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Abstract

We discuss the finite-fuel, singular stochastic control problem of optimally tracking the standard
Brownian motion x+W (·) started at x ∈ IR, by an adapted process ξ(·) = ξ+(·)−ξ−(·) of bounded

total variation ξ̌(t)
�
= ξ+(t) + ξ−(t) ≤ y, ∀ 0 ≤ t < ∞, so as to minimize the total expected

discounted cost

IE

[∫ τ

0
e−αtλX2(t) dt +

∫
[0,τ ]

e−αt dξ̌(t) + e−ατ δX2(τ) · 1{τ<∞}

]

over such processes ξ(·) and stopping times τ . Here X(·) = x+W (·)+ξ(·), and α > 0, δ ≥ 0, λ > 0
are given real numbers. In its form δ = 0, τ ≡ ∞, this problem goes back to the seminal paper
of Beneš, Shepp & Witsenhausen (1980). For fixed α > 0 and δ > 0 we characterize explicitly
the optimal policy in the case λ ≥ αδ (of the “act–or–stop” type, since the continuation cost is
relatively large), and in the case 0 < λ ≤ λ∗ with

λ∗ �
=

αδ

1 + δ/α
1
4δ

+ 1√
2α

(of the “act, stop, or wait” type, since the relative continuation cost is relatively small). In the
latter case, an associated free-boundary problem is solved exactly. The case λ∗ < λ < αδ, of
“moderate” relative continuation cost, is suggested as an open question.
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1 INTRODUCTION

Stochastic optimization problems that combine features of both continuous control and stopping
are relatively new in the applied probability literature. Krylov (1980, section 6.4) establishes some
general conditions for optimality, Beneš (1992) provides explicit solutions to LQG-type problems
with control of the drift and with discretionary stopping, Karatzas & Sudderth (1999) solve the op-
timal stopping problem for a diffusion on an interval with absorption at the endpoints and control of
both drift and diffusion, while Karatzas & Wang (1999) treat the classical consumption/investment
problem of financial economics for an investor who can decide when to “exit” from the market.

In an important relatively recent paper, Davis & Zervos (1994) analyze such problems when
the controlling effort (or “fuel”) can take the form of a bounded variation process, as opposed to
the absolutely continuous control of the drift; one incurs costs proportional to the amount of fuel
being used, and to the quadratic deviation from the origin (both up to, and at, termination). The
question then, is to find an optimal stopping time, and a control strategy leading up to it, so as to
minimize expected discounted total cost over an infinite time-horizon.

Discretionary stopping in stochastic control arises naturally in target tracking problems, where
one has to stay close to a target by spending fuel, declare when one has arrived “sufficiently close”
to the target, and then reach a decision about whether to engage the target or not. Combined
stochastic control

/
optimal stopping problems also arise in mathematical finance, namely, in the

context of computing the upper- and lower-hedging prices of American contingent claims under con-
straints; these computations lead to stochastic control of the absolutely continuous or the singular
type (as in Karatzas & Kou (1998) or Karatzas & Wang (1998), respectively.)

Our aim in this paper is to treat the Davis & Zervos (1994) target-tracking problem, when the
available supply of fuel is limited. The problem is set up in Section 2 and is linked to the existing
literature of singular stochastic control, in particular to the work of Beneš, Shepp & Witsenhausen
(1980). This seminal paper is largely responsible for the rapid growth of interest in so-called singular
stochastic control problems during the last twenty years, which has encompassed applications as
diverse as queueing networks (e.g. Harrison (1985)) and portfolio optimization under transaction
costs (e.g. Davis & Norman (1990), Shreve & Soner (1994)).

The two extreme cases, of “no fuel at all” and of infinite fuel, are reviewed in Sections 6 and 7,
respectively. Section 3 provides a heuristic discussion of the finite-fuel problem, leading to a suitable
Variational Inequality that its value function has to satisfy. It is then shown, in Section 4, under
what conditions a solution of this Variational Inequality will coincide with the value function of
the stochastic control problem. The Variational Inequality is then solved exactly, when the relative
“continuation cost” is either relatively large (Section 5) or relatively small (Sections 8-9, as well as
Section 10).

The optimal strategy has qualitatively different behavior in each of these two cases. In the
first case it is of the “act-or-stop” type. In the second case an intermediate region appears, which
becomes narrower as the supply of available fuel diminishes. In the interior of this region, one simply
does not exert any control; and when the “inner boundary” of the region is reached, it becomes
optimal to stop. On the “outer boundary” of this region, and as long as the amount of available fuel
exceeds a certain critical level, one exerts control in a “singular” manner, by spending just as much
fuel as is necessary in order to keep the controlled process within the region (reflecting boundary);
but as soon as the amount of available fuel falls at or below the critical level, one spends it all at
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once (“exit”, or repelling, boundary). Thus, the optimal policy is of the “act, continue, or stop”
variety in this second case. Finally, we suggest as an interesting open problem the computation of
the value function and of the optimal policy in the third case, of “moderate continuation cost”.

2 THE PROBLEM

Consider a probability space (Ω,F , IP) equipped with a filtration IF = {Ft, 0 ≤ t < ∞} which
satisfies the usual condition of right-continuity and augmentation by null sets. We denote by S the
class of all IF-stopping times. We also denote by A the class of IF-adapted processes ξ = {ξt, 0 ≤
t < ∞} with paths that are right-continuous and have finite total variation on any compact interval,
as well as ξ0− = 0. A process ξ ∈ A will be considered in its minimal decomposition

(2.1) ξt = ξ+
t − ξ−t , 0 ≤ t < ∞

as the difference of two non-decreasing process ξ± ∈ A, so that the total variation of the function
s �→ ξs on the interval [0, t] is given by

(2.2) ξ̌t = ξ+
t + ξ−t , t ∈ [0,∞].

In addition to the class A, we shall consider its nested subclasses

(2.3) A(y) =
{
ξ ∈ A /

ξ̌∞ ≤ y, a.s.
}

for 0 ≤ y ≤ ∞, with A(0) = {0} and A(∞) = A.
Let us also assume that the probability space carries a standard, one-dimensional IF-Brownian

motion W = {Wt, 0 ≤ t < ∞}. Corresponding to any given initial position x ∈ IR and control
process ξ ∈ A, we consider the two-dimensional state process

(2.4) (Xt, Yt) = (x + Wt + ξt, y − ξ̌t), 0 ≤ t < ∞.

The first component Xt of this random vector can be interpreted as the position at time t of a
“particle” started at x, subjected to the random motion W , and controlled by the process ξ through
the cumulative effect of a “push” ξ+

t (respectively, ξ−t ) to the right (respectively, to the left). Then
the quantity ξ̌t of (2.2) represents the total amount of fuel expended by time t, so that Yt, the
second component in (2.4), can be interpreted as the “remaining fuel at time t”. The objective of
the control is to “keep the particle as close to the origin as possible, for as long as the controlling
action lasts” (that is, up to a stopping time τ), and its success is measured by the functional

(2.5) J(x, y; ξ, τ) = IE

[∫ τ

0
e−αtλX2

t dt +
∫

[0,τ ]
e−αt dξ̌t + e−ατ δX2

τ · 1{τ<∞}

]

for any given x ∈ IR, y ∈ [0,∞] and τ ∈ S, ξ ∈ A(y).
In other words, there is a quadratic “running cost” for missing the “target state”, the origin; this

cost can be reduced by “exerting fuel”, in the form of an increase in ξ+ or ξ− (i.e., of a rightward or
a leftward push) in the right direction. The total supply of fuel, however, is limited, namely ξ̌∞ ≤ y,
a.s.; and spending an amount of fuel ξ̌t+h − ξ̌t over a small interval (t, t + h] costs proportionally
to the amount spent. On the other hand, the controller has the option to disengage completely,
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at a stopping time τ of his choice, by incurring a quadratic “terminal cost”. What should be the
optimal disengagement or stopping rule τ∗ ∈ S, and what should be the optimal control strategy
ξ∗ ∈ A(y) up to disengagement, if one is trying to minimize the expected discounted total cost of
(2.5)? And how can we compute the minimal such expected cost

(2.6) V (x, y)
�
= inf

ξ∈A(y), τ∈S
IE

[∫ τ

0

e−αtλX2
t dt +

∫
[0,τ ]

e−αt dξ̌t + e−ατ δX2
τ · 1{τ<∞}

]

when starting in position x ∈ IR and with a given amount y ∈ [0,∞] of available fuel?
This is a stochastic optimization problem that incorporates features of bounded-variation control,

of optimal stopping, and of finite-fuel constraints. In its version τ ≡ ∞, δ = 0 (i.e., without
discretionary stopping) it goes back to the seminal work of Beneš, Shepp & Witsenhausen (1980);
see also Karatzas & Shreve (1986). The case τ ≡ ∞, δ = 0, y = ∞ (infinite fuel, no stopping)
was treated in Karatzas (1983), whereas the problem with discretionary stopping and infinite fuel
(δ > 0, y = ∞) was solved by Davis & Zervos (1994).

With fixed values for the parameters α > 0 and δ > 0, we shall solve the problem (2.6) explicitly
when λ > 0 is sufficiently large, namely λ ≥ αδ (cf. Section 5), as well as when λ > 0 is sufficiently
small, first with 0 < λ ≤ λ∗ for some

(2.7) λ∗ ∈ (0, λ∗], λ∗ �
=

αδ

1 + δ/α
1
4δ

+ 1√
2α

< αδ

(cf. Sections 8, 9) and then with λ∗ < λ ≤ λ∗ (Section 10). We shall leave the case λ∗ < λ < αδ

as an open problem.
The methodology of Sections 8-10 relies heavily on the familiar “principle of smooth-fit”, which

postulates sufficient smoothness on the part of the value-function V (·, ·) of (2.6) across suitable
absorbing, reflecting (for y > ȳ) and repelling (for 0 < y ≤ ȳ) free-boundaries; here ȳ ≥ 0 is a
critical fuel-level. Broadly speaking, it turns out that we have C1−smooth-fit across absorbing or
repelling boundaries (cf. (8.11), (8.12), (10.4)(a), or (10.4)(c)), and C2−smooth-fit across reflecting
boundaries (cf. (8.14), (8.15) and (10.4)(b)). With the help of the Verification Theorem of Section
4, this principle then leads to the computation of the value function in the form (9.1) for the case
0 < λ ≤ λ∗, and in the form (10.26) for the case λ∗ < λ ≤ λ∗. We do not have yet a good guess
for the optimal policy in the case λ ∈ (λ∗, αδ), or for the smoothness of the value-function in that
case, so a new methodology may have to be developed for treating it.

Along with those of Beneš et al. (1980), the computations presented in Sections 8-10 provide
rare examples of free-boundary problems arising in sequential analysis or stochastic control that
can be solved exactly, and for which the resulting free-boundaries are neither parabolas nor straight
lines.

3 HEURISTIC DISCUSSION

It is clear from (2.6), (2.4) that, if the state-process X ever finds itself at the origin, then we should
stop the first time this happens. It is also clear that we may consider control processes ξ ∈ A(y),
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such that

Xt · Xt− ≥ 0, 0 ≤ t < ∞(3.1) ∫ ∞

0
1{Xt>0} dξ+

t =
∫ ∞

0
1{Xt<0} dξ−t = 0(3.2)

hold almost surely. In other words, it is never optimal to jump across the origin, or to push to
the right (resp., to the left) when Xt is positive (resp., negative). All these claims can be verified
easily, after the fact. Thus we may compute the function V (·, y) only on [0,∞), and then extend
it by even symmetry

(3.3) V (−x, y) = V (x, y); x ≥ 0, y ≥ 0.

We may also take x ≥ 0 and monotone control ξ = −ξ−, with

(3.4) Xt = x + Wt − ξ−t ∈ [0,∞).

Let us consider the value function V (x, y) of (2.6) in the two extreme cases of “no fuel at all”
(y = 0) and of “infinite available fuel” (y = ∞), namely,

V0(x)
�
= inf

τ∈S
IE
[∫ τ

0

e−αtλ(x + Wt)2 dt + e−ατδ(x + Wτ )2 · 1{τ<∞}

]
and(3.5)

V∞(x)
�
= inf

ξ∈A, τ∈S
IE

[∫ τ

0
e−αt λX2

t dt +
∫

[0,τ ]
e−αt dξ̌t + e−ατ δX2

τ · 1{τ<∞}

]
,(3.6)

respectively. The function of (3.5) is the optimal risk in a problem of pure optimal stopping which
can be solved explicitly (cf. Section 6). The function of (3.6) is the value of the problem considered,
and solved explicitly, by Davis & Zervos (1994); see Section 7. It is also intuitively clear that

(3.7) V (x, ·) should be decreasing, with lim
y↓0

V (x, y) = V0(x) and lim
y→∞ V (x, y) = V∞(x).

