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S U M M A R Y

We compare traditional ray-theoretical surface-wave tomography with finite-frequency to-

mography, using 3-D Born sensitivity kernels for long-period, fundamental-mode dispersion

measurements. The 3-D kernels preserve sidelobes beyond the first Fresnel zone, and fully

account for the directional dependence of surface-wave scattering, and the effects of time-

domain tapering and seismic source radiation. Tomographic inversions of Love and Rayleigh

phase-delay measurements and synthetic checkerboard tests show that (1) small-scale S-wave

velocity anomalies are better resolved using finite-frequency sensitivity kernels, especially

in the lowermost upper mantle; (2) the resulting upper-mantle heterogeneities are generally

stronger in amplitude than those recovered using ray theory and (3) finite-frequency tomo-

graphic models fit long-period dispersion data better than ray-theoretical models of compa-

rable roughness. We also examine the reliability of 2-D, phase-velocity sensitivity kernels in

global surface-wave tomography, and show that phase-velocity kernels based upon a forward-

scattering approximation or previously adopted geometrical simplifications do not reliably

account for finite-frequency wave-propagation effects. 3-D sensitivity kernels with full con-

sideration of directional-dependent seismic scattering are the preferred method of inverting

long-period dispersion data. Finally, we derive 2-D boundary sensitivity kernels for lateral

variations in crustal thickness, and show that finite-frequency crustal effects are not negligible

in long-period surface-wave dispersion studies, especially for paths along continent–ocean

boundaries. Unfortunately, we also show that, in global studies, linear perturbation theory is

not sufficiently accurate to make reliable crustal corrections, due to the large difference in

thickness between oceanic and continental crust.
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1 I N T RO D U C T I O N

The large-scale seismic structure of the upper mantle has been pro-

gressively mapped out by surface-wave tomography during the past

three decades. Traditional surface-wave tomography is based upon

JWKB ray theory, which is valid only if the lateral length scales

of the heterogeneities are larger than the characteristic wavelength

of the seismic waves. Therefore, only the largest-scale structures

can be trusted in traditional long-period surface-wave tomography;

furthermore, because structure in the lowermost upper mantle is

mainly constrained by surface waves of the longest periods, the spa-

tial resolution decreases with depth in ray-theoretical tomography.

The limitations of ray theory have received growing attention in re-

cent theoretical studies, and sensitivity kernels have been developed

to account for finite-frequency effects upon seismic surface-wave

propagation (e.g. Snieder & Nolet 1987; Li & Romanowicz 1995;
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Friederich 1999; Spetzler et al. 2002; Zhou et al. 2004). Yomogida

& Aki (1987) were the first to try to account for finite-frequency

effects in surface-wave phase-velocity tomography, by introducing

an ad hoc sensitivity within the first Fresnel zone, scaled expo-

nentially to the phase delay between the great-circle ray and the

detoured scattering path. Meier et al. (1997) proposed a two-step

tomographic method for surface-wave tomography, in which JWKB

waveform modelling is first used to obtain a preliminary 1-D S-wave

velocity model along each source–receiver path, and the remaining

residuals are then inverted based upon the Born scattering approx-

imation. Yoshizawa & Kennett (2004) made use of simplified, 2-D,

phase-velocity sensitivity kernels, with a uniform off-path sensi-

tivity within the first one-third Fresnel zone, in a surface-wave to-

mographic study of Australia. On a global scale, Ritzwoller et al.

(2002) have inverted for whole-earth group-velocity maps, using a

simplified, uniform-across-the-path version of the 2-D sensitivity

kernels developed by Spetzler et al. (2002).

In this paper, we investigate finite-frequency effects in global,

long-period, surface-wave, phase-delay tomography, focusing upon

three independent but related topics. First, we compare global
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tomographic results based upon traditional surface-wave ray theory

and 3-D, finite-frequency sensitivity kernels. The finite-frequency

kernels applied in this study are based upon the single-scattering

(Born) approximation, formulated in the framework of surface-wave

mode summation (Zhou et al. 2004). The resulting 3-D kernels

fully account for the effects of directional scattering, the effects

of seismogram windowing or tapering, and the effects of seismic

source radiation. The preferred models of S-wave velocity and radial

anisotropy in the upper mantle obtained using these finite-frequency

sensitivity kernels are documented and discussed in a second paper

(Zhou et al. 2005). In this paper, we show that, at the same level

of model roughness, finite-frequency tomography fits a global dis-

persion data set better than ray-theoretical tomography, and that,

because wave front healing and other diffractional effects are prop-

erly accounted for, anomalies with lateral length scales smaller than

the dominant wavelength are better resolved in finite-frequency to-

mography. Second, we point out that surface-wave scattering due

to lateral heterogeneities is directional dependent, and that this de-

pendence varies with depth; as a result, phase-velocity maps that

are obtained using approximated or simplified 2-D sensitivity ker-

nels may have significant artefacts, and be no more reliable than

those obtained using traditional ray theory. Third and finally, we

develop finite-frequency sensitivity kernels for lateral variations in

crustal thickness, and discuss the fundamentally intractable problem

of making simple and accurate long-period, surface-wave crustal

corrections.

2 T H E O RY

2.1 Ray-theoretical tomography

Traditional surface-wave tomography is based upon JWKB ray

theory—a high-frequency approximation. Strictly speaking, ray the-

ory is valid only if the angular frequency of the waves is infinitely

high. In practice, the surface-wave JWKB approximation is accept-

able if the lateral length scale of the 3-D velocity heterogeneity is

large compared to the characteristic wavelength. In this case, mea-

sured surface-wave phase delays δφ(ω) can be written as a linear

path integral over the source–receiver great-circle ray:

δφ(ω) = −
ω

c(ω)

∫ �

0

δc(ω, l)

c(ω)
dl, (2.1)

where ω is the angular frequency, c(ω) is the unperturbed, spherical-

earth surface-wave phase velocity, l is the distance along the great-

circle ray, and � is the source–receiver epicentral distance. The

frequency-dependent perturbation in surface-wave phase velocity

δc can be expressed in terms of the perturbations in the shear-wave

and compressional-wave velocities β and α through relations of the

form

δc =
∫ R

0

(

∂c

∂β

)

δβ dr, Love waves, (2.2)

δc =
∫ R

0

[ (

∂c

∂β

)

δβ +
(

∂c

∂α

)

δα

]

dr, Rayleigh waves, (2.3)

where the depth-dependent Fréchet derivatives ∂c/∂β and ∂c/∂α

(Dahlen & Tromp 1998, Chapter 11) are functions of radius r and

angular frequency ω, and the integration extends from the centre of

the Earth, r = 0, to the surface, r = R.

2.2 Finite-frequency tomography

In finite-frequency tomography, surface-wave phase delays are sen-

sitive not only to heterogeneities along the source–receiver great-

circle ray, but also to anomalies that are off the reference ray. In

this paper, we apply the 3-D, finite-frequency sensitivity kernels for

fundamental-mode, surface-wave dispersion measurements devel-

oped by Zhou et al. (2004). The measured phase delay at a specific

angular frequency ω is written as a volumetric integration over all

velocity heterogeneities in the 3-D earth ⊕, so that eqs (2.1)–(2.3)

are replaced by:

δφ(ω) =
∫∫∫

⊕
Kβ (ω, x)

δβ

β
(x) d3x, Love waves (2.4)

δφ(ω) =
∫∫∫

⊕

[

Kβ (ω, x)
δβ

β
(x) + Kα(ω, x)

δα

α
(x)

]

d3x,

Rayleigh waves, (2.5)

where we have ignored the effects of density perturbations for sim-

plicity, based on the following considerations: (1) if we assume man-

tle anomalies are dominantly thermal, velocity variations are much

more significant than density variations; and (2) fundamental-mode

surface-wave phase delays are most sensitive to velocity perturba-

tions (Zhou et al. 2004).

The 3-D sensitivity kernels K β (ω, x) and K α(ω, x) are computed

using the single scattering approximation; the effects of surface-

wave cross-branch mode coupling can be fully taken into account

by a double summation over all surface-wave modes at the fre-

quency of interest (Zhou et al. 2004). However, our previous studies

have suggested that the importance of surface-wave cross-branch

mode coupling depends upon the desired spatial resolution, and

that mode-coupling effects may be neglected at the current stage

of global dispersion tomography, because (1) the spatial resolution

is limited by global path coverage and (2) the number of measure-

ments affected by significant surface-wave mode coupling is likely

to be small in hand-picked data sets (Zhou et al. 2004). For these

reasons, we ignore the effects of cross-branch mode coupling in

this tomographic comparison study; this makes the computation of

the finite-frequency sensitivity kernels very efficient. The factors

that determine the geometry of the phase-delay kernels have been

discussed in detail by Zhou et al. (2004); in brief, the cross-path

width of the region of significant sensitivity is proportional to the

square root of the period of the wave. The frequency dependence

of the shear-velocity sensitivity kernel K β (ω, x) is illustrated in

Fig. 1, where it is seen that 5-mHz Love waves show a cross-path

sensitivity that is
√

3 times broader than that of 15-mHz waves. The

3-D sensitivity kernels applied in this study are computed using

the spherically symmetric reference earth model 1066A (Gilbert &

Dziewonski 1975).

