and set

α = t

d(w + 1)
.

The polynomials p̃ and p̂ constructed in Lemma 4.1 now satisfy

maxroot (Uα p̂) = maxroot (Uα p̃) = t = maxroot (Vw p̃) = maxroot (Vw p̂) ,

as desired. �

Proof of Theorem 4.7 We proceed by induction on d, the maximum degree of p and q.
The theorem is true for d = 1 by Lemma 4.8. As we have already shown that equality
holds when one of p or q has just one root, we need to show that when both p and q
have at least two distinct roots:

maxroot (Vw p ×d q) <
w

1 + w
maxroot (Vw p)maxroot (Vwq) .

Fix q ∈ P
+(d) with at least two distinct roots, and for p ∈ P

+ define:

φ(p)
def= w

1 + w
maxroot (Vw p)maxroot (Vwq) − maxroot (Vw p ×d q) .

As before, we assume (for contradiction) that there exists a monic p with two distinct
roots and φ(p) ≤ 0. Choose an interval [0, R] containing the roots of p, and let p0
minimize φ over all degree d monic polynomials with roots in this interval. Observe
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that we can choose p0 having two distinct roots: if φ(p0) < 0 this is implied by
Lemma 4.8 and if φ(p0) = 0 we can take p = p0. Thus we may apply Corollary 4.12
to obtain polynomials p̃ ∈ P

+(d) and p̂ ∈ P
+(d − 1) with p0 = p̃ + p̂,

maxroot (Vw p0) = maxroot (Vw p̃) = maxroot (Vw p̂) , (22)

and maxroot ( p̃) ≤ maxroot (p0). By Lemma 4.2, we have

maxroot (Vw(p0 ×d q)) ≤ max {maxroot (Vw( p̂ ×d q)) ,maxroot (Vw( p̃ ×d q))} ,

with equality only if all three are equal. However, noting that p̂ and (xD − d)q =
−RDRq have two distinct roots whenever d ≥ 3:

maxroot (Vw( p̂ ×d q))

= maxroot (Vw p̂ ×d−1 ((xD − d)q)) by Lemma 4.9

≤ w

1 + w
maxroot (Vw p̂)maxroot (Vw(xD − d)q)) by induction, strict for d ≥ 3

≤ w

1 + w
maxroot (Vw p̂)maxroot (Vwq)) by Claim 4.11, strict for d = 2

= w

1 + w
maxroot (Vw p0)maxroot (Vwq)) by (22)

≤ maxroot (Vw(p0 ×d q)) ,

since φ(p0) ≤ 0. Since at least one of the inequalities above is strict for all d ≥
2, we must have maxroot (Vw(p0 ×d q)) < maxroot (Vw( p̃ ×d q)), which implies
φ( p̃) < φ(p0), contradicting the minimality of p0. �


4.3 Asymmetric additive convolution

In this section we prove the rectangular analogue of Theorem 1.12.

Theorem 4.13 (Restatement of Theorem1.14) Let p(x) and q(x) be in P
+(d) for

d ≥ 1. Then for all α ≥ 0,

maxroot (UαS(p ++d q)) ≤ maxroot (UαSp) + maxroot (UαSq) − 2αd,

with equality if and only if p or q equals xd .

We remark that if q(x) = xd , then p ++d q = p, and

UαSq = Uαx
2d = x2d−1(x − 2dα),

so

maxroot (UαSq) = 2αd.
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This is why Theorem 4.13 holds with equality when q(x) = xd .
The following lemma tells us that it suffices to prove Theorem 4.13 in the case that

α = 1.

Lemma 4.14 For a real-rooted polynomial p(x),

maxroot (Uα p(x)) = 1

α
maxroot (U1 p(αx)) .

Proof Let q(x) = p(αx), so

U1q(x) = p(αx) − α p′(αx).

Let

w = α–max (p(x)) = maxroot (Uα p) ⇐⇒ p(w) − α p′(w) = 0.

Then,

(U1q)(w/α) = p(w) − α p′(w) = 0.

�

Our proof of Theorem 4.13 will use the following lemma to pinch together roots

of p to reduce the analysis to a few special cases.