In order to proceed further, we shall make an additional assumption about the value function
V (x, y) of (2.6). This property will also be verified after the fact.

(3.8)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

The function V : IR × [0,∞) → [0,∞) is continuous and continuously
differentiable, as well as twice continuously differentiable, with locally
bounded second derivatives away from {(x, y)/x = ±f(y) or x = ±h(y)},
for some continuous functions

f : [0,∞) → (0,∞), h : [0,∞) → (0,∞) with f ∈ C1((0,∞)),

h ∈ C1((0,∞)/{ŷ}) for some ŷ > 0, f ′(·) ≤ 0, h′(·) > 0,

f(0) ≤ h(0), and f(y) < g(y), ∀ y > 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

We claim then that V (x, y) should satisfy the following conditions

V (x, y) ≤ δx2 ; x ∈ IR, y ≥ 0(3.9)
|Vx(x, y)|+ Vy(x, y) ≤ 1 ; x ∈ IR, y > 0(3.10)

αV (x, y) ≤ 1
2
Vxx(x, y) + λx2 ; x 	= ±f(y), x 	= ±h(y), y ≥ 0, and(3.11)
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(3.12) [δx2 − V (x, y)] · [1− |Vx(x, y)| − Vy(x, y)] ·
[
1
2
Vxx(x, y) + λx2 − αV (x, y)

]
= 0

for x 	= ±f(y), x 	= ±h(y), y > 0.

The property (3.9) is obvious since we can always stop immediately, i.e. take τ = 0, in (2.6). For
(3.10) in the case x > 0, observe that if we act by spending immediately a small amount ϑ ∈ (0, y)
of fuel and move to the new position (x − ϑ, y − ϑ) , we obtain

V (x, y) ≤ ϑ + V (x − ϑ, y − ϑ).

Subtracting V (x, y − ϑ) from both sides of this inequality, dividing by ϑ, and then letting ϑ ↓ 0,
we obtain (3.10) in the form Vx(x, y) + Vy(x, y) ≤ 1. In a similar manner we obtain the inequality
(3.10) for x < 0, namely Vy(x, y)− Vx(x, y) ≤ 1.

Finally, suppose that we start at x /∈ {±f(y), ±h(y)}, that we continue for a short while, and
that we then behave optimally; such a policy gives

V (x, y) ≤ IE
[∫ ε∧σ

0

e−αtλ(x + Wt)2 dt + e−α(ε∧σ)V (x + Wε∧σ, y)
]

for every ε > 0 and σ
�
= inf{t ≥ 0

/
x + Wt = ±f(y) or x + Wt = ±h(y)}. Under the assumption

(3.8) we may apply Itô’s rule to the last term, and then divide by ε > 0 before letting ε ↓ 0, to
obtain (3.11).

Now we have equality in (3.9), (3.10) or (3.11) if, at position x and with available fuel y, it is
optimal to stop, to act, or to wait, respectively. Because at any given pair (x, y) we must do one of
these things, at least one of (3.9)–(3.11) should hold as equality, whence (3.12). The conditions of
(3.9)–(3.12) constitute a Variational Inequality. For x 	= ±f(y), x 	= ±h(y), y > 0, this inequality
may be written in the more compact from

(3.13) min
[
δx2 − V (x, y), 1 − |Vx(x, y)| − Vy(x, y),

1
2
Vxx(x, y) + λx2 − αV (x, y)

]
= 0.

4 A VERIFICATION THEOREM

Motivated by the heuristic discussion of the previous section, let us state now conditions that are
sufficient for optimality in our problem (2.6).

4.1 Theorem: Consider a function Q : IR × [0,∞) → [0,∞) which satisfies the properties (3.8),
namely is continuous and continuously differentiable, as well as twice continuously differentiable,
with locally bounded second derivatives away from {(x, y)/x = ±f(y) or x = ±h(y)}. Here f :
[0,∞) → (0,∞) and h : [0,∞) → (0,∞) are suitable functions with the properties of (3.8). Suppose
that Q(·, y) is evenly symmetric

(4.1) Q(−x, y) = Q(x, y), ∀ x ≥ 0, y ≥ 0

and satisfies the growth condition

(4.2) |Qx(x, y)| ≤ K(y)(1 + |x|), ∀ x ≥ 0, y ≥ 0
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for some continuous and increasing function K : [0,∞) → (0,∞). Suppose also that Q satisfies the
conditions of the Variational Inequality (3.9)–(3.12), namely:

Q(x, y) ≤ δx2 , x ∈ IR, y ≥ 0 ;(4.3)
|Qx(x, y)|+ Qy(x, y) ≤ 1 , x ∈ IR, y > 0 ;(4.4)

αQ(x, y) ≤ 1
2
Qxx(x, y) + λx2 , x 	= ±f(y), x 	= ±h(y), y ≥ 0 ; and(4.5)

[δx2 − Q(x, y)] · [1− |Qx(x, y)| − Qy(x, y)] ·
[
1
2
Qxx(x, y) + λx2 − αQ(x, y)

]
= 0(4.6)

for x 	= ±f(y), x 	= ±h(y), y > 0. Then the function Q is a lower bound on the attainable expected
cost (2.5), namely

(4.7) V (x, y) ≥ Q(x, y), ∀ x ∈ IR, y ≥ 0

in the notation of (2.6).

Proof: For fixed x ∈ IR, y ≥ 0 and arbitrary process ξ ∈ A(y) and stopping time τ ∈ S, we have to
show

(4.8) J(x, y; ξ, τ) ≥ Q(x, y).

To do this, let us consider the two-dimensional process {(Xt, Yt), 0 ≤ t < ∞} of (2.4). An
application of the generalized Itô rule to the process {e−αtQ(Xt, Yt), 0 ≤ t < ∞} yields

e−αT Q(XT , YT ) = Q(x, y) +
∫ T

0
e−αtQx(Xt, Yt) dWt +

∫
[0,T ]

e−αtQx(Xt−, Yt−) dξt

−
∫

[0,T ]
e−αtQy(Xt−, Yt−) dξ̌t +

∫ T

0
e−αt

{
1
2
Qxx(Xt, Yt) − αQ(Xt, Yt)

}
dt(4.9)

+
∑

0≤t≤T

e−αt [Q(Xt, Yt) − Q(Xt−, Yt−) −�Xt ·Qx(Xt−, Yt−)−�Yt ·Qy(Xt−, Yt−)] ;

see, for instance , Protter (1990), p. 74. Here �ξt
�
= ξt−ξt− and the series

∑
0≤t≤T e−αtQx(Xt−, Yt−)·

�Xt,
∑

0≤t≤T e−αtQy(Xt−, Yt−) · �Yt are both absolutely convergent and bounded from above
in each finite interval [0, T ], almost surely. (The possible lack of C2−smoothness of Q across the
boundaries {(x, y)/x = ±f(y) or x = ±h(y)} can be dealt with by mollification, as in the proof
of Theorem 2.7.9, pp. 74–76 in Karatzas & Shreve (1998), leading to the formula (4.9).) Let us

denote by η
�
= ξc the continuous part of the process ξ, so that

(4.10) ξt = η+
t − η−

t +
∑

0≤s≤t

(�Xs), 0 ≤ t < ∞,

(4.11) ξ̌t = η+
t + η−

t +
∑

0≤s≤t

(−�Ys), 0 ≤ t < ∞.

8



Substituting these expressions in it, we may re-write (4.9) in the equivalent form

(4.12)
∫ T

0

e−αtλX2
t dt+

∫
[0,T ]

e−αt dξ̌t+δe−αT X2
T = Q(x, y)+

∫ T

0

e−αtQx(Xt, Yt) dWt+
5∑

i=1

Ij(T ),

where we have set

I1(T )
�
= e−αT

(
δX2

T − Q(XT , YT )
)

(4.13)

I2(T )
�
=

∫ T

0
e−αt

(
1
2
Qxx(Xt, Yt) + λX2

t − αQ(Xt, Yt)
)

dt(4.14)

I3(T )
�
=

∫
[0,T ]

e−αt
(
1 + Qx(Xt−, Yt−) − Qy(Xt−, Yt−)

)
dη+

t(4.15)

I4(T )
�
=

∫
[0,T ]

e−αt
(
1 − Qx(Xt−, Yt−) − Qy(Xt−, Yt−)

)
dη−

t(4.16)

I5(T )
�
=

∑
0≤t≤T

e−αt
(
Q(x± ϑ, y − ϑ) − Q(x, y) + ϑ

)∣∣∣∣
(x,y)=(Xt−,Yt−), ϑ=−�Yt=|�Xt |>0

(4.17)

(as the referee points out, Shreve & Soner (1994) carry out an argument similar to our reduction of
the equation (4.9) by use of (4.10), (4.11)). The conditions (4.3)-(4.5) guarantee that each of the
terms Ij(T ), j = 1, . . . , 5 is non-negative (for I5(T ), use the mean-value theorem, along with the
condition (4.4)). On the other hand, thanks to the growth condition (4.2), we have

IE
∫ ∞

0
e−2αt

(
Qx(Xt, Yt)

)2
dt ≤ 2K2(y)

∫ ∞

0
e−2αt

(
1 + x2 + IEW 2

t + y2
)
dt < ∞,

so that the stochastic integral on the right-hand side of (4.12) has expectation equal to zero.
Now we can take expectations in (4.12), and conclude that

(4.18)

Q(x, y) ≤ IE

[∫ τ∧n

0
e−αtλX2

t dt +
∫

[0,τ∧n]
e−αt dξ̌t + δe−ατX2

τ · 1{τ<n}

]
+ δe−αn IE

[
X2

n · 1{τ≥n}
]

holds for every τ ∈ S, n ∈ IN. Clearly

0 ≤ e−αn IE
[
X2

n · 1{τ≥n}
] ≤ 4e−αn IE

(
x2 + W 2

n + ξ̌2
n

) ≤ 4e−αn(x2 + n + y2) −→ 0

and we obtain

(4.19) Q(x, y) ≤ IE

[∫ τ

0
e−αtλX2

t dt +
∫

[0,τ ]
e−αt dξ̌t + δe−ατX2

τ · 1{τ<∞}

]
,

in the limit as n −→ ∞, thanks to the Monotone Convergence Theorem. �

4.2 Corollary: Suppose the pair (ξ, τ) ∈ A(y) × S is such that

(4.20) Ij(τ ∧ n) ≡ 0, ∀ j = 1, . . . , 5, ∀n ∈ IN a.s.,

in the notation of (4.13)–(4.17). Then (4.8) and (4.7) hold as equalities, namely

(4.21) J(x, y; ξ, τ) = Q(x, y) = V (x, y),

and the pair (ξ, τ) is optimal for the problem of (2.6).
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5 THE CASE λ ≥ αδ

In this case it is “too expensive to wait and do nothing”. The optimal policy consists of a combi-
nation of “act-and-stop” moves, depicted graphically in Figure 1 for x ≥ 0, whereby one

(5.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) stops immediately, if 0 ≤ x ≤ 1
2δ : ξ∗ ≡ 0, τ∗ = 0,

(ii) spends all fuel at once, and then stops immediately, if x ≥ y + 1
2δ :

ξ∗0 = −y, τ∗ = 0, or

(iii) spends the amount x − 1
2δ of fuel at t = 0 to move to the position 1

2δ ,
and then stops, if 1

2δ < x < y + 1
2δ : ξ∗0 = −(x − 1

2δ ), τ∗ = 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

All these moves assume an initial position x ≥ 0; analogous (symmetric) moves take place for x < 0.
The function

(5.2) Q(x, y)
�
= min

0≤a≤y

[
δ(|x| − a)2 + a

]
=

⎧⎪⎪⎨
⎪⎪⎩

δx2 ; 0 ≤ x ≤ 1
2δ , y ≥ 0

x − 1
4δ ; 1

2δ < x < y + 1
2δ , y > 0

δ(x− y)2 + y ; x ≥ y + 1
2δ , y ≥ 0

Q(−x, y) ; x < 0, y ≥ 0

⎫⎪⎪⎬
⎪⎪⎭

is easily seen to satisfy the conditions (4.1)–(4.6), in particular with f(y) ≡ 1
2δ and h(y) = 1

2δ + y
for 0 ≤ y < ∞. We leave the details of this verification to the reader. It is also fairly clear that
the strategy (ξ∗, τ∗), described in (5.1) above, satisfies the conditions of Corollary 4.2 and is thus
optimal for the problem of (2.6), namely

(5.3) J(x, y; ξ∗, τ∗) = V (x, y) = Q(x, y).