3 T O M O G R A P H Y

3.1 Data and model parametrization

To illustrate the importance of accounting for finite-frequency wave

propagation effects in surface-wave tomography, we invert a global

data set of fundamental-mode Love-wave and Rayleigh-wave dis-

persion (Laske & Masters 1996), which include waves that have

propagated along minor arcs (G1, R1) and major arcs (G2, R2), as

well as multiorbits (G3, G4, R3, R4). The phase-delay measurements

are made using a multitaper technique to reduce the bias in spectral

C© 2005 RAS, GJI, 163, 1087–1111



Finite-frequency effects in global surface-wave tomography 1089

Figure 1. 3-D phase-delay sensitivity kernel K β for (a) 15-mHz and (b) 5-mHz fundamental-mode Love waves. Map views of the 15- and 5-mHz sensitivity

kernels K β are plotted at 80 and 250 km depth, respectively (dotted lines in the cross-sections). The cross-path variations in sensitivity at those depths are plotted

below the cross-sections. The seismic source is strike-slip, with Love-wave radiation symmetric about the source–receiver great-circle path (see beachball).

The epicentral distance is 80◦. Letters S, R, A and B denote the source, receiver and endpoints of the cross-section, respectively. Surface-wave mode coupling

effects are ignored.

estimates (Laske & Masters 1996). This data set includes a total

of ∼12 000 wave trains, including both Love waves and Rayleigh

waves. The frequencies of the dispersion measurements range from

5 to 15 mHz, with an interval of 1 mHz. All measurements are resid-

uals with respect to model 1066A (Gilbert & Dziewonski 1975).

We parametrize the surface of the Earth using a set of spherical

triangular grid points (Baumgardner & Frederickson 1985). The tri-

angulation starts with 20 equal spherical triangles, and is iteratively

refined by connecting the midpoint of the three sides of each trian-

gle (Fig. 2). The spherical triangles used in this study are 16-fold,

with 2562 vertexes and 5120 triangles. The lateral spacing between

neighbouring grid points is 4.3◦ ± 0.3◦. We assume that the seis-

mic velocity within any spherical triangle can be approximated by

linear spatial interpolations through the velocities at the three ver-

texes. In the radial (depth) direction, the uppermost 580 km of the

upper mantle is parametrized using nine grid points, with a nominal

grid spacing of 60 km in the uppermost 400 km; velocity pertur-

bations are interpolated linearly between neighbouring depth grid

points.

3.2 The inverse problem

We invert for the fractional S-wave velocity perturbations δβ/β

at the 2562 × 9 = 23 058 grid points. The P-wave velocity per-

turbations are scaled to the S-wave velocity perturbations using the

relation δα/α = 0.5 (δβ/β), adapted from laboratory measurements

based on petrological models of the upper mantle (Montagner &

Anderson 1989). We have experimented with scaling parameters in

the range 0 ≤ (δα/α)/(δβ/β) ≤ 1, and find that the tomographic

results do not vary significantly. The discrete forms of both ray-

theoretical tomography, eqs (2.1)–(2.3), and finite-frequency tomog-

raphy, eqs (2.4)–(2.5), can be written in the canonical form

Am = b, (3.1)

where A is the sensitivity kernel matrix, m is the vector of unknown

parameters δβ/β, and b is the phase-delay data vector. To compute

the finite-frequency kernel matrix A, the numerical integrations in

eqs (2.4)–(2.5) are carried out with spatial samplings that are fine

enough to avoid possible aliasing in the sensitivity kernels; all of
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Figure 2. Icosahedral spherical triangulation (Baumgardner & Frederickson 1985). (a) The starting twenty equal spherical triangles. (b) The refined final

spherical triangles after a 16-fold triangulation; the spatial separation of neighbouring grid points is 4.3◦ ± 0.3◦.

Figure 3. Diagonal elements of the matrix products ATA in ray-theoretical (left) and finite-frequency (right) tomography, plotted at a depth of 180 km. In the

top two maps, (a) and (b), the matrix A includes sensitivities of Love waves with frequencies from 5 to 15 mHz and wave trains G1, G2, G3 and G4. In the

bottom two maps, (c) and (d), the matrix A includes sensitivities of Rayleigh waves with frequencies from 5 to 15 mHz and wave trains R1, R2, R3 and R4.

the sidebands as well as spatial sensitivity variations within the

first Fresnel zone are fully accounted for in the computation. The

diagonal elements of the ray-theoretical and finite-frequency matrix

products ATA, a measure of the spatial coverage of the data, are

plotted in Fig. 3. Naively, we might expect the matrix density ATA

to be more uniform in finite-frequency tomography, because of the

off-ray spreading of the sensitivity. In practice, since the majority of

the great-circle ray paths are not near the maximum of the outgoing

source radiation, the finite-frequency spatial coverage is comparable

to that of ray theory.

Due to limited and uneven global path coverage, as well as con-

tamination of the data by noise, the tomographic equation is under-

determined, and the inverse matrix (ATA)−1 is singular or ill-posed.

In this study, we apply a Laplacian smoothing to regularize the least-

squares inverse problem, (Am − b)T(Am − b) = minimum, and we

simultaneously invert for perturbations to the source origin times

t = (. . . , tk , . . .), so that the tomographic problem becomes

χ 2 + ǫ ||Sm||2 + ǫt ||t||2 = minimum,

where χ2 =
N

∑

i=1

(

Ai j m j + Hik tk − bi

σi

)2

. (3.2)

The quantity N is the total number of phase-delay measurements,

and χ 2 is the data misfit function, with σ i being the observational

C© 2005 RAS, GJI, 163, 1087–1111
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error associated with the ith measurement bi. The product Hik tk rep-

resents the phase delay in the ith observation due to a shift tk in the

origin time of the kth earthquake. Summation over the model pa-

rameter index j and the earthquake index k in eq. (3.2) is understood.

The quantity

||Sm|| ≈
(∫ ∫ ∫

⊕
|∇2(δβ/β)|2 d3x

)1/2

(3.3)

is an approximate, discretized measure of the root-mean-square

(rms) Laplacian of the fractional velocity perturbation. The smooth-

ing parameter ǫ governs the trade-off between the model Laplacian

of the inverted model and the misfit to the data; We choose an

origin-time damping parameter ǫ t such that the perturbations tk are

not greater than ±4 s; because the surface waves used in this study

are long-period (67–200 s), the differences between tomographic

models inverted with and without origin-time corrections are neg-

ligible. The sparse linear tomographic problem, eq. (3.2), is solved

using the LSQR algorithm (Paige & Saunders 1982), iterated un-

til full convergence. If the observations are contaminated by noise

with a Gaussian distribution, the data misfit χ2 of the recovered

earth model should approach the number of observations, that is,

χ 2/N = 1.

We apply crustal corrections to the global phase-delay data set,

based on a global crust model, CRUST2.0 (Laske et al. 2001), which

specifies a seven-layer crust in each 2◦ by 2◦ grid. Maps of the lo-

cal phase-delay corrections due to the CRUST2.0 crustal variations

are computed at each of the discrete frequencies of measurement,

Figure 4. Misfit versus roughness trade-off curves for finite-frequency (FF) and ray-theoretical (RT) tomography. In (a) and (b) both the Love and Rayleigh

‘no-smoothing’ (ǫ = 0) finite-frequency models have roughness ||Sm||/||m̄|| ≈ 0.11; the corresponding ray-theoretical ‘no-smoothing’ models are out of the

scale, with roughnesses ||Sm||/||m̄|| ≈ 0.52 and ||Sm||/||m̄|| ≈ 0.60, for Love and Rayleigh waves, respectively. Plots (c) and (d) show blowups of the regions

outlined by the dotted boxes in (a) and (b). The black stars indicate the chosen ‘optimal’ finite-frequency models discussed in the paper; the white stars are

ray-theoretical models with the same roughness ||Sm||/||m̄||, and the grey stars are ray-theoretical models with the same misfit χ2/N . Map views of the starred

tomographic models are plotted in Figs 5–8.