Corollary 4.15 Let α > 0, d ≥ 2, and let p(x) ∈ P
+(d) have at least two distinct

roots. Then there exist p̃ ∈ P
+(d) and p̂ ∈ P

+(d − 1) so that p(x) = p̂(x) + p̃(x),
the largest root of p̃ is at most the largest root of p, p̂ has a root larger than 0, and

maxroot (UαS p̃) = maxroot (UαS p̂) = maxroot (UαSp) (23)

Proof Let t = maxroot (UαSp), so

maxroot ((1 − 2αt D)p) = √
t .

Apply Lemma 4.1 with 2αt in the place of α to construct the polynomials p̃ and p̂.
They satisfy

maxroot (Uα p̂) = maxroot (Uα p̃) = √
t,

which implies (23). �

We will build up to the proof of Theorem 4.13 by first handling three special cases:

• When p(x) = (x − λ)d and q(x) = xd−1. That is, we consider DxD(x − λ)d

(Lemma 4.18).
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• When p(x) ∈ P
+(d) and q(x) = xd−1. That is, we consider DxDp(x) (Lemma

4.19).
• When p(x) = (x − λ)d and q(x) = (x − μ)d (Lemma 4.20).

Aswith the other convolutions, wemay compute the asymetric additive convolution
of two polynomials by first applying an operation to the polynomial of higher degree.
In this case it is DxD, also known as the “Laguerre Derivitive”.

Lemma 4.16 (Degree Reduction for ++d ) Let p ∈ P
+(d) and let q ∈ P

+(k) for
k < d. Then,

p ++d q = (1/d2)(DxDp) ++d−1 q.

Proof Follows from Theorem 1.8. �

The following characterization of the Laguerre derivitive also follows from Theo-

rem 1.8.

Claim 4.17 If q(x) = xd−1, then

p ++d q = DxDp.

Lemma 4.18 For α ≥ 0, λ ≥ 0, d ≥ 2 and p(x) = (x − λ)d ,

maxroot (UαSDxDp) ≤ maxroot (UαSp) − 2α,

with equality only if λ = 0.

Proof ByLemma4.14, it suffices to consider the case ofα = 1.AsSp(x) = (x2−λ)d ,

U1Sp(x) = (x2 − 2λd − λ)(x2 − λ)d−1.

So, the largest root of this polynomial is the largest root of

rλ(x)
def= (x2 − 2λd − λ).

We may also compute

U1SDxD(x2 − λ)d = qλ(x)(x
2 − λ)d−2,

where

qλ(x)
def= dx4 − 2d(d − 1)x3 − (d + 1)λx2 + 4(d − 1)λx + λ2.

We now prove that

maxroot (qλ) ≤ maxroot (rλ) − 2,
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with equality only if λ = 0.
We first argue that qλ(x) is real rooted. This follows from that fact that it is a factor

of U1SDxD(x − λ)d . For λ ≥ 0 all of the roots of DxD(x − λ)d are nonnegative,
and so applying S to it yields a polynomial with all real roots.

We now compute

maxroot (rλ) = d +
√
d2 + λ.

Define

μλ = d +
√
d2 + λ − 2.

Elementary algebra gives

qλ(μλ) = 4λ − 8d
√
d2 + λ + 8d2 = (2d − 2

√
d2 + λ)2.

So, qλ(μλ) ≥ 0, with equality only when λ = 0. With just a little more work, we will
show that μλ is an upper bound on the roots of qλ for all λ.

For qλ to have a root larger than μλ, it would have to have two roots larger than μλ.
When λ = 0, the polynomial qλ has one root at μ0 and a root at 0 with multiplicity 3.
As qλ is real rooted for all λ ≥ 0 and the roots of qλ are continuous functions of its
coefficients, and thus of λ, we can conclude that for small λ all but one of the roots of
qλ must be near 0. Thus, for sufficiently small λ, qλ can have at most one root greater
than μλ, and so it must have none. As the largest root of qλ and μλ are continuous
function of λ, maxroot (qλ) > μλ for all sufficiently small λ. As qλ(μλ) > 0 for all
λ ≥ 0, we can conclude that maxroot (qλ) > μλ for all λ ≥ 0. �


To see that Lemma 4.18 is equivalent Theorem 4.13 in the case of q = xd−1, note
that for q(x) = xd−1,

UαSq(x) = Uαq(x2) = x2(d−1) − αDx2(d−1) = x2d−3(x − 2(d − 1)α).