5.1 Remark: For λ ≥ αδ, it can be checked easily that the process∫ t

0

e−αsλ(x + Ws)2 ds + e−αtδ(x + Wt)2, 0 ≤ t < ∞

is a submartingale; this shows that V0(x) = δx2, and that the rule τ∗ = 0 (“stop at once”) is
optimal for the problem of (3.5).

6 THE CASE λ < αδ, y = 0: NO FUEL

In this case we face the pure optimal stopping problem of (3.5). A reasonable guess for this problem
is that its optimal stopping region should be a closed interval around the origin of the form Σ =
[−f0, f0] (“stop, when you have come sufficiently close to the target”), and that the open set
IR \ Σ = (−∞,−f0)

⋃
(f0,∞) should be the optimal continuation region. Then the value V0(x) of

10



this problem can be sought as the solution of the following free–boundary problem

1
2
Q′′

0(x) + λx2 − αQ0(x) > 0 ; 0 < x < f0(6.1)

1
2
Q′′

0(x) + λx2 − αQ0(x) = 0 ; x > f0(6.2)

Q0(x) < δx2 ; x > f0(6.3)
Q0(x) = δx2 ; 0 ≤ x ≤ f0(6.4)

Q0(−x) = Q0(x) ; x < 0(6.5)

in the space of functions C1(IR) ∩ C2(IR \ {±f0}), for a suitable f0 > 0 that has to be determined
along with the function Q0(·). The postulated continuity of Q0(·) and Q′

0(·) across the point f0

leads to the smooth-fit conditions

(6.6) Q0(f0+) = δf2
0 , Q′

0(f0+) = 2δf0.

(Salminen (1985), p.93 provides necessary and sufficient conditions for the C1−smoothness of the
optimal expected reward from stopping, for one-dimensional diffusions; see also Shiryaev (1978).
Friedman (1976), p. 447, Theorem 4.2 has similar sufficient conditions in several dimensions.)

It is possible to solve the system of (6.1)-(6.5) for a constant f0 > 0 and for a function Q0(·) in
C1(IR) ∩ C2(IR \ {±f0}), as follows:

(6.7) Q0(x) =

⎧⎨
⎩

λ
αx2 + λ

α2 + B0e
−x

√
2α ; x > f0

δx2 ; 0 ≤ x ≤ f0

Q0(−x) ; x < 0

⎫⎬
⎭ .

Here the two free constants B0, f0 are determined by the two conditions of (6.6), as

(6.8) B0 = − 2f0

α
√

2α
(αδ − λ)ef0

√
2α < 0,

and

(6.9) f0 ≡ f0(λ)
�
=

1√
2α

(√
αδ + λ

αδ − λ
− 1

)
> 0,

respectively. Note that f0 is the unique positive solution of the equation

(6.10) ρ(f0) = 0, with ρ(x)
�
= x2 +

2x√
2α

− λ/α

αδ − λ
,

and that the function λ �→ f0(λ) of (6.9) is strictly increasing on (0, αδ). Having thus determined
the solution of the system (6.1)–(6.6), one can then check that the process

Yt = e−αtQ0(x + Wt) +
∫ t

0
e−αsλ(x + Ws)2 ds, 0 ≤ t < ∞

is a submartingale, whereas the stopped process {Yt∧τ∗
0
, 0 ≤ t < ∞}, with

(6.11) τ∗
0

�
= inf

{
t ≥ 0

/ |x + Wt| ≤ f0

}
< ∞ a.s.,

11



is a martingale. These two properties lead to the computation of the optimal risk, to the optimality
of the stopping time τ∗

0 for the problem of (3.5), namely

(6.12) V0(x) = Q0(x) = IE

[∫ τ∗
0

0
e−αtλ(x + Wt)2 dt + δe−ατ∗

0 (x + Wτ∗
0
)2
]

,

and thus also to the justification of the guess that [−f0, f0] should be the optimal stopping region.
We leave the details of these derivations to the care of the reader.

7 THE CASE λ < αδ, y = ∞: INFINITE FUEL

This is the problem of (3.6), which was solved by Davis & Zervos (1994). These authors showed
that the value-function V∞(·) can be sought as the solution of the free-boundary problem

1
2
Q′′

∞(x) + λx2 − αQ∞(x) > 0 ; x ∈ [0, f∞) ∪ (g∞,∞)(7.1)

1
2
Q′′

∞(x) + λx2 − αQ∞(x) = 0 ; x ∈ (f∞, g∞)(7.2)

Q∞(x) < δx2 ; x ∈ (f∞,∞)(7.3)
Q∞(x) = δx2 ; x ∈ [0, f∞](7.4)

Q′
∞(x) < 1 ; x ∈ [0, g∞)(7.5)

Q′
∞(x) = 1 ; x ∈ [g∞,∞)(7.6)

Q∞(−x) = Q∞(x) ; x < 0(7.7)

in the space of functions C1(IR)∩C2(IR\{±f∞}), for suitable constants 0 < f∞ < g∞ < ∞ that have
to be determined along with the function Q∞(·). As will be explained in more detail in (7.17)–(7.19)
below, the constant f∞ (respectively, g∞) plays the rôle of an absorbing (respectively, reflecting)
barrier. Together, the two constants f∞, g∞ determine the nature of the optimal policy for the
problem (3.6), in the form of an optimal stopping region Σ = [−f∞, f∞], an optimal continuation
region C = (−g∞,−f∞)

⋃
(f∞, g∞), and a region A = (−∞,−g∞]

⋃
[g∞,∞) where immediate

action is optimal. The postulated continuity of Q∞(·), Q′∞(·) across the points f∞ and g∞, and of
Q′′∞(·) across the point g∞, leads to the smooth-fit conditions

Q∞(f∞+) = δf2
∞, Q′

∞(f∞+) = 2δf∞(7.8)
Q′

∞(g∞−) = 1, Q′′
∞(g∞−) = 0.(7.9)

As Davis & Zervos (1994) demonstrate, the system (7.1)–(7.9) can be solved for two constants
f∞, g∞ and for a function Q∞(·) in C1(IR) ∩ C2(IR \ {±f∞}), in the form

(7.10) Q∞(x) =

⎧⎪⎪⎨
⎪⎪⎩

λ
αx2 + λ

α2 + A∞ex
√

2α + B∞e−x
√

2α ; f∞ ≤ x ≤ g∞
δx2 ; 0 ≤ x ≤ f∞

Q∞(g∞) + x − g∞ ; g∞ ≤ x < ∞
Q∞(−x) ; x < 0

⎫⎪⎪⎬
⎪⎪⎭ .
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The four free constants A∞, B∞, f∞, g∞ of this expression, can be determined by the four conditions
of (7.8), (7.9); in particular,

(7.11) A∞ = h1(f∞), B∞ = h2(f∞),

and the constants f∞, g∞ are uniquely characterized by the equations

(7.12) h3(g∞) = h1(f∞)
√

2α, h4(g∞) = h2(f∞)
√

2α.

We have set

h1(x)
�
=

αδ − λ

2α
e−x

√
2α ρ(x)(7.13)

h2(x)
�
=

αδ − λ

2α
ex

√
2α

(
ρ(x)− 4x√

2α

)
(7.14)

in the notation of (6.10), and

h3(x)
�
=

λ

α

[
α

2λ
−
(

x +
1√
2α

)]
e−x

√
2α(7.15)

h4(x)
�
=

λ

α

[
x −

(
α

2λ
+

1√
2α

)]
ex

√
2α .(7.16)

With the solution of the system (7.1)–(7.9) thus determined, the optimal policy takes the form
of a combination of “act, continue, or stop” moves, whereby one:

(7.17)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) Stops immediately, if |x| ≤ f∞ : τ∗ = 0, ξ∗ ≡ 0.

(ii) Erects “reflecting barriers” at the endpoints of the interval (−g∞, g∞),
spends no fuel as long as the state process X is in (−g∞,−f∞)∪(f∞, g∞),
and stops the first time |X | hits f∞, if f∞ < |x| < g∞ .

(iii) Spends the amount |x| − g∞ of fuel at t = 0, in order to move to the
position g∞·sgn(x) at once, and then continues as in (ii) above, if |x| ≥
g∞ .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

In other words, the optimal policy is of the form ξ∗ = (ξ∗)+ − (ξ∗)−, with

(7.18)
(ξ∗)+t

�
= max [0, max0≤s≤t(−x − Ws − g∞)] ,

(ξ∗)−t
�
= max [0, max0≤s≤t(x + Ws − g∞)] , X∗

t = x + Wt − ξ∗t

and

(7.19) τ∗ �
= inf

{
t ≥ 0

/ |X∗
t | ≤ f∞

}
< ∞, a.s.

The processes (ξ∗)± of (7.18) act only as much as is necessary to bring (at time t = 0) or keep (at
all times t > 0) the state-process X∗ inside the interval [−g∞, g∞], up until X∗ enters [−f∞, f∞],
at which time it is optimal to stop. Davis & Zervos (1994) also show that f∞ < f0, where f0 is the
optimal stopping boundary of (6.9) in the case y = 0.
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8 THE CASE λ < αδ, 0 < y < ∞: ANALYSIS

Motivated by the solutions to the problems with no fuel at all (Section 6) and with infinite fuel
(Section 7), let us postulate now a solution of the finite-fuel problem (2.6), in the form suggested
by Figure 2.

In particular, we guess that for every finite fuel-level y > 0, there exist an absorbing barrier

f(y) and a reflecting barrier g(y) with 0 < f(y) < g(y) < ∞; these function much like f∞ and
g∞ of Section 7. We also guess that the functions y �→ f(y) and y �→ g(y) are continuous and
monotone (decreasing and increasing, respectively), with f(∞) ≡ f∞, g(∞) ≡ g∞ as in Section 7
and f(0+) = f0 as in Section 6. (These guesses will be vindicated in Section 9, but only for values
of the parameter λ in the smaller range (0, λ∗] as in (2.7); a more elaborate guess is made, and
then justified, in Section 10 for the case λ ∈ (λ∗, λ∗], whereas the case λ ∈ (λ∗, αδ) is still open.)

The graphs of the functions f(·), g(·) should then describe the optimal policy for the problem
of (2.6), by determining an optimal stopping-region Σ = {(x, y) / 0 ≤ y < ∞, |x| ≤ f(y)}, an op-
timal continuation-region C = {(x, y) /0 < y < ∞, f(y) < |x| < g(y)} ∪ {(x, 0) / |x| > f(0)}, and
an optimal action-region A = {(x, y) /0 < y < ∞, |x| ≥ g(y)}; see Figure 2, as well as (9.6)–(9.13)
for a detailed description of the optimal policy (ξ∗, τ∗).

We shall assume that the value V (x, y) of (2.6) can be characterized in terms of the following
moving–boundary problem

1
2
Qxx(x, y) + λx2 − αQ(x, y) > 0 ; 0 ≤ x < f(y) or x > g(y), y ≥ 0(8.1)

1
2
Qxx(x, y) + λx2 − αQ(x, y) = 0 ; f(y) < x < g(y), y ≥ 0(8.2)

Q(x, y) < δx2 ; x > f(y), y ≥ 0(8.3)
Q(x, y) = δx2 ; 0 ≤ x ≤ f(y), y ≥ 0(8.4)

Qx(x, y) + Qy(x, y) < 1 ; 0 ≤ x < g(y), y ≥ 0(8.5)
Qx(x, y) + Qy(x, y) = 1 ; x ≥ g(y), y ≥ 0(8.6)

Q(−x, y) = Q(x, y) ; x < 0, y ≥ 0(8.7)
Q(x, 0) = Q0(x) ; x ∈ IR, y = 0(8.8)

|Qx(x, y)| ≤ K(y)(1 + |x|) ; x ∈ IR, y ≥ 0(8.9)

for two suitable “moving-boundary” functions f : [0,∞) → (0,∞), g : [0,∞) → (0,∞) of class
C1 with f(·) < g(·), and for some function Q : IR × [0,∞) → [0,∞) of class C1

(
IR × [0,∞)

) ∩
C2 ((IR × [0,∞)) \ {(x, y)/x = ±f(y)}). In the last two equations, we have used the notation of (4.2)
and (6.7). Notice that if the triple (f, g, Q) solves the moving-boundary problem of (8.1)–(8.9),
then Q solves the variational inequality (4.1)–(4.6).

To make headway with solving the moving-boundary problem of (8.1)–(8.9), let us fix a number
y ∈ [0,∞) and write the solution Q(·, y) of the equation 1

2Qxx + λx2 − αQ = 0 as

(8.10) Q(x, y) =
λ

α
x2 +

λ

α2
+ A(y)ex

√
2α + B(y)e−x

√
2α, for f(y) < x < g(y), y ≥ 0.