5–15 mHz, and ray-theoretical crustal corrections are then calcu-

lated for each phase-delay observation by integration along the ray

path. In Section 6, we show that finite-frequency crustal effects upon

long-period surface waves are not negligible; however, boundary

topography sensitivity kernels that are based upon the Born approx-

imation are not sufficiently accurate to account for the large global

variations in Moho depth. The observational errors σ i in eq. (3.2)

are estimated from phase-delay measurements of closely spaced

earthquake pairs, based upon the assumption that the surface waves

excited by these repeating earthquakes sample approximately the

same region of the upper mantle, and therefore should experience

nearly equal phase delays. The rms of the estimated observational

errors is about 45–75 per cent of the rms of the measured phase

delays (Zhou et al. 2005).

4 F I N I T E - F R E Q U E N C Y E F F E C T S

I N 3 - D T O M O G R A P H Y

In this section, we compare S-wave velocity models obtained by

inversion of the same phase-delay measurements using both finite-

frequency and ray-theoretical kernel matrices A. Fig. 4 shows the

trade-offs between the model roughness (normalized model Lapla-

cian) ||Sm||/||m̄|| and the data misfit χ 2/N , where the quantity

||m̄|| = ||m||/
√

N is the rms of the velocity perturbation δβ/β.

The roughness of the model is insensitive to the perturbation norm

||m̄||. In both ray-theoretical and finite-frequency tomography, the

normalized data misfit χ2/N is greater than one, which indicates

C© 2005 RAS, GJI, 163, 1087–1111



1092 Y. Zhou et al.

that the errors assigned to the phase-delay measurements are under-

estimated. In tomographic practice, it is often difficult to estimate the

actual error in the data; furthermore, the assumption that the noise

is Gaussian may be invalid. For these reasons, we do not rescale the

estimated errors in the data to force χ2/N = 1, but instead accept

models with misfits χ 2/N slightly greater than one.

4.1 3-D model comparison: kernels versus rays

The ‘optimal’ finite-frequency tomographic model discussed in this

paper is chosen to be near the lower left corner of the χ2/N versus

||Sm||/||m̄|| trade-off curve, where small reductions in the misfit

to the data begin to require large increases in the roughness of the

model. We compare the ‘optimal’ finite-frequency model (black

stars in Fig. 4) with two different ray-theoretical models, one chosen

to have the same roughness ||Sm||/||m̄|| (white stars) and the other

to have the same data misfit χ 2/N (grey stars). Map views of the

velocity models obtained by independent inversions of the Love-

wave and the Rayleigh-wave data are plotted in Figs 5–8.

The poor agreement between the models obtained by inverting

Love and Rayleigh phase delays confirms that there is strong ra-

dial anisotropy in the upper mantle. A joint Love–Rayleigh inver-

sion using isotropic kernels K β and K α results in a poor data fit,

Figure 5. S-wave velocity model obtained by (a) ray-theoretical tomography and (b) finite-frequency tomography. The two models have the same model

roughness, ||Sm||/||m̄|| ≈ 0.016, with different values of χ2/N , as indicated. The velocity perturbations are with respect to model 1066A, with the spherical

average in each map removed for better illustration. Models are inverted using Love-wave phase delays, and are plotted at depths of 120, 250 and 390 km.

Hotspots are indicated by red triangles, and the age contours (blue) indicate 10 Myr old seafloor. The two models agree in their large-scale structure; however,

anomalies in the finite-frequency tomographic model are stronger in amplitude, with small-scale features better resolved.

with systematic Love–Rayleigh discrepancies, and, only the largest-

scale common structures are well constrained. The inability of a

single isotropic S-wave velocity model to provide a satisfactory fit

to both Love and Rayleigh waves has been widely reported in pre-

vious surface-wave studies (e.g. Anderson 1961; Aki & Kaminuma

1963). In this paper we confine ourselves to independent inversions

of Love and Rayleigh data, and focus upon the comparison between

traditional surface-wave ray theory and finite-frequency sensitiv-

ity kernels. In both the Love-wave and Rayleigh-wave inversions,

finite-frequency tomographic models exhibit a better fit to the data

than ray-theoretical models, at the same level of model roughness

||Sm||/||m̄|| (this is most evident in the magnified trade-off curves

in Fig. 4).

Figs 5 and 6 show map views of δβ/β at depths of 120, 250 and

390 km, obtained by inverting Love-wave phase delays. The ray-

theoretical model in Fig. 5 has the same roughness, ||Sm||/||m̄|| ≈
0.016, as the ‘optimal’ finite-frequency model, whereas the model in

Fig. 6 has the same data misfit, χ2/N ≈ 1.51. The long-wavelength

features in the finite-frequency and ray-theoretical Love-wave

models are in good agreement; in particular, all three models are

characterized by slow anomalies beneath midocean ridges and fast

anomalies beneath continental cratons. A number of small-scale

velocity anomalies that are weak or absent in the ray-theoretical

C© 2005 RAS, GJI, 163, 1087–1111
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Figure 6. Same as Fig. 5, expect that the two models now fit the data equally well, χ2/N ≈ 1.51, with different values of the model roughness ||Sm||/||m̄||,
as indicated. The S-wave velocity anomalies are stronger in the finite-frequency model, especially in the deeper part of the upper mantle.

models can be more easily identified using finite-frequency to-

mography; notable examples are the slow anomalies at 390 km

depth beneath the southern Pacific superswell, the Red Sea, the

Basin and Range Province, and the North Mid-Atlantic Ocean.

Figs 7–8 show map-view comparisons of the equal-roughness,

||Sm||/||m̄|| ≈ 0.022, and equal-misfit, χ2/N ≈ 1.22, models

obtained by inverting Rayleigh-wave phase delays. The essential

observations are similar to those in the Love-wave comparisons.

In the central Pacific, the differences between the ray-theoretical

and finite-frequency Rayleigh-wave models are significant in the

middle portion of the upper mantle; the western Pacific subduc-

tion zones are better resolved in the finite-frequency model, par-

ticularly at 390 km depth. Geographically, there does not appear

to be any correlation between the ray-path density (Fig. 3) and the

differences between the ray-theoretical and finite-frequency tomo-

graphic velocity models. For example, the models differ signifi-

cantly in the southern Pacific Ocean, where the ray-path coverage

is relatively poor; on the other hand, there are also large differences

beneath western North America, where the coverage is relatively

dense.

In both the Love-wave and Rayleigh-wave comparisons, the finite-

frequency model has stronger small-scale anomalies than either

the equal-roughness or the equal-misfit ray-theoretical model. This

is mainly because the 3-D sensitivity kernels applied in finite-

frequency tomography account for the effects of wave front healing,

that is, a diverging or converging surface wave heals as it propagates

beyond the causative fast or slow velocity anomaly. As a result, the

phase delays observed at seismic stations are generally smaller than

the original phase delay incurred by a wave upon passage through

an anomaly. In ray theory, wave front healing effects are not ac-

counted for, and as a result, the recovered anomalies are generally

weaker in amplitude. Analogous finite-frequency effects in body-

wave tomography have been noted by Montelli et al. (2004) and

Hung et al. (2004). The main result is the same for surface waves

as for body waves: finite-frequency tomography generally recovers

stronger small-scale anomalies than ray theory.

The mean velocity perturbation at every depth has been sub-

tracted, so that the lateral variations in all of the maps 5–8 average

to zero. The updated, spherically averaged velocity profiles β(r ) ob-

tained by finite-frequency tomography and ray-theoretical tomogra-

phy are compared in Fig. 9. The degree-zero profiles β(r ) are seen

to be almost identical, so maps in Figs 5–8 can be properly com-

pared. The rms velocity perturbations 〈(δβ/β)2〉1/2 are also plotted

versus depth in Fig. 9. Regardless of whether the ray-theoretical

model is constrained to have the same roughness, ||Sm||/||m̄||, or

the same data misfit, χ 2/N , the rms velocity anomalies in the ‘op-

timal’ finite-frequency model are larger at all depths, by as much as

30 per cent.
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Figure 7. Same as Fig. 5, except for Rayleigh waves rather than Love waves. The two models have the same roughness ||Sm||/||m̄|| ≈ 0.022.