The equivalence now follows from Claim 4.17 and the fact that the the largest root of
this polynomial is 2(d − 1)α.

Lemma 4.19 For α ≥ 0, d ≥ 2 and p ∈ P
+(d),

maxroot (UαSDxDp) ≤ maxroot (UαSp) − 2α,

with equality only if p(x) = xd .

Proof For every p ∈ P
+, define

φ(p) = maxroot (UαSp) − maxroot (UαSDxDp) − 2α.

We will show that φ(p) ≥ 0 for every polynomial p ∈ P
+ of degree at least 2, with

equality only when p = xd .
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Our proof will be by induction on the degree of p. Assume that there exists a
polynomial p ∈ P

+(d)with φ(p) < 0, let [0, R] be an interval containing the roots of
p, and let p0 minimize φ over polynomials with roots in that interval. By Lemma 4.18,
p0 must have at least 2 distinct roots, and so we can apply Corollary 4.15 to obtain
polynomials p̂ and p̃.

Let x = maxroot (UαSDxDp). If d = 2, then p̂ has degree 1 and so UαSDxD p̂
equals the lead coefficient of p̂, which implies

UαSDxD p̂(x) > 0. (24)

For d ≥ 3, we can then assume by induction that φ( p̂) > 0, which then implies (24) as
well. Combining this with Lemma 4.2, we get that φ(p0) > φ( p̃) which contradicts
the minimality of p0.

�

In Sect. 4.4, we establish the following special case of Theorem 4.13.

Lemma 4.20 For λ,μ > 0, and d ≥ 1, let p(x) = (x − λ)d and q(x) = (x − μ)d .
Then for all α ≥ 0,

maxroot (UαS(p ++d q)) < maxroot (UαSp) + maxroot (UαSq) − 2αd.

We now use Lemma 4.20 to prove Theorem 4.13 through a variation of the pinching
argument employed in the proof of Lemma 4.18.

Proof of Theorem 4.13 We will prove this by induction on the maximum degree of p
and q, which we call d. Our base case of d = 1 is handled by Lemma 4.20.

Assume, without loss of generality, that the degree of p is at least the degree of q.
If the degree of p is larger than the degree of q, then we may prove the hypothesis by

maxroot (UαS(p ++d q)) = maxroot (UαS((DxDp) ++d−1 q)) (by Lemma 4.16)

≤ maxroot (UαS(DxDp)) + maxroot (UαSq) − 2α(d − 1) (by induction)

≤ maxroot (UαSp) + maxroot (UαSq) − 2αd (by Lemma 4.18).

Lemma 4.18 also tells us that equality is only achieved when p = xd .
We now consider the case in which both p and q have degree d. For polynomials

p and q in P+(d), define

φ(p, q) = maxroot (UαSp) + maxroot (UαSq) − 2αd − maxroot (UαS(p ++d q)) .

We will prove that φ(p, q) ≥ 0 for all such polynomials.
Assume (for contradiction) that there exist polynomials p, q with φ(p, q) < 0 and

let [0, R] be an interval containing the roots of p and q. Again, φ is a continuous
function (this time on the compact set [0, R]2d ) so let p0, q0 be a minimizer. If both
p0 and q0 have at most 1 distinct root, then Lemma 4.20 implies φ(p0, q0) ≥ 0, with
equality only if one of them equals xd (a contradiction). Hence we can assumewithout
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loss of generality that p0 has at least 2 distinct roots and so Corollary 4.12 provides
polynomials p̂ and p̃ with

maxroot (UαSp0) = maxroot (UαS p̃) = maxroot (UαS p̂)

and by Lemma 4.2

maxroot (UαS(p0 ++d q0))