Here A : [0,∞) → IR, B : [0,∞) → IR are suitable functions of class C1, to be determined
below. The postulated continuity of Q(·, y), Qx(·, y) across the absorbing-barrier x = f(y), gives
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the smooth-fit conditions

λ

α
x2 +

λ

α2
+ A(y)ex

√
2α + B(y)e−x

√
2α = δx2 ; at x = f(y)(8.11)

2λ

α
x +

√
2α
[
A(y)ex

√
2α − B(y)e−x

√
2α
]

= 2δx ; at x = f(y)(8.12)

or equivalently

(8.13) A(y) = h1

(
f(y)

)
, B(y) = h2

(
f(y)

)
; y ≥ 0

in the notation of (7.13), (7.14). From these and (6.7), we expect to have f(0) = f0, as well as
A(0) = 0, B(0) = B0.

On the other hand, the postulated continuity of the directional derivative U
�
= Qx + Qy and of

Ux = Qxx +Qxy across the reflecting-barrier x = g(y), leads to the additional smooth-fit conditions

2λ

α
x +

√
2α
[
A(y)ex

√
2α − B(y)e−x

√
2α
]

+ A′(y)ex
√

2α + B′(y)e−x
√

2α = 1(8.14)

2λ

α
+ 2α

[
A(y)ex

√
2α + B(y)e−x

√
2α
]

+
√

2α
[
A′(y)ex

√
2α − B′(y)e−x

√
2α
]

= 0(8.15)

at x = g(y), or equivalently

A′(y) +
√

2αA(y) = h3

(
g(y)

)
; y ≥ 0(8.16) √

2αB(y) − B′(y) = h4

(
g(y)

)
; y ≥ 0(8.17)

in the notation of (7.15), (7.16). (The continuity of the directional derivative DQ, and the continuity
of its first spatial derivative Ux, were used as smooth-fit conditions to similar effect in the paper of
Beneš, Shepp & Witsenhausen (1980).)

8.1 Lemma: For every λ ∈ (0, αδ), the function h1(·) of (7.13) (respectively, h2(·) of (7.14)) is
strictly increasing (respectively, decreasing) on

[
0,
√

δ/(αδ − λ)
]

, with 0 < f0 <
√

δ/(αδ − λ)
and

(8.18) h1(0) = h2(0) =
−λ

2α2
, h1(f0) = 0, h2(f0) = −2(αδ − λ)f0

α
√

2α
· ef0

√
2α ≡ B0,

(8.19) h′
2(x) = −h′

1(x) · e2x
√

2α, x ∈ IR.

We collect in Appendix A the proofs of those results in Sections 8,9 that are not developed fully
in the text.

Let us assume, for a moment, that the absorbing moving-boundary f(·) is strictly decreasing,
with f(0) = f0 as in (6.9) and limy→∞ f(y) = f∞ as in (7.12); see Proposition 8.5 below for
justification. Under this assumption, and in conjunction with the properties of the function h1(·)
from Lemma 8.1, we can re-write the equations (8.13) in the form

(8.20) f(y) = h−1
1

(
A(y)

)
, B(y) = H

(
A(y)

)
15



with H
�
= h2 ◦ h−1

1 , so that (8.19) implies H ′(h1(z)
)

= h′
2(z)

/
h′

1(z) = −e2z
√

2α. Substituting the
expression for B(·) from (8.20) into (8.17), and using (8.16), (8.13), we obtain

h4

(
g(y)

)
=

√
2α · H(A(y)

)− H ′(A(y)
) · A′(y)

=
√

2α · h2

(
f(y)

)− H ′(h1 (f(y))
) · [h3

(
g(y)

)−√
2α · h1

(
f(y)

)]
or equivalently

(8.21) q(g(y); f(y)) = 0,

where we have set

q(x; z)
�
=

√
2α
[
h2(z)− h1(z) · e2z

√
2α
]

+ h3(x)e2z
√

2α − h4(x)

= −2z
αδ − λ

α
ez

√
2α +

λ

α
ex

√
2α

[(
α

2λ
− x − 1√

2α

)
e2(z−x)

√
2α +

(
α

2λ
− x +

1√
2α

)]
.(8.22)

8.2 Lemma: Assume that 0 < λ ≤ λ∗ in the notation of (2.7). Then for every z ∈ [0, f0] there
exists a unique number x = X (z) ∈ ( α

2λ ,∞) such that q(X (z); z) = 0 holds, and we have

(8.23) z ≤ f0 ≤ 1
2δ

<
α

2λ
< X (z) <

α

2λ
+

1√
2α

.

Proof: For fixed z ∈ [0, f0], consider the function q(·; z) of (8.22) on [z,∞). We have q(z; z) =

ez
√

2α(1 − 2δz) ≥ 0, since z ≤ f0 ≤ 1
2δ ; this is because the function λ �→ f0(λ) of (6.9) is strictly

increasing, and f0 ≤ 1
2δ amounts to the condition ρ

(
1
2δ

) ≥ 0 in the notation of (6.10). This, in turn
is equivalent to the condition

(8.24) 0 < λ ≤ λ∗ �
=

αδ

1 + δ/α
1
4δ

+ 1√
2α

,

in the notation of (2.7). It is easy to verify that q(∞; z) = −∞; furthermore, the quantity

(8.25)
∂

∂x
q(x; z) = λ

√
2
α

( α

2λ
− x
)

ex
√

2α
(
1− e2(z−x)

√
2α
)

, z ≤ x < ∞

has the sign of α
2λ − x. Now f0 < f0(λ∗) = 1

2δ < α
2λ , so the function q(·; z) is strictly increasing

on
(
z, α

2λ

)
and strictly decreasing on

(
α
2λ ,∞). Thus, there exists a unique X (z), as in (8.23), that

satisfies q(X (z); z) = 0. The last inequality of (8.23) follows from the simple observation q( α
2λ +

1√
2α

; z) < 0. �

8.3 Lemma: Under the assumption 0 < λ ≤ λ∗, the function z �→ X (z) of Lemma 8.2 is of class
C2, strictly decreasing and strictly concave.

We shall impose for the remainder of this Section the assumption (8.24), as it seems to be
critical for the validity of Lemmata 8.2 and 8.3. Thanks to these two results, we deduce that the
two moving-boundary functions f(·) and g(·) are related by

(8.26) g(y) = X (f(y)
)
; 0 ≤ y < ∞.
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On the other hand, substituting A(y) = h1

(
f(y)

)
and its consequence A′(y) = f ′(y) · h′

1

(
f(y)

)
from (8.13) into (8.16), we obtain for the moving-boundary function f(·) the first-order differential
equation

(8.27) f ′(y) =
m(f(y))
h′

1(f(y))
, 0 ≤ y < ∞ where m(z)

�
= h3(X (z))−

√
2α h1(z).

8.4 Remark: The relation (8.26) is valid, at least formally, also for y = ∞. Indeed, g(∞) ≡ g∞ and
f(∞) ≡ f∞ satisfy the equation g∞ = X (f∞) trivially, thanks to (7.12) and (8.21), (8.22).

8.5 Proposition: The differential equation of (8.27) has a unique solution f : [0,∞) → (0,∞)
with f(0) = f0, in C1 ([0,∞)). This function is strictly decreasing, strictly convex, of class C2, and
satisfies limy→∞ f(y) = f∞; whereas the function g : [0,∞) → (0,∞) given by (8.26) is of class
C2, strictly increasing, strictly concave, and satisfies limy→∞ g(y) = g∞.

8.6 Lemma: The function Q of (8.10) satisfies Q(x, 0) = Q0(x) for all x ∈ IR, and for any y > 0

Qy(x, y) = f ′(y)h′
1

(
f(y)

)
e−x

√
2α
(
e2x

√
2α − e2f(y)

√
2α
)

< 0(8.28)

Qx(x, y) =
2λ

α
x +

√
2α
[
h1

(
f(y)

)
ex

√
2α − h2

(
f(y)

)
e−x

√
2α
]

> 0(8.29)

1
2
Qxx(x, y) + λx2 = αQ(x, y), Q(x, y) < δx2(8.30)

1
2
Qxx(x, y) =

λ

α
+ α

[
h1

(
f(y)

)
ex

√
2α + h2

(
f(y)

)
e−x

√
2α
]

> 0(8.31)

Qxy(x, y) = m
(
f(y)

)√
2αe−x

√
2α
[
e2x

√
2α + e2f(y)

√
2α
]

< 0(8.32)

Qyy(x, y) = f ′(y)e−x
√

2α
[
m′(f(y)

)(
e2x

√
2α − e2f(y)

√
2α
)
− 2

√
2α · m(f(y)

)]
(8.33)

for f(y) < x ≤ g(y), and

(8.34) U(x, y)
�
= Qx(x, y) + Qy(x, y) < 1, for f(y) ≤ x < g(y).

In particular, Q(x, ·) is not convex, since Qyy(x, y) < 0 for x − f(y) > 0 sufficiently small.

The strict concavity of the function g(·), established in Proposition 8.5, implies

(8.35) g′(0) ≤ 1 ⇐⇒ g′(y) < 1, ∀ 0 < y < ∞.

This property will be crucial in the next section, when we construct the optimal policy for the
problem of (2.6), so we shall need conditions to ensure it.

8.7 Proposition: For given α > 0, δ > 0, there exists a constant λ∗ = λ∗(α, δ) with

(8.36) 0 < λ∗ ≤ λ∗ =
αδ

1 + δ/α
1
4δ

+ 1√
2α

as in (8.24), such that

(8.37) g′(0) ≤ 1 ⇐⇒ 0 < λ ≤ λ∗.
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This proposition will be proved in Appendix B. It should be noted here that the second inequality
in (8.36) can be strict. For instance, with α = 1/δ = 2, we have λ∗ = 0.8 from (8.24), while the
methodology of Appendix B computes the constant λ∗ of (8.36) as λ∗ ∼= 0.7885.

9 THE CASE 0 < λ ≤ λ∗, 0 < y < ∞: SYNTHESIS

We are now in a position to reverse the steps of the analysis carried out in Section 8, and to verify
the guesses made in the beginning of that Section, at least for 0 < λ ≤ λ∗. Let us fix the parameters
α > 0, δ > 0 and λ ∈ (0, λ∗] as in Proposition 8.7, construct the solution f(·) of the differential
equation (8.25) and from it the function g(·) of (8.26), as in Proposition 8.5, and define the function

(9.1) Q(x, y)
�
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

δx2 ; 0 ≤ x ≤ f(y)
λ
αx2 + λ

α2 + h1

(
f(y)

)
ex

√
2α + h2

(
f(y)

)
e−x

√
2α ; f(y) < x ≤ g(y)

ζ + Q(x − ζ, y − ζ) ; g(y) < x < y + g(0)
y + Q0(x − y) ; y + g(0) ≤ x < ∞

Q0(x) ; x ≥ 0, y = 0
Q(−x, y) ; −∞ < x < 0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

for 0 ≤ y < ∞. We have used here the notation of (7.13), (7.14), (6.7) and have defined ζ ≡
ζ(x, y) ∈ (0, y) uniquely, via

(9.2) x − ζ = g(y − ζ), for g(y) < x < y + g(0),

thanks to (8.37) and (8.35). These properties ensure that the 45◦-line emanating from the point
(g0, 0) touches the graph of g(·) at that point only; see Figure 2.

9.1 Theorem: The function Q : IR×[0,∞) → [0,∞), defined in (9.1), is of class C1 (IR × [0,∞))∩
C2 (IR × [0,∞) \ {(x, y)/x = ±f(y)}), and solves the moving-boundary problem (8.1)–(8.9) as well
as the variational inequality (4.3)–(4.6). Furthermore, this function has the properties

(9.3) Qy(x, y) ≤ 0, for 0 < y < ∞; lim
y→∞ Q(x, y) = Q∞(x)

for any x ∈ IR, in the notation of (7.10).