4.2 Spectral power and model correlations

To further investigate the enhancement of small-scale features in

finite-frequency tomography, we decompose the S-wave velocity

maps into spherical harmonics. We use the real spherical harmonic

convention of Dahlen & Tromp (1998, Section B.8), in which a real,

zero-mean, function of geographical position ψ(θ , φ) is expanded

in the form

ψ(θ, φ) =
∞

∑

l=1

[

al0 X l0(θ ) +
√

2

l
∑

m=1

X lm(θ )(alm cos mφ + blm sin mφ)

]

, (4.1)

where the orthonormality relation governing the real colatitudinal

harmonics Xlm (θ ) is
∫ π

0

X lm(θ )X l ′′ (θ ) sin θdθ =
1

2π
δll ′ . (4.2)

The power per degree l and per unit area is defined by

Pl =
1

2l + 1

[

a2
l0 +

l
∑

m=1

(

a2
lm + b2

lm

)

]

, (4.3)

and the correlation coefficient Cl is defined by

Cl =
al0a′

l0 +
l

∑

m=1

(alma′
lm + blmb′

lm)

√

l
∑

m=1

(

a2
lm + b2

lm

)

√

l
∑

m=1

(

a′2
lm + b′2

lm

)

, (4.4)

where alm, blm and a′
lm, b′

lm are the real spherical expansion har-

monic coefficients of the two velocity maps being compared. The

power spectral density Pl of the velocity perturbations δβ/β, as

well as the finite-frequency versus ray-theoretical correlation co-

efficients Cl are plotted versus spherical harmonic degree l, at the

three depths 120, 250 and 390 km, in Figs 10 and 11. The spec-

tral comparisons confirm that the imaged velocity anomalies are

in general ‘stronger’ in finite-frequency tomography. The correla-

tion Cl between the ray-theoretical and finite-frequency models de-

creases rapidly with increasing spherical harmonic degree above l ≈
10; in addition, the correlation is markedly weaker at greater depth

(390 km) in both the Love-wave and the Rayleigh-wave inversions.

These are both expected results, inasmuch as finite-frequency effects

become more significant with increasing wavelength, and deep-

seated structures are mainly constrained by long-period surface

waves. In Fig. 10, where the two models have the same roughness

||Sm||/||m̄||, there is a clear and growing excess of high-degree

power in the finite-frequency model; this scale dependence of the

difference in Pl versus l is not as pronounced in Fig. 11, where the

two models fit the phase-delay data equally well but have different

roughness.

4.3 Checkboard tests: scale-dependent resolution

In this subsection we investigate the resolution and fidelity of

ray-theoretical and finite-frequency tomography using synthetic

checkboard tests. The input checkboards consist of five
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Figure 8. Same as Fig. 6, except for Rayleigh waves rather than Love waves. The finite-frequency and ray-theoretical models have the same data misfit,

χ2/N ≈ 1.22. Small-scale structures differ significantly between the two models throughout the upper mantle.

Figure 9. Depth variation of the spherically averaged S-wave velocity β and the rms variation of the 3-D perturbations, 〈(δβ/β)2〉1/2, for both finite-frequency

(FF) and ray-theoretical (RT) tomography.
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Figure 10. Plots (a) and (c) show the spherical-harmonic power spectral density Pl of finite-frequency (FF) and ray-theoretical (RT) S-wave velocity models

of the same roughness ||Sm||/||m̄||; plots (b) and (d) show the correlation coefficient Cl between the same two models. Map views of these equal-roughness

velocity models are plotted in Figs 5 and 7. In general, finite-frequency tomographic models (solid lines) have higher power than ray-theoretical tomographic

models (dashed lines), especially at shorter length scales, with spherical harmonic degrees l > 10. The correlation between ray-theoretical and finite-frequency

models decreases rapidly for small-scale structures with spherical harmonic degree l > 10; in addition, the correlation becomes significantly weaker at greater

depth.

high-velocity and five low-velocity Gaussian S-wave anomalies;

The anomaly amplitudes are maximum at a depth z0 = 180 km,

and fall off exponentially above and below, A = A0e− f |z−z0|, with

a decay rate f = 0.0125 km−1. Synthetic Love-wave phase delays

are computed using the finite-frequency relation in eq. (2.4), with

the same source–receiver and wave train configurations (G1, G2,

G3, G4) as in the Love-wave global data set used in the above

study. To mimic the measurement errors in the actual phase de-

lay data, we add Gaussian noise to the synthetic delays; the rms

of the noise is chosen to be about 50 per cent of the rms of the

signal. To understand the scale dependence of the resolution, we

use synthetic checkboards with anomalies of two different sizes:
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Figure 11. Same as Fig. 10, but for S-wave velocity models with the same data misfit χ2/N . Map views of these equal-misfit models are plotted in Figs 6

and 8.

large anomalies with a surface radius ∼2400 km and a peak am-

plitude of A0 = ±7 per cent, and small anomalies with a surface

radius ∼600 km and a peak amplitude of A0 = ±5 per cent. The

misfit versus roughness trade-off curves are plotted in Fig. 12, and

the output checkerboards recovered using finite-frequency kernels

and ray theory are plotted in Fig. 13. At approximately the same

level of model roughness ||Sm||/||m̄|| in Fig. 12, the data misfit

χ 2/N of the ray-theoretical models exceeds that of the correspond-

ing finite-frequency models. The plotted finite-frequency models

(black stars) fit the synthetics at the expected level, χ2/N = 1,

whereas the misfits of the plotted ray-theoretical models (white stars)

are always higher than this, χ2/N > 1, due to the theoretical short-

comings of ray theory. The large-scale features of the input anoma-

lies are well resolved in both finite-frequency and ray-theoretical

tomography; however, there are significant small-scale artefacts in

the ray-theoretical models, particularly at greater depths (250 km).

The synthetic checkboard tests both illustrate the limitations of

ray theory in resolving small-scale lateral heterogeneities, and

confirm that the spatial resolution of finite-frequency tomogra-

phy is adequate for the path coverage of the global Love-wave
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Figure 12. Trade-off curves of the checkboard tests for (a) large and (b) small anomalies. The ‘optimal’ models, shown as stars in the trade-off curves,

are plotted in Fig. 13. Ray-theoretical inversions always show data misfit larger than χ2/N = 1, due to the theoretical errors inherent in ray theory. The

finite-frequency ‘no-smoothing’ (ǫ = 0) models have roughnesses ||Sm||/||m̄|| equal to 0.06 and 0.07 for (a) large and (b) small anomalies, respectively; the

ray-theoretical “no-smoothing” models have roughnesses ||Sm||/||m̄|| equal to 0.28 and 0.11 for large and small anomalies, respectively.

Figure 13. Checkboard resolution tests of finite-frequency and ray-theoretical surface-wave tomography. (a) The checkboard anomalies are smooth Gaussian

anomalies, with a peak amplitude of ±7 per cent at 180 km, and a radius ∼2400 km. The amplitude of the anomalies decreases both upward and downward,

with an exponential decay rate f = 0.0125 km−1. (b) The peak amplitude of the Gaussian anomalies is ±5 per cent at 180 km, and the radius is ∼600 km. The

synthetic Love-wave phase delays are computed using 3-D sensitivity kernels, with the same path and frequency configurations as in the global data set used in

this paper. The output models are all inverted with 50 per cent synthetic Gaussian noise. Ray-theoretical tomography recovers the large-scale structure of the

input model, but it poorly resolves small-scale anomalies, especially at deep depth (250 km). The trade-off curves are plotted in Fig. 12.
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Figure 14. Synthetic checkerboard tests to determine the depth resolution of (a) Love waves and (b) Rayleigh waves. The input model consists of 10 Gaussian

anomalies, with a peak amplitude of 10 per cent. The radius of the anomaly is about 20◦, the size and amplitude of the anomalies do not vary with depth down

to 580 km. Synthetic phase delays are inverted with 50 per cent (rms) Gaussian noise. Models in the right panels are inverted with strong damping below

330 km depth. The rms variation 〈(δβ/β)2〉1/2 of the input and output models are plotted versus depth in Fig. 15.

data-set used in this study. It is noteworthy that the same relation

between the trade-off curves (i.e. the fact that finite-frequency to-

mography fits the data better than ray theory) is evident in our inver-

sions of the actual phase-delay measurements (Fig. 4). This similar-

ity in the pattern of the trade-off curves confirms the significance of

the finite-frequency effects in our global phase-delay inversions.

4.4 Checkboard tests: depth resolution of finite-frequency

tomography

The differences between the ray-theoretical and finite-frequency

checkerboards in Fig. 13 become more significant with increasing

depth; this is expected, since the lateral extent of finite-frequency,

off-path sensitivity is stronger for longer-period surface waves.