≤ max{maxroot (UαS( p̂ ++d q0)) ,maxroot (UαS( p̃ ++d q0))

which in turn implies φ(p0, q0) ≥ min φ( p̂, q0), φ( p̃, q0) with equality if and only
if all are equal. Again equality cannot occur, since φ(p0, q0) < 0 by assumption and
φ( p̂, q0) ≥ 0 by the inductive hypothesis and φ(p0, q0) > φ( p̂, q0) cannot occur
for the same reason. But this implies φ(p0, q0) > φ( p̃, q0), which contradicts the
minimality of the pair (p0, q0).

�


4.4 Ultraspherical polynomials

This section is devoted to the proof of Lemma 4.20. It is a consequence of the following
lemma.

Lemma 4.21 For d ≥ 0 and positive λ and μ,

maxroot
(
UαS((x − λ)d ++d (x − μ)d)

)

< maxroot
(
Uα(S(x − λ)d +2d S(x − μ)d))

)
.

Lemma 4.20 then follows from Theorem 4.3. We will prove Lemma 4.21 by showing
that the polynomial on the left is a scaled Chebyshev polynomial of the second kind,
and that the polynomial on the right is a Legendre polynomial with the same scaling.
We then appeal to known relations between the roots of these polynomials.

The Cheybshev and Legendre polynomials are both Ultraspherical (also called
Gegenbauer) polynomials. These are special cases of Jacobi polynomials. It is known
that their roots all lie between −1 and 1 and that they are symmetric about zero (see
Theorem 3.3.1 of [28]).

The Ultraspherical polynomials with parameter α are defined by the generating
function

∑

n

C (α)
n (x)tn = 1

(1 − 2xt + t2)α
. (25)

Two special instances of these polynomials are

1. the Legendre polynomials: Pd(x) = C (1/2)
d (x), and

2. the Chebyshev polynomials of the second kind: Ud(x) = C (1)
d (x).
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Stieltjes [29] (see Theorem 6.21.1 of [28]) established the following relation
between the zeros of the Chebyshev and Legendre polynomials.

Theorem 4.22 Let α1 > α2 > · · · > α�d/2� be the positive roots of Ud(x) and let
β1 > β2 > · · · > β�d/2� be the positive roots of Pd(x). Then, αi < βi for all i .

The relationship between the asymmetric additive convolution and the Chebyshev
polynomials will make use of the generating function (25). To aid in this endeavor,
we recall the following well-known generalization of the binomial theorem (see, for
example, [30]).

Theorem 4.23 The function (1 + z)−k has the formal power series expansion

1

(1 + z)k
=

∞∑

i=0

(
k + i − 1

i

)
(−z)i .

Lemma 4.24 For d ≥ 0 and positive λ and μ,

S((x − λ)d ++d (x − μ)d) = (λμ)d/2Ud

(
x − (λ + μ)

2
√

λμ

)
.

Proof By (25), we have

∑

d

Ud(x) t
d = 1

1 − 2xt + t2

and so

∑

d

√
λμ

d
Ud

(
x − λ − μ

2
√

λμ

)
td = 1

1 − (x − λ − μ)t + λμt2

= 1

(1 − λt)(1 − μt) − xt

= 1

(1 − λt)(1 − μt)

1

1 − xt
(1−λt)(1−μt)

=
∑

k≥0

xktk

(1 − λt)k+1(1 − μt)k+1

=
∑

i, j,k≥0

(
k + i

i

)(
k + j

j

)
xk(−λ)i (−μ) j t i+ j+k

so the coefficient of td can be written (setting � = d − k)

d∑

�=0

xd−�
∑

i+ j=�

(
d − j

i

)(
d − i

j

)
(−λ)i (−μ) j .
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On the other hand, the formula for the asymmetric convolution also gives us

(x − λ)d ++d (x − μ)d =
d∑

k=0

xd−k
∑

i+ j=k

(
(d − i)!(d − j)!
d!(d − i − j)!