¿From Theorem 4.1, we know then that Q(x, y) is a lower-bound on the attainable expected
cost V (x, y) of (2.5); namely, that (4.7) holds. We shall show that, in fact, we have equality in
(4.7), namely

(9.4) Q(x, y) = IE

[∫ τ∗

0

e−αtλ(X∗
t )2 dt +

∫
[0,τ∗]

e−αt
(
dξ+

∗ (t) + dξ∗−(t)
)

+ δe−ατ∗
(
X∗

τ∗
)2] = V (x, y)

for a policy ξ∗ = ξ+∗ − ξ−∗ ∈ A(y), τ∗ ∈ S with τ∗ < ∞, a.s.. Here

(9.5) X∗
t = x + Wt + ξ∗(t), Y ∗

t = y − (ξ+
∗ (t) + ξ−∗ (t)

)
; 0 ≤ t < ∞

are the optimal “position” and “remaining-fuel” processes. By analogy with (7.17), this policy
takes again the form of a combination of “act, continue, or stop” moves. In terms of the regions

(9.6) Σ
�
=
{
(x, y)

/
0 ≤ y < ∞, |x| ≤ f(y)

}
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(9.7) C
�
=
{
(x, y)

/
0 < y < ∞, f(y) < |x| < g(y)

}∪ {(x, 0)
/ |x| > f(0)

}
(9.8) A

�
= A1 ∪ A2

depicted in Figure 2, where

A1
�
=
{
(x, y)

/
0 < y < ∞, g(y) < |x| < g(0) + y

}
, A2

�
=
{
(x, y)

/
0 < y < ∞, |x| ≥ g(0) + y

}
,

the moves of the optimal (ξ∗, τ∗) can be described as follows:

(9.9)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) Stops immediately; if (x, y) ∈ Σ.

(ii) Erects “reflecting barriers” along the moving boundaries ±g(·), spends no fuel
as long as (X∗

t , Y ∗
t ) ∈ C, spends just enough fuel along the “reflecting barriers”

to ensure |X∗· | ≤ g
(
y − ξ+∗ (·) − ξ−∗ (·)) at all times, and stops the first time

(X∗
t , Y ∗

t ) ∈Σ; if (x, y) ∈ C.

(iii) Spends at t = 0 as much fuel as necessary to move to the closest “reflecting
barrier”, and then continues as in (ii) above; if (x, y) ∈ A1.

(iv) Spends all available fuel at once, moves to the position x′ = x−y · sgn(x), and
stops the first time t such that |x′ + Wt| = f0; if (x, y) ∈ A2.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

More precisely, we can construct a pair of non-decreasing processes ξ±∗ (·) ∈ A, such that

ξ−∗ (t) = max
[
0, max

0≤u≤t

(
x + Wu − g

(
y − ξ−∗ (u)

))] ∧ y, 0 ≤ t ≤ τ∗(9.10)

ξ+
∗ (t) = max

[
0, max

0≤u≤t

(−x − Wu − g
(
y − ξ+

∗ (u)
))] ∧ y, 0 ≤ t ≤ τ∗(9.11)

and ξ±∗ (t)
�
= ξ±∗ (τ∗) for t ≥ τ∗, where

(9.12) τ∗
�
= inf

{
t ≥ 0

/ |X∗
t | ≤ f(Y ∗

t )
}

< ∞ , a.s.

(9.13) ξ∗
�
= ξ+

∗ − ξ−∗ ∈ A(y), (X∗, Y ∗) as in (9.5).

The reader should consult Beneš, Shepp & Witsenhausen (1980) for the actual construction of the
processes ξ±∗ (·) in (9.10) and (9.11), and should argue the a.s. finiteness of the stopping time τ∗,
as indicated in (9.12).

9.2 Theorem: The policy (ξ∗, τ∗) ∈ (A(y) × S) of (9.10)-(9.13) is optimal for the problem of (2.6),
whose value is then given by the expression of (9.1); in other words, (9.4) holds.

Proof: Let us consider the policy (ξ∗, τ∗) of (9.10)-(9.13), recall (9.5), set η ≡ ξc∗, and observe that

(X∗
τ∗, Y

∗
τ∗) ∈ Σ ⇔ Q(X∗

τ∗, Y
∗
τ∗) = δ(X∗

τ∗)
2, a.s.(9.14)

(X∗
t , Y ∗

t ) ∈ C ⇔ 1
2
Qxx(x, y) + λx2 − αQ(x, y)

∣∣∣∣
(x,y)=(X∗

t ,Y ∗
t )

= 0(9.15)

for every 0 < t < τ∗, a.s. on {τ∗ > 0},
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(9.16)

{
η+ is flat away from {t ≥ 0

/
Y ∗

t− > 0, X∗
t− ≤ −g(Y ∗

t−)} =

{t ≥ 0
/

Y ∗
t− > 0, (−Qx + Qy)(X∗

t−, Y ∗
t−) = 1}

}
,

(9.17)

{
η− is flat away from the set {t ≥ 0

/
Y ∗

t− > 0, X∗
t− ≥ g(Y ∗

t−)} =

{t ≥ 0
/

Y ∗
t− > 0, (Qx + Qy)(X∗

t−, Y ∗
t−) = 1}

}
,

(9.18)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

at any time t ∈ [0, τ∗] with �η±
t > 0, we have

Q(x ± ϑ, y − ϑ) − Q(x, y) + ϑ

∣∣∣∣
(x,y)=(X∗

t−,Y ∗
t−), ϑ=�η±

t

= 0, a.s.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

It follows from (9.14)–(9.18) that we have Ij(τ∗) = 0 a.s., for j = 1, · · · , 5 in the proof of Theorem
4.1, and (9.4) is then a consequence of Corollary 4.2. �

We discuss the situation λ∗ < λ ≤ λ∗ in the next Section 10. By contrast, the case λ∗ < λ < αδ

has so far eluded our efforts. It may require the development of a new methodology; we suggest its
analysis as an interesting open problem.

10 THE CASE λ∗ < λ ≤ λ∗, 0 < y < ∞.

When λ∗ < λ ≤ λ∗, one expects that the optimal policy will be characterized by two curves
{(x, y)

/
x = F (y), 0 ≤ y < ∞} and {(x, y)

/
x = G(y), 0 ≤ y < ∞} with F (·) < G(·), and will

obey the rules:

(10.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) In region I
�
=
{
(x, y)

/
0 ≤ x ≤ F (y), 0 ≤ y < ∞}, stop immediately.

(b) In region II
�
=
{
(x, y)

/
F (y) < x < G(y), 0 ≤ y < ∞}, continue without exer-

cise of control (expenditure of fuel).

(c) If the starting point (x0, y0) is in region III
�
=
{
(x, y)

/
x > G(y), 0 ≤ y < ∞},

expend fuel immediately and bring the state to the boundary{
(x, y)

/
x = G(y), y > 0

}⋃{
(x, 0)

/
x ≥ G(0)

}
of the region.

(d) Use the optimal stopping rule of Section 6, if y = 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Because of the definition of λ∗ we guess that, if the optimal strategy has the suggested form,
then there should exist a critical level of fuel ȳ ∈ (0,∞), such that

(10.2) G′(y) > 1 for 0 ≤ y < ȳ, and 0 < G′(y) ≤ 1 for y ≥ ȳ.

Along the part of the curve {(x, y)
/

x = G(y), y > ȳ} where G′(y) ≤ 1, the strategy is to use fuel
to reflect the vector-process (Xt, Yt) so as to keep it in the region {(x, y)

/
F (y) ≤ x ≤ G(y), 0 ≤

y < ∞}, just as was done in the previous case of 0 < λ ≤ λ∗ (Section 9). However, along the part
of the curve {(x, y)

/
x = G(y), 0 < y ≤ ȳ} where G′(y) > 1, this is no longer possible. We

propose that the policy of (10.1)(c) extend to this portion of the boundary:
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(10.1)(e)

⎧⎪⎨
⎪⎩ From any initial condition (x0, y0) ∈ {

(x, y)
/

x = G(y), 0 < y ≤ ȳ
}
,

one expends all available fuel to bring the state to the x-axis.

⎫⎪⎬
⎪⎭

This guess is natural, because the 45◦-line segment connecting any such (x0, y0) to the axis, remains
in region III; cf. Figure 3.

Let π(F ; G) denote the control/stopping policy outlined in the above discussion of (10.1)(a-e).
This strategy treats always F (·) as an absorbing boundary (stops, as soon as |Xt| ≤ F (Yt)). As long
as Yt > ȳ, this policy treats G(·) as a reflecting boundary, in the manner of (9.9)(iii); but as soon
as Yt ∈ (0, ȳ], it treats G(·) as an exit (“repelling”) boundary, i.e. spends all available fuel at once
if |Xt| ≥ G(Yt). In particular, with initial fuel Y0 = y0, the state-process {(Xt, Yt); 0 ≤ t < ∞}
never visits the region

{
(x, y)

/ |x| ≤ G(y), 0 < y < ȳ ∧ y0

}
if the policy π(F ; G) is used.

We shall show that, for λ∗ < λ ≤ λ∗, there are curves F (·) and G(·) as in Figure 3 such
that π(F ; G) is optimal, and F (·), G(·) are uniquely determined by the smooth-fit conditions of
(10.4) below. Let Q(x, y) denote the expected cost associated with π(F ; G) and initial condition
(X0, Y0) = (x, y), and assume as an Ansatz:

(10.3) G(y) > y +
α

2λ
, for 0 ≤ y ≤ ȳ ;

(10.4)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) Q(·, y), Qx(·, y) are continuous across x = F (y), ∀ y ∈ (0,∞);

(b) Q(·, y), (Qx + Qy)(·, y) and (Qxx + Qxy)(·, y) are continuous across x = G(y),
∀ y ∈ (ȳ,∞);

(c) Q(·, y) and Qx(·, y) are continuous across x = G(y), ∀ y ∈ (0, ȳ);

(d) Q ∈ C (IR × [0,∞)).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

10.1 Remark: The requirement (10.4)(b) is the same smooth-fit condition used in the case 0 < λ ≤
λ∗ of Sections 8 and 9 (for which, from the perspective of our more general framework, ȳ = 0).
Condition (10.4)(c) is very natural, since the policy π(F ; G) determines the value of Q(G(y), y) for
0 ≤ y ≤ ȳ; thus, only one more smooth-fit condition is needed to determine F (·) and G(·), namely,
the continuity of Qx(·, y) across x = G(y).

The proof will be developed in two steps. First, we shall identify the critical fuel-level ȳ and the
portions

{
(F (y), G(y))

/
0 ≤ y ≤ ȳ

}
of the moving-boundaries below it, by imposing (10.4)(c)

under the Ansatz (10.3). We shall construct Q(·, ·) on IR × [0, ȳ] as the expected-cost-function
under this policy, and show by the Verification Theorem 4.1 that it consitutes the value function
for our problem (2.6).

Next, we shall extend F (·), G(·) to the region y > ȳ above the critical level, using (10.4)(b).
This can be done quite easily, using the results of Sections 8 and 9, once certain facts about F (·)
and G(·) at y = ȳ have been established.

Before presenting the results, we state formulae for the expected-cost-function {Q(x, y)
/

x ∈
IR, y ∈ [0, ȳ]} associated with π(F ; G) and for the smooth-fit conditions (10.4)(a,c). With the
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notation of (6.7)–(6.9) for Q0(·) ≡ Q(·, 0) and f0 ≡ f0(λ), with given F (·) and G(·) as above, and
with suitable function A(·), B(·) (to be determined), we have

(10.5) Q(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

δx2 ; 0 ≤ x ≤ F (y)
λ
αx2 + λ

α2 + A(y)ex
√

2α + B(y)e−x
√

2α ; F (y) < x < G(y)
Q(x − y, 0) + y ; x ≥ G(y)

Q(−x, y) ; x < 0

for 0 ≤ y ≤ ȳ. Because we are assuming (10.3), we have G(y) > y + α
2λ > y + f0, and thus

(10.6) Q(x, y) = y +
λ

α
(x − y)2 +

λ

α2
+ h2(f0)e−(x−y)

√
2α; x ≥ G(y), 0 ≤ y ≤ ȳ.

As shown in (8.13), the smooth-fit condition (10.4)(a) implies

(10.7) A(y) = h1

(
F (y)

)
, B(y) = h2

(
G(y)

)
; 0 ≤ y ≤ ȳ.

On the other hand, the smooth-fit condition (10.4)(c) requires

λ

α
x2 +

λ

α2
+ h1

(
F (y)

)
ex

√
2α + h2

(
F (y)

)
e−x

√
2α = Q(x − y, 0) + y

2λ

α
x +

√
2α
[
h1

(
F (y)

)
ex

√
2α − h2

(
F (y)

)
e−x

√
2α
]

= Qx(x− y, 0)

at x = G(y). Algebraic manipulation reduces these equations to

(10.8) h1

(
F (y)

)
= H3

(
G(y), y

)
, h2

(
F (y)

)
= H4

(
G(y), y

)
where

(10.9)
H3(x, y)

�
= yh3(x) +

λ

2α
y2e−x

√
2α

H4(x, y)
�
= −yh4(x) +

λ

2α
y2ex

√
2α + h2(f0)ey

√
2α.