However, it is possible that these differences in deep structure may

be introduced by a lack of depth resolution, as a result of limited

data and uneven path coverage. Because noise in the data can be

accommodated differently in ray-theoretical and finite-frequency

tomography, it is important to determine whether the model

resolution is significant at the depths of comparison. We inves-

tigate the depth resolution of finite-frequency tomography using

the checkboard test illustrated in Fig. 14. The input model con-

sists of five high-velocity and five low-velocity Gaussian cylinders

with a peak amplitude of ±10 per cent; in this case, the radius and
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Figure 15. Depth resolution of the fundamental-mode Love waves and Rayleigh waves used in this study. Plots (a) and (b) show the rms depth profiles

〈(δβ/β)2〉1/2 of the Gaussian checkerboard models in Fig. 14(a). Plots (c) and (d) show the corresponding depth profiles of the models in Fig. 14(b). In (b) and

(d) strong damping is applied to structures deeper than 330 km in the inversion; this results in large errors in the output model at shallow depths. The results of

these resolution tests indicate both that the Love-wave and Rayleigh-wave data used in the paper have significant sensitivity to structures below 330 km, and

that Rayleigh waves have stronger sensitivity at below 330 km depth than Love waves.

amplitude of the anomalies are constant down to a depth of 580 km.

As before, to make the inversion more realistic, we invert syn-

thetic Love-wave and Rayleigh-wave phase delays contaminated by

50 per cent (rms) random noise. The output models exhibit roughly

Gaussian cylinders reasonably well-recovered geographically at all

depths; as expected, the recovered anomalies are weaker at greater

depths because of the reduced data sensitivity (Fig. 14). To test

the model resolution in the lowermost upper mantle, we perform

additional inversions, in which strong norm damping is applied to

anomalies deeper than 330 km. The resulting velocity models show

significant artefacts at shallow depths, especially in the Rayleigh-

wave inversion. All of the output models in Fig. 14 fit the syn-

thetic Love-wave phase-delay data equally well (χ2/N = 1). The

rms variation of the recovered models is plotted versus depth in

Fig. 15. This final series of checkboard tests indicates that model

resolution below 330 km is less than that at shallower depths; nev-

ertheless, the sensitivity in the lowermost upper mantle is suffi-

cient that reliable model comparisons may be made even at those

depths.

5 F I N I T E - F R E Q U E N C Y E F F E C T S

I N P H A S E - V E L O C I T Y M A P S

In traditional, ray-theoretical, surface-wave tomography, dispersion

data are often used to make 2-D maps of the fractional perturba-

tion in phase velocity, δc/c, at discrete frequencies (e.g. Trampert

& Woodhouse 1995; Laske & Masters 1996; Ekström et al. 1997).

Phase-velocity perturbations at high frequencies are associated with

S-wave velocity perturbations at shallow depths, whereas perturba-

tions at low frequencies are influenced by velocity anomalies down

to greater depth. The intermediate 2-D phase velocity maps are

then used as input ‘data’ to constrain 3-D S-wave velocity anoma-

lies, using depth-dependent Fréchet kernels ∂c(ω)/∂β(r ). It has

been pointed out that in the presence of lateral heterogeneities,

surface-wave phase-velocity measurements can be contaminated by

interference from scattered arrivals (Wielandt 1993). Whenever the

length scale of lateral heterogeneities is comparable to the wave-

length of the surface waves, finite-frequency effects must be taken

into account. 2-D sensitivity kernels for the local phase-velocity

C© 2005 RAS, GJI, 163, 1087–1111



Finite-frequency effects in global surface-wave tomography 1101

Figure 16. Depth and directional dependence of surface-wave scattering. (a) Cartoon illustrating the single scattering of a surface wave. The quantities k1

and k2 are the wavevectors of the incoming and scattered waves, respectively; the scattering angle η is measured counter-clockwise from k1 to k2. (b) Love

wave scattering pattern, that is, the scattering strength |�β | (Zhou et al. 2004) as a function of η, for S-wave velocity heterogeneities at depths of 400 km (solid

line) and 100 km (dashed line). (c) Rayleigh wave scattering pattern for S-wave velocity heterogeneities at 400 km (solid line) and 100 km (dashed line). For

both Love and Rayleigh waves, the directionality of the scattering depends upon depth.

perturbation, based upon the single-scattering approximation, have

been developed (Spetzler et al. 2002; Zhou et al. 2004), and simpli-

fied 2-D sensitivity kernels have been applied in regional and global

tomographic studies (Ritzwoller et al. 2002; Yoshizawa & Kennett

2004).

2-D phase-velocity sensitivity kernels are based upon a forward-

scattering approximation, in which the directional dependence of

seismic scattering is ignored; as a result, phase-velocity kernels

have large oscillatory sidebands beyond the first Fresnel zone. These

sidebands will be partly cancelled out by frequency averaging, if

the time windows applied in making the phase-delay measurements

are short; however, cancellation due to frequency averaging is very

limited for long-period dispersion measurements, because the time

windows required to make these measurements need to be long

enough to include the dominant wave packets (Zhou et al. 2004).

The off-ray sidebands are much less prominent in the 3-D sensitiv-

ity kernels depicted in Fig. 1, because the directional dependence of

surface-wave scattering is properly taken into account. The direc-

tional scattering patterns for 5-mHz Love and Rayleigh waves are

plotted in Fig. 16, for scatterers at depths of 100 km (dashed line)

and 400 km (solid line). The strong depth dependence of the scatter-

ing makes surface-wave propagation in the presence of small-scale

lateral heterogeneities a fully 3-D process.

Application of the forward-scattering approximation (η = 0 in

Fig. 16) reduces the 3-D integral in eqs (2.4)–(2.5) to a 2-D integral

over the local fractional phase-velocity perturbation:

δφ(ω) =
∫∫

�

Kc(ω, r̂)
δc

c
(ω, r̂) d�. (5.1)

The quantity Kc is the phase-velocity sensitivity kernel, and the

integration is over all geographical positions r̂ on the surface �

of the unit sphere. In the remainder of this section, we compare

tomographic results obtained using four different phase-velocity

sensitivity kernels Kc that are based on different simplifications,

and we point out that small-scale structures in tomographic mod-

els depend not only upon the geometry of the sensitivity kernels in

the first Fresnel zone, but also upon the kernel sidebands beyond

the first Fresnel zone. We conclude from this comparison that 2-D

phase-velocity sensitivity kernels based upon the forward-scattering

approximation or other simplifications do not reliably take into ac-

count surface-wave finite-frequency effects.

5.1 Phase-velocity sensitivity kernels

Plots of the simplified phase-velocity sensitivity kernels are shown

in Fig. 17. The so-called ‘wide-band’ and ‘narrow-band’ kernels are

the phase-velocity sensitivity kernels of Zhou et al. (2004), with the

oscillatory sidebands arbitrarily truncated at the fifth and third zero

crossings, respectively. The ‘Colorado’ kernel and the ‘Australia’

kernel are simplified ‘fat’ rays, in which ray-theoretical sensitivities

are uniformly spread over a selected width across the great-circle

path. The sensitivity in the Colorado kernel is confined to a re-

gion �1 + �2 − � ≤ 3λ/8, where λ is the wavelength, �1 and

�2 are the source-to-scatterer and scatterer-to-receiver great-circle

distances, and � is the source–receiver epicentral distance. Such

a uniform-sensitivity ‘fat ray’ was applied by the seismic group at

the University of Colorado in global group-velocity tomography
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Figure 17. Examples of 2-D phase-velocity sensitivity kernel Kc. Green star and triangle denote the source and receiver, respectively. The wide-band and

narrow-band sensitivity kernels are computed using the expressions given by Zhou et al. (2004), with the sidebands truncated at the fifth and third zero-crossing,

respectively. The Colorado kernel, in which the cross-path sensitivity is constant within the region �1 + �2 − � ≤ 3λ/8 is adapted from Ritzwoller et al.

(2002). The Australia kernel is that proposed to Yoshizawa & Kennett (2002), with a cross-path width �1 + �2 − � ≤ λ/18.

(Ritzwoller et al. 2002). The cross-path width of the Australia ker-

nel is one-third of the first Fresnel zone, that is, �1 + �2 − � ≤
λ/18 (Yoshizawa & Kennett 2002). Such a narrower ‘fat ray’ has

been applied in Australian regional phase-velocity tomography by

Yoshizawa & Kennett (2004).

5.2 Phase-velocity kernel comparisons

Love-wave phase-velocity maps at 5 and 15 mHz obtained using

traditional ray theory, eq. (2.1), as well as the four different phase-

velocity sensitivity kernels in eq. (5.1), are plotted in Fig. 18. All of

the recovered maps fit the data equally well (χ 2/N ≈ 2). We attribute

our inability to fit the data better than this to be due to the severity of

the approximations used in the computation of the phase-velocity

kernels. Regardless of the approximate inversion procedure, the re-

sults agree regarding the distribution and amplitude of large-scale

anomalies. However, the smaller-scale heterogeneities vary signifi-

cantly among the maps obtained using different sensitivity kernels,

especially at low frequency (5 mHz). The maps obtained using the

Colorado finite-frequency kernel exhibit the strongest amplitudes,

whereas those obtained using the Australia kernel most closely re-

semble the ray-theoretical maps, due to the assumed narrow region

of sensitivity. The differences between the maps obtained using the

wide-band and narrow-band kernels are far from negligible, par-

ticularly at at 5 mHz, where differences exist in the Pacific and

Indian Oceans. This indicates that the sensitivity outside of the first

Fresnel zone can have significant effects on the resolution of small-

scale anomalies; in fact, these differences can be as large as those

between ray-theoretical tomography and finite-frequency tomogra-

phy using 2-D phase-velocity kernels.