)2 (
d

i

)(
d

j

)
(−μ)i (−λ) j

=
d∑

k=0

xd−k
∑

i+ j=k

(d − i)!(d − j)!
i ! j !(d − i − j)!(d − i − j)! (−μ)i (−λ) j

=
d∑

k=0

xd−k
∑

i+ j=k

(
d − i

j

)(
d − j

i

)
xi (−λ)i (−μ) j .

�

The relationship between the symmetric additive convolution and the Legendre

polynomials can be established by applying Theorem 2.11

Lemma 4.25 For d ≥ 0 and positive λ and μ,

(S(x − λ)d) +2d (S(x − μ)d) = (4
√

λμ)d

(2d
d

) Pd

(
x2 − λ − μ

2
√

λμ

)

Proof We start by recalling one of the well-known formulas for Legendre polynomials
[28]:

Pd(x) = 1

2d
∑

i

(
d

i

)2

(x − 1)i (x + 1)d−i .

On the one hand we have

Pd

(
x2 − λ − μ

2
√

λμ

)
= 1

2d
∑

i

(
d

i

)2 (
x2 − λ − μ

2
√

λμ
− 1

)i (
x2 − λ − μ

2
√

λμ
+ 1

)d−i

= 1

(4
√

λμ)d

∑

i

(
d

i

)2

(x2 − (
√

λ + √
μ)2)i (x2 − (

√
λ − √

μ)2)d−i .

On the other hand, we can use Theorem 2.11 to calculate (x2 − λ)d +2d (x2 − μ)d .
There are four possible root sums that will appear: {±(

√
λ + √

μ),±(
√

λ − √
μ)}.

Furthermore, it is easy to check that

1. the ±(
√

λ + √
μ) terms appear the same number of times in every pairing

2. the ±(
√

λ − √
μ) terms appear the same number of times in every pairing

3. the probability of having i copies of (
√

λ + √
μ) and d − i copies of (

√
λ − √

μ)

is
(d
i

)2
/
(2d
d

)
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Hence we have

[(x2 − λ)d +2d (x2 − μ)d ] = 1
(2d
d

)
d∑

i=0

(
d

i

)2

(x2 − (
√

λ + √
μ)2)i (x2 − (

√
λ − √

μ)2)d−i .

�

Proof of Lemma 4.21 We prove this in the case that d is even. The proof with d odd
is similar, except that there is one extra common term for the root at 0. Let 1 >

α1 > α2 > · · · > αd/2 be the positive roots of Ud(x) and let αd+1−i = −αi be the
negative roots. Similarly, let 1 > β1 > β2 > · · · > βd be the roots of Pd(x). As
(λ + μ)/2

√
λμ ≥ 1, the roots of

S((x − λ)d ++d (x − μ)d)

are

±
(√

λμβi + (λ + μ)
)1/2

and the roots of

(S(x − λ)d) +2d (S(x − μ)d)

are

±
(√

λμαi + (λ + μ)
)1/2

.

By Theorem 4.22 the largest root of the first polynomial is larger than the largest root
of the second, and for every t larger than that root,

Gt
(
S((x − λ)d ++d (x − μ)d)

)
= 1

2d

d∑

i=1

1

t − (√
λμαi + (λ + μ)

)1/2

+ 1

t + (√
λμαi + (λ + μ)

)1/2

= 1

2d

d∑

i=1

2t

t2 − √
λμαi − (λ + μ)

= 1

2d

d/2∑

i=1

2t

t2 − (λ + μ) − √
λμαi

+ 2t

t2 − (λ + μ) + √
λμαi
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= 1

2d

d/2∑

i=1

4t(t2 − (λ + μ))

(t2 − (λ + μ))2 − λμα2
i

<
1

2d

d/2∑

i=1

4t(t2 − (λ + μ))

(t2 − (λ + μ))2 − λμβ2
i

= Gt
(
(S(x − λ)d) +2d (S(x − μ)d)

)
,

where the last equality follows by reversing the previous reasoning. This implies that

KS((x−λ)d++d (x−μ)d ) (w) < K(S(x−λ)d )+2d (S(x−μ)d ) (w) ,

where w = 1/αd. �
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