Let us denote again by f(·), g(·) the solutions provided by Proposition 8.5 to the system of (8.26),
(8.27) with f(0) = f0, g(0) = g0. Both these functions depend on the value of the parameter λ
(though we shall not indicate this dependence explicitly), and satisfy the relation q

(
g(y); f(y)

)
= 0

of (8.21). Here q(·; ·) is the function of (8.23), and will play a central role in the analysis that
follows.

10.2 Proposition: For λ∗ < λ ≤ λ∗, there exists a real number Y > 0 and a unique solution{(
Fλ(y), Gλ(y)

)
; 0 ≤ y ≤ Y

}
to the equations of (10.8), for which Gλ(·) sastifies (10.3) and

Fλ(·), Gλ(·) are in C1 ([0, Y ]) ;(10.10)
Fλ(0) = f0, F ′

λ(0) = f ′(0) and Fλ(·) is decreasing ;(10.11)
Gλ(0) = g0 and G′

λ(0) = 1
2 [1 + g′(0)] ∈ (1, g′(0)

)
;(10.12)

(10.13) G′
λ(y) = 1 +

q
(
Gλ(y); Fλ(y)

)
2λy√
2α

[
Gλ(y)− (y

2 + α
2λ

)]
eGλ(y)

√
2α

(
1 − e2

(
Fλ(y)−Gλ(y)

)√
2α

) , 0 < y ≤ Y.

22



The set
{
y ∈ [0, Y ]

/
G′

λ(y) ≤ 1
}

is not empty; and with ȳ
�
= sup

{
y > 0

/
G′

λ(y) > 1
}
, we have

(10.14) 0 < ȳ ≤ Y, G′
λ(ȳ) = 1 < G′

λ(y) for 0 < y < ȳ, ȳ = sup
{
y > 0

/
q
(
Gλ(y); Fλ(y)

)
> 0
}

,

(10.15) q
(
Gλ(ȳ); Fλ(ȳ)

)
= 0, or equivalently Gλ(ȳ) = X (Fλ(ȳ)

)
.

10.3 Theorem: Let Fλ(·), Gλ(·), ȳ be given as in Proposition 10.2, and Q be defined on IR×[0, ȳ] as
in (10.5), (10.7). Then Q is of class C(IR×[0, ȳ]

)∩C1
(
IR×(0, ȳ)

)
, is twice continuously differentiable

with locally bounded second derivatives away from
{
(x, y) ∈ IR × (0, ȳ)

/
x = ±Fλ(y) or x = ±Gλ(y)

}
,

and satisfies (4.2) and the Variational Inequality (4.3)-(4.6) on IR × (0, ȳ).

10.4 Corollary: For λ∗ < λ ≤ λ∗, the function Q of Theorem 10.2 coincides with the value
function V on IR×[0, ȳ], and the strategy π(Fλ; Gλ) (of (10.1) and subsequent discussion) is optimal
for the problem (2.6) for x ∈ IR, y ∈ [0, ȳ].

Proof: By Theorems 10.2 and 4.1, we have Q ≤ V on IR × [0, ȳ]. Since Q is the expected cost
associated with the policy π(Fλ; Gλ) we also have Q ≥ V on IR × [0, ȳ], and the claims follow. �

To complete the solution, it remains to determine the functions F (·), G(·) on [ȳ,∞) and show
that the expected cost Q associated with the policy π(F ; G) satisfies the Variational Inequality of
(4.3)–(4.6). In accordance with (10.2) we want G′(·) ≤ 1 on [ȳ,∞). If this is the case, then we
should first apply (10.4)(a,b) as a smooth-fit principle to determine F (·) and G(·) on [ȳ,∞), and
then check the validity of G′(·) ≤ 1 on this interval.

The first of these tasks has already been carried out in Section 8 (Lemmata 8.2, 8.3 and Propo-
sition 8.5). Let f̃(·) be defined on [ȳ,∞) as the solution to the equation

(10.16) f̃ ′(y) =
h3

(X (z)
)−√

2α h1(z)
h′

1(z)

∣∣∣∣∣
z=f̃ (y)

for y > ȳ, and f̃(ȳ) = Fλ(ȳ).

To proceed with the second task, it is important to note the following.

10.5 Lemma: Let f∗(·) ≡ fλ∗(·) be the function of (8.27) defined on [0,∞) corresponding to the
parameter value λ∗ of (8.36). Then with λ∗ < λ ≤ λ∗ we have Fλ(·) ≥ f∗(·) on [0, ȳ]; in particular,
Fλ(ȳ) > f∞.

Proof: The optimal stopping region for the problem of (2.6) with value V (·, ȳ) corresponding to λ∗, is
given by

{
(x, y)

/ |x| ≤ f∗(y), 0 ≤ y ≤ ȳ
}
. On the other hand, the set

{
(x, y)

/ |x| ≤ Fλ(y), 0 ≤ y ≤ ȳ
}

is the optimal stopping region for the problem of (2.6) with value function V (·, ȳ) corresponding to
λ ∈ (λ∗, λ∗]. The optimal stopping region increases with λ, and the claims follow. �

¿From Proposition 8.5, the equation (10.16) admits a unique solution; this is a strictly decreas-
ing, strictly convex function, of class C2

(
(ȳ,∞)

)
, and satisfies limy→∞ f̃(y) = f∞. Now define

(10.17) F (y)
�
=
{

Fλ(y) ; 0 ≤ y ≤ ȳ

f̃ (y) ; ȳ < y < ∞
}
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as well as

(10.18) G(y)
�
=
{

Gλ(y) ; 0 ≤ y ≤ ȳ
X (F (y)

)
; ȳ < y < ∞

}
.

In particular,

(10.19) q
(
G(y); F (y)

)
= 0, ȳ < y < ∞.

Since F (·) is continuous at y = ȳ by (10.16), it follows from (10.15), (10.19) that G(·) is also
continuous at y = ȳ. Furthermore, we have limy→∞ G(y) = g∞ from Proposition 8.5.

10.6 Theorem: The function F (·) of (10.17) is continuously differentiable at y = ȳ:

(10.20) F ′(y+)
�
= lim

y↓ȳ

F (y) − F (ȳ)
y − ȳ

= F ′(y−)
�
= lim

y↑ȳ

F (y) − F (ȳ)
y − ȳ

.

On the other hand, the function G(·) of (10.18) satisfies

G′(ȳ+) ≤ 1 and(10.21)
G′(y) < 1, for all y > ȳ.(10.22)

Proof: Let us recall G′(ȳ) = 1 from (10.14); differentiation in (10.8) with respect to y, and then
calculation at y = ȳ, gives

(10.23) h′
1

(
F (ȳ)

) · F ′(ȳ−) =
(

∂H3

∂x
+

∂H3

∂y

)(
G(ȳ), ȳ

)
.

Now an easy calculation in (10.9) shows
(10.24)(

∂H3

∂x
+

∂H3

∂y

)
(x, y) = h3(x)−

√
2αH3(x, y),

(
∂H4

∂x
+

∂H4

∂y

)
(x, y) =

√
2αH4(x, y)− h4(x).

¿From (10.18) and (10.8) we obtain G(ȳ) = X (F (ȳ)), h1(F (ȳ)) = H3

(
G(ȳ), ȳ

)
and thus (10.23)

reads

F ′(ȳ−) =
h3

(X (z)
)−√

2αh1(z)
h′

1(z)

∣∣∣∣∣
z=F (ȳ)

.

But the right-hand side of this expression coincides with F ′(y+) thanks to the definitions (10.17)
and (10.16), so (10.20) follows. Now use (10.14) to obtain

(10.25) 0 ≥ lim
y↑ȳ

q
(
G(y); F (y)

)− q
(
G(ȳ); F (ȳ)

)
y − ȳ

=
∂q

∂x

(
G(ȳ); F (ȳ)

)
+ F ′(ȳ) · ∂q

∂z

(
G(ȳ); F (ȳ)

)
since G′(ȳ−) = 1, and recall (8.25) to observe

∂q

∂x

(
G(ȳ); F (ȳ)

)
= λ

√
2
α

( α

2λ
− G(ȳ)

)
eG(ȳ)

√
2α

[
1− e2

(
F (ȳ)−G(ȳ)

)√
2α

]
< 0
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thanks to (10.3). Therefore, (10.25) yields

1 ≥ −∂q/∂z

∂q/∂x

(
G(ȳ); F (ȳ)

) · F ′(ȳ+) = G′(ȳ+)

in conjunction with (10.19) and (10.20). This proves (10.21). Proposition 8.5 implies that G(·) is
strictly concave on (ȳ,∞) and so (10.22) follows immediately. �

In terms of the functions F (·) and G(·) of (10.17), (10.18), let us define now for y > ȳ the
function
(10.26)

Q(x, y)
�
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

δx2 ; 0 ≤ x ≤ F (y)
λ
αx2 + λ

α + h1

(
F (y)

)
ex

√
2α + h2

(
F (y)

)
e−x

√
2α ; F (y) < x ≤ G(y)

ζ + Q(x − ζ, y − ζ) ; G(y) < x < G(ȳ) + (y − ȳ)
y + Q(x − y, 0) ; x ≥ G(ȳ) + (y − ȳ)

Q(−x, y) ; x < 0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

where ζ = ζ(x, y) is defined uniquely via x − ζ = G(y − ζ), and observe limx→x0, y↓ȳ Q(x, y) =
Q(x0, ȳ). Hence Q is continuous at all points of

{
(x, y)

/
y = ȳ

}
. It is also clear that Q is C2

except possibly on
{
(x, y)

/
x = ±F (y) or x = ±G(y)

}
(by the analysis of the proof of Theorem

9.1, Q is C2 across the boundary
{
(x, y)

/
x = ±G(y), y > ȳ

}
).

It can be shown that Q is of class C1 on IR × [0,∞). Indeed, we know from Theorem 10.2
that Q ∈ C1 (IR × [0, ȳ]), and from the analysis of Theorem 9.1 that Q ∈ C1 (IR × (ȳ,∞)). Hence it
suffices to show

lim
x→x0, y↓y0

Qx(x, y) = Qx(x0, ȳ)

and similarly for Qy. This is easily checked using straightforward differentiation and part (iii) of
the proof of Theorem 9.1.

The proof of Theorem 9.1 shows that Q satisfies the Variational Inequalities (4.3)–(4.6) for
y > ȳ, and Q satisfies (9.3). Since we have verified that Q satisfies the conditions of (4.3)–(4.6) for
y ≤ ȳ, it follows that Q solves them everywhere. Thus we have proved

10.7 Theorem: Let λ∗ < λ ≤ λ∗. The function Q defined in (10.26) is the value function for the
problem of (2.6), and π(F ; G) is the optimal strategy.

Proof of Proposition 10.2: Abusing notation slightly, we shall denote Fλ(·) by F (·) and Gλ(·)
by G(·), throughout this proof.

Step 1: Reduction of the equations (10.8) to an implicit equation for G(·). From Lemma 8.1, the
function h1(·) restricted to [0, f0] admits an inverse h−1

1 :
[− λ

2α2 , 0
] → [0, f0]. It is shown

in Appendix C that H3(x, y) ∈ (− λ
2α2 , 0

)
, for y > 0 and x >

(
α
2λ + y

2 − 1√
2α

)+
. Therefore,

H (H3(x, y)) = (h2◦h−1
1 ) (H3(x, y)) is defined on this domain, with H = h2◦h−1

1 as in Section
8. Set

(10.27) L(x, y)
�
= H4(x, y)− H

(H3(x, y)
)
; y ≥ 0, x >

(
α

2λ
+

y

2
− 1√

2α

)+

and note that, for y = 0, we have H3(x, 0) ≡ 0 and H
(H3(x, 0)

)
= h2(f0), thus L(x, 0) ≡ 0.
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We claim that if G(·) solves the equation

(10.28) L
(
G(y), y

)
= 0 ,

then F (·) �
= h−1

1 (H3 (G(·), ·)) and G(·) solve the equations of (10.8). Indeed, F (·), G(·) satisfy
the first equation in (10.8) by definition, and from (10.28): H4(G(y), y) = h2

(
h−1

1 (G(y), y)
)

=
h2(F (y)).

Step 2: Solution of (10.28). In Appendix C it is shown that

(10.29)

⎧⎪⎨
⎪⎩

there is a Y > 0 such that, for every 0 < y ≤ Y , the equation (10.28)
has solution G(y) ≥ y + α

2λ . Moreover, G(y) > y + α
2λ for 0 < y < Y ,

and G(Y ) = Y + α
2λ . Also, G(0)

�
= limy↓0 G(y) = g0.