5.3 Phase-velocity checkboard tests

The poor resolution of small-scale anomalies in low-frequency

phase-velocity maps can be further demonstrated by synthetic

checkboard tests (Fig. 19). The synthetic 3-D model is the same

as in the top panel in Fig. 13; the radius of the Gaussian anomalies

is ∼2400 km. The synthetic phase delays at 5 mHz are generated fol-

lowing the same procedure as in Fig. 13, and the rms of the added

random noise is again about 50 per cent of the rms of the struc-

tural signal. The output models in Fig. 19, all fit the phase-delay

data approximately equally well (χ2/N ≈ 2). The checkboard tests

confirm that large-scale structure can be resolved in phase-velocity

tomography, whereas small-scale structures are distorted in all

phase-velocity maps regardless of the inversion method. The trade-

off curves of the checkboard phase-velocity inversions are plotted
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Figure 18. Love-wave phase-velocity maps at (a) 5 mHz and (b) 15 mHz, obtained using the four phase-velocity sensitivity kernels in Fig. 17, compared with

the phase-velocity maps obtained using ray theory (top row). All maps fit the data equally well, χ2/N ≈ 2.

C© 2005 RAS, GJI, 163, 1087–1111



1104 Y. Zhou et al.

Figure 19. Checkboard resolution tests of the four phase-velocity sensitivity kernels in Fig. 17. (a) Input Love-wave phase-velocity map at 5 mHz, computed

from the 3-D checkboard input model in Fig. 13(a). (b) Output model obtained using ray theory. (c)–(f) Output models obtained using the four 2-D, finite-

frequency, phase-velocity kernels. All of the output models fit the synthetic data equally well, χ2/N ≈ 2. The misfit versus roughness trade-off curves are

plotted in Fig. 20. Inversions using phase-velocity kernels are unable to recover the input model any more faithfully than ray theory.

Figure 20. Trade-off curves of 5-mhz Love-wave phase-velocity checkboard tests. Models with data misfit χ2/N ≈ 2 (stars) are plotted in Fig. 19. The

trade-off curves are all very close, indicating that inversions using 2-D, finite-frequency, phase-velocity kernels do not fit the synthetic phase-delay data any

better than ray theory.

in Fig. 20. The similarity between the ray-theoretical and the various

finite-frequency trade-off curves indicates that 2-D phase-velocity

sensitivity kernels are unable to fit the synthetic data any better than

ray theory. Models that fit the data to within the errors (χ2/N = 1)

are at the far right end of the trade-off curves, where the resulting

tomographic models have been adjusted well beyond the bounds

of physical reasonability to fit the noise in the data, and the model

roughness increases rapidly in return for very small reductions in

data misfit.

5.4 Unreliability of phase-velocity kernels

We conclude from the above comparisons that large-scale features

in ray-theoretical phase-velocity maps can be trusted, but that 2-D
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phase-velocity sensitivity kernels are unable to recover small-scale

anomalies significantly better than ray theory. The directionality of

surface-wave scattering must be neglected in order to derive a self-

consistent, 2-D, phase-velocity sensitivity kernel Kc, and this is not

a very satisfactory approximation, particularly at the longest peri-

ods. Accurate imaging of small-scale heterogeneities requires the

use of 3-D, finite-frequency sensitivity kernels, with the full direc-

tional dependence of the surface-wave scattering properly taken into

account.

6 F I N I T E - F R E Q U E N C Y C RU S TA L

C O R R E C T I O N S

Lateral variations in the thickness and structure of the earth’s

crust exert significant effects upon fundamental-mode surface-wave

phase delays, even at long period (e.g. Dziewonski 1971). In long-

period, mantle surface-wave tomography, crustal contributions to

the phase delay are usually removed by applying crustal corrections.

It has been noticed that corrections based upon linear perturbation

theory may not be adequate in global surface-wave tomography be-

cause of the large variation in thickness between oceanic and conti-

nental crust (Montagner & Jobert 1988). On the other hand, crustal

corrections based upon ray theory may be inadequate due to finite-

frequency wave front healing, scattering and diffraction effects. In

this section, we formulate finite-frequency sensitivity kernels for

variations in the depth of the Moho, and investigate the effects of

crustal thickness variations upon long-period surface-wave phase

delays, based upon the first-order single-scattering approximation.

For brevity, we suppress the dependence upon angular frequency ω.

6.1 Moho boundary sensitivity kernels

Consider a spherically symmetric reference earth model, in which an

internal solid–solid boundary (the Moho), denoted by�, is subject to

a topographic perturbation δd , considered to be positive if the Moho

is elevated. The surface-wave Green tensor G and associated stress

tensor T are perturbed as a result of this topographic displacement:

G → G + δG, T → T + δT. (6.1)

The perturbations δG and δT satisfy the elastic momentum equation

−ρω2δG + ∇ · δT = 0 in ⊕, (6.2)

and the perturbed kinematic and dynamic boundary conditions

[δG]+− = −δd [∂r G]+− on �, (6.3)

[r̂ · δT]+− = −δd [r̂ · ∂r T]+− + ∇�δd [T]+− on�, (6.4)

where r̂ is the outward pointing radial unit vector, ∇� = ∇ − r̂∂r

is the tangential gradient operator, and the symbol [ · ]+− denotes the

jump discontinuity in the enclosed quantity in going from above to

below the unperturbed spherical boundary. Upon utilizing the seis-

mic representation theorem (Dahlen & Tromp 1998; Aki & Richards

2002), the Green tensor perturbation δGrs can be expressed as

δGrs =
∫∫

�

[

(r̂ · Txr)
T · δGxs − GT

xr · (r̂ · δTxs)
]+
− d�. (6.5)

We have adopted the same notation as in Zhou et al. (2004), in which

the roman subscripts s, r and x designate the source, receiver and

the scatterer. The quantities δGxs and δTxs represent perturbations

in the Green tensor and associated stress tensor at the scatterer x due

to a point-source at the source s. Because the unperturbed traction

is continuous across the solid–solid boundary, [r̂ · Txs]
+
− = 0, these

perturbations satisfy the relation (Dahlen & Tromp 1998, eq. 13.64)

[r̂ · δTxs · Grx + r̂ · Txs · δGrx]+− = −δd [r̂ · ∂r Txs · Grx

+ r̂ · Txs · ∂r Grx]+−

+ ∇�(δd) · [Txs · Grx]+−. (6.6)

Upon substituting eq. (6.6) into eq. (6.5) and utilizing the surface

version of Gauss’s theorem (Dahlen & Tromp 1998, eq. A.79), the

Green tensor perturbation δGrs due to the Moho depth perturbation

δd becomes

δGrs =
∫∫

�

δd [ −ρ ω2GrxGxs + εxs :C :εrx]+− d�

−
∫∫

�

δd [ r̂ · (C :εxs) · ∂r Grx + r̂ · (C :εrx) · ∂r Gxs]
+
− d�.

(6.7)

The quantity C is the fourth-order elastic tensor, and ε = (1/2)

[ ∇G + (∇G)T ] is the third-order strain tensor. The 2-D integration

is over the unperturbed spherical Moho �.

The far-field surface-wave Green tensor Grs in a spherically sym-

metric earth model can be written as a summation over all surface-

wave modes σ (Snieder & Nolet 1987; Dahlen & Tromp 1998,

Section 11.3):

Grs =
∑

σ

p∗
s pr e−i(k�−nπ/2+π/4)

√
8πk|sin �|

, (6.8)

where p = r̂U − i k̂V + i(r̂ × k̂)W is the surface-wave polarization

vector, with U (r ), V (r ) and W (r) being the surface-wave displace-

ment eigenfunctions. The quantity k is the wavenumber, k̂ is the

unit wavevector in the direction of propagation, and n is the po-

lar passage index, or the number of times that the wave train has

passed through either the source or its antipode. The quantity �

is the source–receiver epicentral distance; the asterisk denotes the

complex conjugate. Upon substituting the Green tensor, eq. (6.8),

into eq. (6.7), the perturbation δGrs becomes a double summation

over all surface-wave modes:

δGrs =
∑

σ ′

∑

σ ′′

∫∫

�

δd

×

(

p′∗
s p′′

r

e−i[k′�′+k′′�′′−(n′+n′′−1)π/2]

8π
√

k ′k ′′| sin �′|| sin �′′|
[

�(1) + �(2)
]+
−

)

d�,

(6.9)

where the single and double primes refer to the surface-wave mode

σ ′ along the source-to-scatterer leg and the surface-wave mode σ ′′

along the scatterer-to-receiver leg, respectively. The quantities �′

and �′′ are the source-to-scatterer and scatterer-to-receiver great-

circle distances, respectively. Finally, k ′ = kσ ′ and k ′′ = kσ ′′ are the

wavenumbers of surface-wave modes σ ′ and σ ′′, whereas n′ = nσ ′

and n′′ = nσ ′′ are the associated polar-passage indices. The boundary

scattering coefficients �(1) and �(2) for an isotropic reference earth

model are given in Appendix A. We have adopted the surface-wave

normalization of Tromp & Dahlen (1992).

The unperturbed displacement of surface-wave mode σ gener-

ated by a moment-tensor source in the symmetrically symmetric

reference earth model is (Snieder & Nolet 1987; Dahlen & Tromp

1998, Section 11.4)

s = (iω)−1
[

M :∇sG
T
rs

]

· ν̂ = S

(

e−i(k�−nπ/2+π/4)

√
8πk|sin �|

)

R, (6.10)

where ν̂ is the unit vector describing the polarization of the seis-

mometer at the receiver, and M is the source moment tensor. The
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source and receiver terms S = (iω)−1(M : Es
∗) and R = pr · ν̂,

where E = (1/2) [∇p + (∇p)T] is the surface-wave strain tensor,

are given in Zhou et al. (2004).

The perturbation in surface displacement produced by a moment-

tensor source is (Snieder & Nolet 1987; Dahlen & Tromp 1998,

Section 11.4):

δs = (iω)−1M :∇s

[

δGT
rs

]

· ν̂. (6.11)

Upon substituting eq. (6.9) the displacement of the scattered wave,

eq. (6.11), becomes

δs =
∑

σ ′

∑

σ ′′

∫∫

�

δd

×

(

S
′ [

�(1) + �(2)
]+
− R

′′ e−i[k′�′+k′′�′′−(n′+n′′−1)π/2]

8π
√

k ′k ′′ sin �′|| sin �′′|

)

d�,

(6.12)

where S ′ = (iω)−1M : E′∗
s and R′′ = p′′

r · ν̂ are the source and

receiver term of the scattered wave, respectively.

Correct to first order in the small perturbations, phase-delay per-

turbations δ φ can be related to displacement perturbations δs by

δφ = −Im [δs/s]. Upon utilizing eqs (6.10) and (6.12), the phase-

delay perturbation δφ can be written as 2-D integral over the bound-

ary �:

δφ =
∫∫

�

Kd δd d�, (6.13)

where the boundary sensitivity kernel is given by

Kd =

−Im

(

∑

σ ′

∑

σ ′′

S ′

S

R′′

R

e−i[k′�′+k′′�′′−k�−(n′+n′′−n)π/2+π/4]
√

8π (k ′k ′′/k)(| sin �′|| sin �′′|/| sin �|)

×
[

�(1) + �(2
]+
−

)

.
(6.14)

In the rest of this section, we ignore the effects of mode coupling,

and consider only fundamental-mode surface waves, that is, σ ′ =
σ ′′ = σ = 0. The boundary sensitivity kernel in the absence of mode

coupling can be written as:

Figure 21. 2-D Fréchet kernels Kd , expressing the sensitivity to Moho depth variations, for 10-mHz fundamental-mode Love-wave phase delays. The Moho

depth in model CRUST2.0 (Laske et al. 2001) is contoured with a 10 km interval. In example (a) the cross-path crustal thickness variations are small and ray

theory may be a good approximation. In example (b), the ray path runs along a continent–ocean boundary, and the variations in crustal thickness are significant

within the sensitive region. The triangles indicate seismic stations; earthquake focal mechanisms are indicated by the beachballs.

Kd = −Im

(

S ′

S

R′′

R

e−i[k�′+k�′′−k�−(n′+n′′−n)π/2+π/4]
√

8πk(| sin �′|| sin �′′|/| sin �|)

×
[

(�(1) + �(2))
]+
−

)

. (6.15)

It can be shown, upon applying the forward-scattering and paraxial

approximations as in Zhou et al. (2004, Sections 6 and 7), that if the

cross-path length scale of the boundary-depth variations is much

larger than the seismic wavelength, eqs (6.13) and (6.15) reduce to

ray theory,

δφ =
∫ �

0

δd

[(

−
k

c

) (

∂c

∂d

)]

dl, (6.16)

where (∂c/∂d) is the boundary Fréchet derivative for spherically

symmetric (1-D) boundary depth perturbations (Dahlen & Tromp

1998, Sections 9.3 and 11.8).

Examples of the Moho boundary sensitivity kernel Kd for 10-mHz

fundamental-mode minor-arc Love waves are plotted in Fig. 21. The

geometry of the boundary kernels is similar to 3-D velocity kernels

at a specific depth, that is, the width of the kernel becomes narrower

near the source (or receiver) where the sensitivities are relatively

strong. In the example shown in Fig. 21(a), we may expect ray theory

to be a good approximation over the Pacific Ocean, where variations

in crustal thickness are smooth and the length scale of the variations

is larger than the wavelength of the 10-mHz Love wave. However,

ray theory may not be adequate whenever the source–receiver path

is along a continent–ocean boundary, as in Fig. 21(b), so that the

crustal thickness varies significantly across the great-circle ray path.

6.2 Crustal corrections

The magnitude of the finite-frequency effects due to lateral varia-

tions in crustal thickness is shown in Fig. 22, in which ray-theoretical

crustal corrections are plotted versus corrections made using finite-

frequency boundary sensitivity kernels, for the suite of path config-

urations used in this study. To compute both corrections, we use the

global crustal model, CRUST2.0 (Laske et al. 2001), which speci-

fies a seven-layer crust in each 2◦ by 2◦ global cell. For simplicity,

only variations in the crustal thickness (i.e. Moho depth) are consid-

ered in this comparison. Ray-theoretical crustal corrections are path

integrals of the local phase-velocity perturbations, computed using
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Figure 22. Finite-frequency effects of Moho depth perturbations upon Love and Rayleigh waves. Ray-theoretical crustal corrections are path integrals of

the local crustal phase delay computed using linear perturbation theory; finite-frequency predictions are computed using the 2-D boundary sensitivity kernels

derived in this paper. The scatter plots include corrections for all Love wave trains G1, G2, G3 and G4, and all Rayleigh wave trains R1, R2, R3 and R4 in our

global data set. The reference earth model has a globally averaged seven-layer crust on top of the 1066A mantle. For many paths, finite-frequency effects are

not negligible, more so for Love waves and especially at low frequencies (5 mHz).

eq. (6.16). The finite-frequency crustal corrections are computed us-

ing eqs (6.13) and (6.15), with mode-coupling effects ignored. The

scatterplots in Fig. 22 show that finite-frequency effects in crustal

corrections are significant, and that ray-theoretical corrections may

not be sufficient in making crustal corrections. In general, finite-

frequency effects are more significant for long-period waves than

for short-period waves, and they are more significant for Love waves

than for Rayleigh waves.

The finite-frequency sensitivity kernels derived in this paper are

based upon first-order perturbation theory, which is valid when-

ever the perturbations with respect to the reference earth model are

small. To determine whether the boundary kernels are reliable for

making crustal corrections, we examine the validity of linear per-

turbation theory in global crustal corrections, by comparing exact

crustal phase delays with predictions based upon linear perturba-

tion theory. The exact phase delays in each 2◦ by 2◦ global cell are

computed by solving the radial equations for spherically symmet-

ric earth models with and without the perturbation in the thickness

of crust. The corrections based on linear perturbation theory are

computed using the boundary depth Fréchet derivative for a spher-

ically symmetric perturbation, eq. (6.16). The crustal thickness in

the reference earth model is 19.2 km, the globally averaged crustal

thickness in CRUST2.0. Maps of crustal corrections are plotted

for Love waves and Rayleigh waves in Figs 23 and 24, respec-

tively. The comparisons show that linear perturbation theory over-

predicts crustal corrections by about 20 per cent in regions of thick

crust, such as Tibet, the Andes and old continental cratons. The dis-

crepancy between the maps is more significant at high frequency

(15 mHz). The magnitude of the errors introduced by first-order

perturbation theory (Figs 23 and 24) are comparable to the magni-

tude of uncorrected finite-frequency effects in ray-theoretical crustal

corrections (Fig. 22).