⎫⎪⎬
⎪⎭

Two immediate consequences of (10.29) are F (Y ) = h−1
1 (H3(G(y), y)) < f0 if y > 0, and

F (0) = limy↓0 F (y) = h−1
1 (H3(g0, 0)) = h−1

1 (0) = f0.

Step 3: Proof of (10.10)–(10.13). From (C.8), (C.4) in Appendix C, we obtain

(10.30)
(

∂L

∂x
+

∂L

∂y

)
(G(y), y) = q(G(y); F (y)),

(10.31)
∂L

∂x
(G(y), y) = − 2λy√

2α

(
G(y)−

(y

2
+

α

2λ

))
eG(y)

√
2α
[
1 − e2

√
2α(F (y)−G(y))

]
< 0, for 0 < y ≤ Y.

Therefore, G(·) ∈ C1 ((0, y]) by the implicit function theorem, and

(10.32) G′(y) = −
(

Ly

Lx

)
(G(y), y) = 1− q(G(y); F (y))

Lx(G(y), y)
, 0 < y ≤ Y,

which proves (10.13).

By differentiation of the first equation in (10.8), and the fact that h′
1(·) > 0 on [0, f0], we

deduce that F (·) ∈ C1 ((0, y]) also. An explicit formula for F ′(·) is given in (C.9); using
that formula, it is shown that limy↓0 F ′(y) = f ′(0) and that F (·) is decreasing. Thus F (·) ∈
C1 ([0, y]) with F ′(0) = f ′(0), as claimed in (10.10) and (10.11).

The proof that G(·) ∈ C1 ([0, y]) and G′(0) = 1
2(1 + g′(0)) is carried out in Appendix C.

Step 4: Proof of (10.14) and (10.15). Since G(Y ) = Y + α
2λ and G(0) = g0 > α

2λ , we have
G(Y )−G(0)

Y < 1. Therefore, by the Mean-Value Theorem, there is a ỹ ∈ (0, Y ) with G′(ỹ) < 1.
Since G′(0) > 1, there must exist a ȳ ∈ (0, ỹ) with G′(ȳ) = 1. The alternative characterization
of ȳ and (10.15) follow immediately from equation (10.13) for G′(·). �

The major remaining technical work is summarized in the next lemma, proved in Appendix C.

10.8 Lemma: The function Q(·, ·) of (10.5), (10.7) is of class C1 (IR × [0, ȳ]) and satisfies

(Qx + Qy)(x, y) < 1; for 0 ≤ x < G(y), 0 < y ≤ ȳ,(10.33)
(Qx + Qy)(x, y) = 1; for x ≥ G(y), 0 < y ≤ ȳ.(10.34)
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Proof of Theorem 10.3: Lemma 10.8 establishes the fact that Q is C1. It is easy to see that Q is
C2 except at the curves {(x, y) / x = F (y)} and {(x, y) / x = G(y)}, and that its second derivative
are locally bounded. It remains to check the Variational Inequality (4.3)–(4.6) and (4.2). The
condition (4.2) is immediate from the construction of Q. Lemma 10.8 takes care of that part of
the Variational Inequality having to do with the directional derivative Qx + Qy. To conclude, it
remains to verify

(i) 1
2Qxx + λx2 − αQ > 0; in regions I, III,

(ii) Q < δx2; in regions II, III.

Now 1
2Qxx + λx2 − αQ = δ − (αδ − λ)x2 > δ − (αδ − λ)f2

0 > 0 is checked, for |x| ≤ F (y), exactly
as in the proof of Theorem 9.1. On the other hand, we have in region III:

1
2
Qxx + λx2 − αQ = λ

[
x2 − (x − y)2 − αy

]
= 2λy

[
x −

(y

2
+

α

2λ

)]
> 0.

To check (ii), observe Qy(x, y) = h′
1(F (y))F ′(y)ex

√
2α ·

[
1 − e2(F (y)−x)

√
2α
]

< 0 in region II, because
F ′(y) < 0, h′

1(F (y)) > 0 and x > F (y) there; likewise,

Qy(x, y) = 1 − 2λ

α
(x − y) +

√
2α · h2(f0) e(y−x)

√
2α < 0

in region III, because h2(f0) < 0 and x > G(y) > y + α
2λ there. �
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A. APPENDIX: PROOFS OF RESULTS IN SECTIONS 8, 9

Proof of Lemma 8.1: It is straightforward to verify (8.18). It is checked from (6.10) and (7.13),
(7.14) that

(A.1) h′
1(x) =

αδ − λ√
2α

(
δ

αδ − λ
− x2

)
e−x

√
2α > 0, h′

2(x) =
αδ − λ√

2α

(
x2 − δ

αδ − λ

)
ex

√
2α < 0

for 0 ≤ x <
√

δ
αδ−λ , and (8.19) follows. On the other hand we have ρ

(√
δ

αδ−λ

)
> 0, which implies

f0 <
√

δ
αδ−λ , so h′

1(·) > 0 and h′
2(·) < 0 on (0, f0). �

Proof of Lemma 8.3: The first claim follows from the implicit function theorem, since

(A.2) X ′(z) = −
(

∂

∂z
q(x; z)

/
∂

∂x
q(x; z)

)∣∣∣∣
x=X (z)

< 0.

Indeed, both ∂
∂xq(x; z) from (8.25), and

(A.3)
∂

∂z
q(x; z) = −2

αδ − λ

α
· d

dz

(
zez

√
2α
)

+
2λ

α

√
2α

(
α

2λ
− x − 1√

2α

)
e(2z−x)

√
2α,

are negative at x = X (z) > α
2λ . On the other hand, differentiating further in (A.2), we obtain

(A.4)
∂2q

∂z2
(x; z) + 2

∂2q

∂x∂z
(x; z) · X ′(z) +

∂2q

∂x2
(x; z) · X ′′(z) +

∂2q

∂x2
(x; z) · (X ′(z)

)2 = 0

with x = X (z). Now from (8.25), (A.3) we have the computations√
α/2

λex
√

2α
· ∂2q

∂x2
(x; z) = −

(
x − α

2λ

)√
2α
[
1 + e2(z−x)

√
2α
]
−
(
1 − e2(z−x)

√
2α
)

< 0

∂2q

∂x∂z
(x; z) = 4λ

(
x − α

2λ

)
e(2z−x)

√
2α > 0

∂2q

∂z2
(x; z) = −2

αδ − λ

α
· d2

dz2

(
zez

√
2α
)

+ 8λ

(
α

2λ
− x − 1√

2α

)
e(2z−x)

√
2α < 0

for x = X (z) > α
2λ , which lead in (A.4) to X ′′(z) < 0. �

Proof of Proposition 8.5: Let us start by observing that the function m(·) of (8.27) is strictly
decreasing. This is because we have m′(z) = h′

3 (X (z))·X ′(z)−√
2α·h′

1(z) < 0, thanks to Lemmata
8.1-8.3 and h′

3(x) =
√

α
2

(
2λ
α x − 1

)
e−x

√
2α > 0 for x > α

2λ . In particular, we obtain then

(A.5) m(z) < 0 for f∞ < z ≤ f0

from the first equality in (7.12), which amounts to m(f∞) = 0. Let us consider also the strictly
decreasing function

(A.6) F (z)
�
= −

∫ f0

z

h′
1(u)

m(u)
du, f∞ < z ≤ f0 with F (f∞+) = ∞, F (f0) = 0
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and F ′(z) = h′
1(z)

/
m(z). In view of (8.27) and (A.5), this gives F ′(f(y)

)
= 1

/
f ′(y), which,

combined with the fact that F (f0) = 0, implies F
(
f(y)

)
= y, 0 ≤ y < ∞. This way, we may

construct the solution of the differential equation (8.27) with the initial condition f(0) = f0 by

taking the inverse f(·) �
= F−1(·) of the function F (·) in (A.6); this solution also satisfies f(∞) = f∞.

For this function, (8.27) gives

f ′(y) =
m(z)
h′

1(z)

∣∣∣∣
z=f(y)

< 0,
f ′′(y)
f ′(y)

=
m′(z)h′

1(z)− m(z)h′′
1(z)(

h′
1(z)

)2
∣∣∣∣∣
z=f(y)

.

For f∞ < z ≤ f0, we have m(z) < 0, h′
1(z) > 0, m′(z) < 0 and

h′′
1(z) =

αδ − λ√
2α

e−z
√

2α

[
−
√

2α

(
η +

1
α
− z2

)
− 2z

]
< 0

from the proof of Lemma 8.1, so f ′′(y) > 0. In other words, the function f(·) is strictly convex.
¿From these facts, the relation g(y) = X (f(y)

)
of (8.26) and Lemma 8.3 imply

(A.7) g′(y) = f ′(y)X ′(f(y)
)

> 0, g′′(y) = f ′′(y)X ′(f(y)
)

+
(
f ′(y)

)2X ′′(f(y)
)

< 0,

and the strict increase and strict concavity of g(·) follow. �

Proof of (8.28), (8.29): The first follows from Lemma 8.1 and f ′(y) < 0. For the second,
fix y > 0, and observe that we have Qx

(
f(y), y)

)
= 2δf(y) > 2δf∞ > 0 and Qx

(
g(y), y)

)
=

1−Qy

(
g(y), y)

)≥ 1, so the maximum principle implies Qx(x, y) ≥ 1∧(2δf∞) for f(y) ≤ x ≤ g(y) .

Proof of (8.34): For fixed y ∈ (0,∞), the function d(x)
�
= U(x, y) = 2λ

α x + h3

(
g(y)

)
ex

√
2α −

h4

(
g(y)

)
e−x

√
2α , f(y) ≤ x ≤ g(y) of (8.34) satisfies

(A.8) d
(
f(y)

)
= 2δf(y) < 1 = d

(
g(y)

)
,

as well as

d′(x) = (DQx)(x, y) = (Qxx + Qxy)(x, y) =
2λ

α
+

√
2α
[
h3

(
g(y)

)
ex

√
2α + h4

(
g(y)

)
e−x

√
2α
]
.

Notice that d′(·) is strictly concave, because h3

(
g(y)

)
< 0, h4

(
g(y)

)
< 0 from (8.26), (8.22) and

(7.15), (7.16). Furthermore d′
(
g(y)

)
= 0 from (8.15).

We cannot have d′(·) ≤ 0 throughout the interval [f(y), g(y)], because that would contradict
(A.8). Thus, the only possibilities compatible with the strict concavity of d′(·) and with d′

(
g(y)

)
= 0

are: (i) d′(·) > 0 over
(
f(y), g(y)

)
; or (ii) d′(·) < 0 on

(
f(y), q

)
and d′(·) > 0 on (q, g(y)), for some

q in
(
f(y), g(y)

)
. In either case, we have d(x) < 1 on [f(y), g(y)). �

Proof of (8.32): From (8.27), (8.29) and the proof of Proposition 8.5, we get with z = f(y):

1√
2α

ex
√

2αQxy(x, y) = f ′(y)h′
1(z)

[
e2x

√
2α + e2z

√
2α
]

= m(z)
[
e2x

√
2α + e2z

√
2α
]

< 0.
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Proof of (8.31): We have 1
2Qxx

(
f(y), y

)
=
(
αQ(x, y)− λx2

)∣∣
x=f(y)

= (αδ − λ)f2(y) > 0, and

Qxx

(
g(y), y

)
= −Qxy

(
g(y), y

)
> 0 from (8.32). On the other hand, 1

2(Qxx)xx − αQxx = −2λ < 0
for f(y) < x < g(y), so the maximum principle gives Qxx(x, y) ≥ Qxx

(
f(y), y

) ∧ Qxx

(
g(y), y

)
> 0,

for f(y) ≤ x ≤ g(y). �

Proof of (8.30): The equality is satisfied by construction of the function Q, in (8.10). As for

the inequality, for fixed y > 0, the function v(x)
�
= δx2 − Q(x, y), f(y) ≤ x ≤ g(y) satisfies

v
(
f(y)

)
= v′

(
f(y)

)
= 0 by construction of Q, as well as v′′(x) > 0 because 1

2Qxx(x, y) < λ/α < δ,
thanks to (8.31) and Lemma 8.1. It follows that v′(·) > 0, v(·) > 0 on

(
f(y), g(y)

)
. �

Proof of Theorem 9.1: (i) In the region {(x, y)
/

0 ≤ x ≤ f(y), 0 ≤ y < ∞} we have
Q(x, y) = δx2, thus also (Qx + Qy)(x, y) = Qx(x, y) = 2δx < 2δf0 < 1 from (8.23), and from the
proof of Lemma 8.1:

(
1
2Qxx + λx2 − αQ

)
(x, y) = δ − (αδ − λ)x2 ≥ δ − (αδ − λ)f2

0 > 0.