Linear perturbation theory has been successfully applied in

regional crustal studies, where variations in crustal thickness are

relatively small (e.g. Das & Nolet 1998). However, in global appli-

cations, the crustal thickness varies from 7 km beneath the oceanic

basins to 75 km beneath elevated continent regions, and first-order

perturbation theory is inadequate in this case. Therefore, the finite-

frequency boundary sensitivity kernels derived in this paper do not

reliably account for finite-frequency effects in global studies. The

crustal corrections applied in Section 3.2 are ray-path integrals of

the exact local crustal phase delays; we have opted to use ray the-

ory rather than first-order, finite-frequency perturbation theory as a

‘lesser’ of two evils’ expedient. In any surface-wave tomographic

study that employs traditional ray-based crustal corrections, there

may be biases in upper-mantle S-wave velocity maps, due to ne-

glected finite-frequency crustal thickness effects. Incorporation of

finite-frequency effects beyond the first-order Born approximation

requires a more comprehensive numerical treatment, such as that of

Komatitsch & Tromp (1999).

7 C O N C L U S I O N S

We consider three different aspects of the problem of inverting

long-period, fundamental-mode, surface-wave dispersion measure-

ments. First, we show that finite-frequency tomography with 3-D

Born sensitivity kernels offers a significant improvement over
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Figure 23. Comparisons between exact local crustal corrections and corrections made using first-order perturbation theory. The exact phase delays in each 2◦

by 2◦ global cell are computed by solving the radial equations for spherically symmetric earth models with and without the local crust. The corrections based

on linear perturbation theory are computed using the boundary depth Fréchet kernel ∂c/∂d for a spherically symmetric perturbation. The maps are computed

for a global crustal model, CRUST2.0 (Laske et al. 2001). Corrections based upon linear perturbation theory exhibit large errors, as indicated both by the

differences between the maps, particularly in regions of thick crust, and the first-order versus exact scatter plots.

traditional ray-theoretical, surface-wave tomography, enabling a bet-

ter fit to a global data set of phase-delay measurements at the same

level of model roughness. Finite-frequency and ray-theoretical to-

mographic images are in good agreement at the largest lateral length

scales; however, finite-frequency tomography enhances the ampli-

tude of upper-mantle heterogeneities, because wave front healing

effects are properly taken into account. Small-scale anomalies are

better resolved using 3-D sensitivity kernels, and this improvement

in resolution becomes more significant with increasing depth. Sec-

ond, we show that 2-D, phase-velocity sensitivity kernels that are

based upon a forward-scattering approximation or other simplifica-

tions do not reliably account for the finite-frequency effects of sur-

face waves. As a result, the small-scale anomalies in phase-velocity

maps obtained using 2-D kernels may not be any more reliable than

ray theory. Third and finally, we develop finite-frequency sensitiv-

ity kernels for Moho depth perturbations, based upon the single-

scattering approximation. Finite-frequency, off-path effects are not

negligible in a global, long-period dispersion data set, especially for

surface waves that travel along continent–ocean boundaries. How-

ever, global variations in crustal thickness are so large that first-order

perturbation theory, which is the basis for computing the Moho

depth sensitivity kernels, breaks down. Although it may be feasi-

ble to use first-order, finite-frequency sensitivity kernels to account

for crustal structure effects in a well-controlled regional dispersion

study, crustal corrections based upon Born sensitivity kernels are not

reliable for a global, long-period data set. A simple, accurate method

for making global surface-wave crustal corrections remains to be

found.
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Figure 24. Same as Fig. 23, except for Rayleigh waves.
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A P P E N D I X A : B O U N DA RY S C AT T E R I N G C O E F F I C I E N T S

In this appendix, we derive explicit expressions for the boundary scattering coefficients �(1) and �(2) in eqs (6.9), (6.12) and (6.14)–(6.15).

The notation used in this appendix is the same as in the appendix of Zhou et al. (2004). The first scattering interaction coefficient �(1) can be

written as:

�(1) = ρ ω2p′′∗· p′ − λ (tr E′′∗)(tr E′) − µ (E′′∗: E′), (A1)

where p′ = r̂U
′ − i k̂

′
V

′ + i (r̂ × k̂
′
)W

′
is the polarization vector of surface-wave mode σ ′ along the source-to-scatterer leg, and

p′′ = r̂U ′′ − i k̂′′V ′′ + i (r̂ × k̂′′)W ′′ is the polarization vector of surface-wave mode σ ′′ along the scatterer-to-receiver leg. The quantities

E ′ = (1/2)[∇p ′ + (∇p ′)T] and E ′′ = (1/2)[∇p′′ + (∇p′′)T] are the associated surface-wave strain tensors, and an asterisk denotes the complex

conjugate. All quantities in eq. (A1) are evaluated at the scatterer. The detailed expressions for the scattering coefficient �(1), dependent upon

the scattering interaction, are:

Love-to-Love scattering,

�
(1)

L ′ L ′′ = −ρ ω2W ′′W ′ cos η

+ µ (Ẇ ′′ − r−1W ′′)(Ẇ ′ − r−1W ′) cos η

+ µ k ′′k ′r−2W ′′W ′ cos 2η;

Rayleigh-to-Rayleigh scattering,

�
(1)

R′ R′′ = −ρ (U ′′U ′ + V ′′V ′ cos η)

+ λ (U̇ ′ + 2r−1U ′ − k ′r−1V ′)(U̇ ′′ + 2r−1U ′′ − k ′r−1V ′′)

+ µ [ 2U̇ ′′U̇ ′ + r−2(2U ′′ − k ′′V ′′)(2U ′ − k ′V ′) ]

+ µ (V̇ ′′ − r−1V ′′ + k ′′r−1U ′′) (V̇ ′ − r−1V ′ + k ′r−1U ′) cos η

+ µ k ′′k ′r−2V ′′V ′ cos 2η;

Love-to-Rayleigh scattering,

�
(1)

L ′ R′′ = ρ ω2V ′′W ′ sin η

− µ(V̇ ′′ − r−1V ′′ + k ′′r−1U ′′)(Ẇ ′ − r−1W ′) sin η

− µk ′′k ′r−2V ′′W ′ sin 2η;

Rayleigh-to-Love scattering,

�
(1)

R′ L ′′ = −ρ ω2W ′′V ′ sin η

+ µ(Ẇ ′′ − r−1W ′′)(V̇ ′ − r−1V ′ + k ′r−1U ′) sin η

+ µk ′′k ′r−2W ′′V ′ sin 2η.

The second scattering interaction coefficient �(2) can be written as:

σ
′ �

(2)

σ ′′ = [r̂ · ∇xp′′∗] · {r̂ · [λ(tr E′) I + 2µE′]} + {r̂ · [λ(tr E′′∗)I + 2µE′′∗]} · [r̂ · ∇xp′]. (A2)

In this case the detailed expressions are:

Love-to-Love scattering,

�
(2)

L ′ L ′′ = −µ Ẇ ′′ [Ẇ ′ − r−1W ′] cos η

−µ Ẇ ′ [Ẇ ′′ − r−1W ′′] cos η;
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Rayleigh-to-Rayleigh scattering,

�
(2)

R′ R′′ = −λ U̇ ′′ [U̇ ′ + 2 r−1U ′ − k ′r−1V ′]

−λ U̇ ′ [U̇ ′′ + 2 r−1U ′′ − k ′′r−1V ′′]

−4µ U̇ ′U̇ ′′

−µ V̇ ′′[V̇ ′ + r−1k ′U ′ − r−1V ′] cos η

−µ V̇ ′ [V̇ ′′ + r−1k ′′U ′′ − r−1V ′′] cos η;

Love-to-Rayleigh scattering,

�
(2)

L ′ R′′ = µ V̇ ′′ [Ẇ ′ − r−1W ′] sin η

+µ Ẇ ′ [V̇ ′′ + r−1k ′′U ′′ − r−1V ′′] sin η;

Rayleigh-to-Love scattering,

�
(2)

R′ L ′′ = −µ V̇ ′ [Ẇ ′′ − r−1W ′′] sin η

−µ Ẇ ′′ [V̇ ′ + r−1k ′U ′ − r−1V ′] sin η.

The quantity η = arccos(k̂
′ · k̂′′) is the scattering angle, measured counter-clockwise from the incoming wavevector k̂

′
to the outgoing

wavevector k̂′′. A dot denotes differentiation of U ′, V ′, W ′ or U ′′, V ′′, W ′′ with respect to radius r.
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