(ii) In the region {(x, y)
/

f(y) < x ≤ g(y), 0 ≤ y < ∞} ∪ {(x, 0)
/

x ≥ f(0)} we have(
1
2Qxx + λx2 − αQ

)
(x, y) = 0, and Q(x, y) < δx2 from (6.3) and (8.30). On the other hand:

(Qx +Qy)(x, y) < 1 for f(y) ≤ x < g(y), 0 < y < ∞, from (8.34). Finally, Q
(
f(y)+, y

)
= δ
(
f(y)

)2
and Qx

(
f(y)+, y

)
= 2δf(y) from (8.11), (8.12), as well as

Qy(x, y) = A′(y)ex
√

2α + B′(y)e−x
√

2α = f ′(y)
[
h′

1

(
f(y)

)
ex

√
2α + h′

2

(
f(y)

)
e−x

√
2α
]

= f ′(y)h′
1

(
f(y)

)
e−x

√
2α
(
e2x

√
2α − e2f(y)

√
2α
)

< 0, f(y) < x ≤ g(y)

with Qy

(
f(y), y) = 0. In particular, Q(·, ·) is of class C1 across the boundary {(x, y)/x = f(y)}.

(iii) In the region {(x, y)
/

g(y) < x < g(0) + y, 0 < y < ∞}, we have Q(x, y) = ζ + Q(η, θ)
where η = x − ζ, θ = y − ζ and ζ = ζ(x, y) ∈ (0, y) is defined by (9.2). In particular, we have
ζx = 1/(1− g′(θ)) > 0, ζy = −g′(θ)/(1− g′(θ)) < 0 and

Qx(x, y) = ζx + (1− ζx)Qx(η, θ) + (−ζx)Qy(η, θ) = Qx(η, θ)
Qy(x, y) = ζy + (−ζy)Qx(η, θ) + (1− ζy)Qy(η, θ) = Qy(η, θ)

Qxx(x, y) = (1 − ζx)Qxx(η, θ) + (−ζx)Qxy(η, θ) = Qxx(η, θ);

similarly Qxy(x, y) = Qxy(η, θ), Qyy(x, y) = Qyy(η, θ). We have used here the property Qxx(η, θ) =
−Qxy(η, θ) = Qyy(η, θ) for η = g(θ), a consequence of (8.14) and (8.15). It follows that Qx+Qy = 1
throughout the region, and that the function Q is of class C2 across the moving boundary g(·).
Furthermore,

1
2
Qxx(x, y) + λx2 − αQ(x, y) =

1
2
Qxx(η, θ) + λx2 − α

(
ζ + Q(η, θ)

)
=
(

1
2
Qxx − αQ

)
(η, θ) + λx2 − αζ = λ[x2 − (x − ζ)2] − αζ = λζ(2x− ζ) − αζ

= 2λζ
[
(x− ζ) − α

2λ

]
+ λζ2 = 2λζ

[
g(y − ζ) − α

2λ

]
+ λζ2 > 0,

in view of (8.26) and (8.23). For the same reason, we also have Q(x, y) = ζ + Q(η, θ) < ζ + δη2 =
ζ + δ(x− ζ)2 < δx2 in this region.
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(iv) Similar properties can be established in the region {(x, y)/g(0)+y ≤ x < ∞}, where Q(x, y) =
y + Q0(x − y). It can also be seen that the function Q is of class C2 across the line {(x, y)/x =
g(0) + y, 0 < y < ∞}.

B. APPENDIX: PROOF OF PROPOSITION 8.7

¿From (8.25)-(8.27), (8.18) and (A.2), it is easy to see

(B.1) g′(0) = X ′(f(0)
) · f ′(0) = X ′(f0) ·

h3

(X (f0)
)−√

2αh1(f0)
h′

1(f0)
= X ′(f0) · h3(g0)

h′
1(f0)

,

(B.2) X ′(f0) = −
∂
∂zq(x; z)
∂
∂xq(x; z)

=
−2(δ − λ

α)(1 +
√

2αz)ez
√

2α + 2
√

2αe2z
√

2αh3(x)√
2
α (λx− α

2 )ex
√

2α(1− e2(z−x)
√

2α)

with z = f0, x = X (f0) = g0. On the interval ( α
2λ , α

2λ + 1√
2α

), let us define the following function

M(x; λ)
�
= λh′

1(f0) ·
√

2
α

(
x − α

2λ

)
ex

√
2α(1− e2(f0−x)

√
2α)(B.3)

−h3(x) ·
(
−2
(

δ − λ

α

)
(1 +

√
2αf0)ef0

√
2α + 2

√
2αh3(x)e2

√
2αf0

)
,

for which we have

(B.4) g′(0) ≤ 1 ⇐⇒ M(g0; λ) > 0.

Let us also define

(B.5) M̃(u; λ)
�
=

1
λ

M
(
u +

α

2λ
; λ
)

, for u ∈ (0, 1/
√

2α),

so that

(B.6) g′(0) ≤ 1 ⇐⇒ M̃
(
g0 − α

2λ
; λ
)

> 0.

The definition of M̃(· ; ·) depends on λ, and so do f0 and g0. It will be convenient to think of
the parameters α and δ as fixed, while λ can vary. We will write f0(λ) (resp., g0(λ)) instead of f0

(resp., g0), to emphasize that both f0 and g0 depend on λ.

B.1 Lemma: For every fixed 0 < λ ≤ λ∗, the function u �→ M̃(u; λ) is strictly increasing on
(0, 1√

2α
) with M̃(0; λ) < 0. For every fixed u ∈ (0, 1√

2α
), the function λ �→ M̃(u; λ) is strictly

decreasing on (0, λ∗].

Proof: Suppose λ ∈ (0, λ∗] is fixed. Clearly, as u increases, the first term on the right-hand side of
(B.3) increases; as for the second term, the function u �→ h3(u + α

2λ ) is increasing (see the proof of
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Proposition 8.5). However, we have h3(u + α
2λ) < 0, so u �→ h2

3(u + α
2λ ) decreases. Hence M(·; λ) is

strictly increasing, and thus so is M̃(·; λ). Furthermore,

(B.7) λ · M̃(0; λ) = M(
α

2λ
; λ) = h3(

α

2λ
)
[
2
(

δ − λ

α

)
(1 +

√
2αf0)ef0

√
2α − 2

√
2αe2f0

√
2αh3(

α

2λ
)
]

is negative since h3( α
2λ) < 0 and λ < αδ. Now suppose u ∈ (0, 1√

2α
) is fixed. From (B.3), we have

M̃(u; λ) =

√
2
α

h′
1

(
f0(λ)

)(
1 − e2(f0(λ)−u− α

2λ
)
√

2α
)

ue(u+ α
2λ

)
√

2α(B.8)

−1
λ

h3

(
u +

α

2λ

)
·
[
−2
(

δ − λ

α

)(
1 + f0(λ)

√
2α
)

ef0(λ)
√

2α

+2
√

2α · h3

(
u +

α

2λ

)
e2f0(λ)

√
2α
]

for the function of (B.5). From (A.1), we observe that the first term√
2
α

h′
1

(
f0(λ)

)(
1 − e2(f0(λ)−u− α

2λ
)
√

2α
)

ue(u+ α
2λ

)
√

2α

= u

(
δ − λ

α

)(
1
α

+
2f0(λ)√

2α

)[
e

(
u+ α

2λ
−f0(λ)

)√
2α − e−

(
u+ α

2λ
−f0(λ)

)√
2α

]

=
u

α2

√
α2δ2 − λ2

[
e

(
u+ α

2λ
−f0(λ)

)√
2α − e−

(
u+ α

2λ
−f0(λ)

)√
2α

]

is clearly decreasing. Recall from (6.9) that λ �→ f0(λ) is increasing, and observe that we have
1
λh3(u + α

2λ) = − 1
α (u + 1√

2α
)e−(u+ α

2λ
)
√

2α, therefore

λ �→ −1
λ

h3

(
u +

α

2λ

)
· 2

√
2αh3

(
u +

α

2λ

)
e2f0(λ)

√
2α = −2λ

√
2α

α2

(
u +

1√
2α

)2

e2(f0(λ)−u− α
2λ

)
√

2α

is decreasing. It suffices then to show that, in (B.8), the term

λ �→ 1
λ

h3

(
u +

α

2λ

)
·2
(

δ − λ

α

)(
1 + f0(λ)

√
2α
)

ef0(λ)
√

2α = −2
√

α2δ2 − λ2

α2

(
u +

1√
2α

)
e(f0(λ)−u− α

2λ
)
√

2α

is decreasing. But this follows from

d

dλ

(√
α2δ2 − λ2 e(f0(λ)− α

2λ
)
√

2α
)

=
( −λ√

α2δ2 − λ2
+
√

2α
√

α2δ2 − λ2
(df0

dλ
+

α

2λ2

)) · e(f0(λ)− α
2λ

)
√

2α

=

(
−λ√

α2δ2 − λ2
+

αδ

αδ − λ
+
√

α2δ2 − λ2
α
√

2α

2λ2

)
· e(f0(λ)− α

2λ
)
√

2α > 0,

since λ√
α2δ2−λ2

< λ
αδ−λ < αδ

αδ−λ . �

B.2 Lemma: The function λ �→ g0(λ)− α
2λ is decreasing for 0 < λ ≤ λ∗.
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Proof: Note that g0 ≡ g0(λ) is actually the solution of the equation

(B.9) q(x; f0) =
√

2α
[
h2(f0) − h1(f0)e2f0

√
2α
]
+ h3(x)e2f0

√
2α − h4(x) = 0

in the notation of (8.22). Since q(·; f0) is strictly decreasing on the interval
(

α
2λ , α

2λ + 1√
2α

)
for fixed

λ (see the proof of Lemma 8.2), we only need show that

(B.10) G(u; λ)
�
= q

(
u +

α

2λ
; f0

)
is a decreasing function of λ,

for any fixed u ∈ (0, 1√
2α

). We compute
(B.11)

G(u; λ) = −2f0

(
δ − λ

α

)
ef0

√
2α − λ

α

(
u +

1√
2α

)
e(2f0−u− α

2λ
)
√

2α − λ

α

(
u − 1√

2α

)
e(u+ α

2λ
)
√

2α.

Observe from (6.9) that the function λ �→ f0(λ) is increasing, therefore λ �→ λ
α

(
u+ 1√

2α

)
e(2f0(λ)−u− α

2λ
)
√

2α

is also increasing. Furthermore, λ �→ λe
α
2λ

√
2α is a decreasing function; this follows from

d

dλ

(
λe

α
2λ

√
2α
)

=
(
1− α

2λ

√
2α
)
· eα

√
2α/(2λ) < 0

for 0 < λ ≤ λ∗, since

λ∗ <

√
2α

2
α ⇐⇒ δ <

√
2α

2

(
1 +

δ/α
1
4δ + 1√

2α

)
⇐⇒

√
2α

2δ
+

1√
2α

4δ + 1
> 1

and this last inequality is clearly valid. The function λ �→ λ
α

(
u − 1√

2α

)
e(u+ α

2λ
)
√

2α is increasing,

so it remains to show that λ �→ (αδ−λ)f0(λ)ef0(λ)
√

2α is increasing. ¿From (6.9) it develops that
d
dλf0(λ) = 1√

2α
αδ

(αδ−λ)2

√
αδ−λ
αδ+λ , hence

d

dλ

(
(αδ − λ)f0(λ)ef0(λ)

√
2α
)

= ef0(λ)
√

2α

(
−f0(λ) +

df0

dλ
(λ)
(
1 + f0(λ)

√
2α
)

(αδ − λ)
)

= ef0(λ)
√

2α

(
−f0(λ) +

αδ(1 + f0(λ)
√

2α)√
2α

√
α2δ2 − λ2

)

=
ef0(λ)

√
2α

√
2α

√
α2δ2 − λ2

[
αδ + f0(λ)

√
2α
(
αδ −

√
α2δ2 − λ2

)]
> 0,

which completes our proof. �

Let us define

(B.12) λ∗
�
= sup

{
0 < λ ≤ λ∗ / M

(
g0(λ); λ

)≥ 0
} ∧ λ∗.

We have then the following claim.

Proposition 8.7: λ∗ is always strictly positive, and g′(0) ≤ 1 if and only if 0 < λ ≤ λ∗.
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Proof: To prove λ∗ > 0, we only need to to show M
(
g0(λ); λ

)≥ 0 for λ sufficiently small. However,
as λ → 0+, we have f0(λ) → 0 and g0(λ) → +∞ (see Lemma B.2), as well as h1

(
f0(λ)

) → 0,
h2

(
f0(λ)

) → 0, h3

(
g0(λ)

) → 0. Now equation (8.21) implies h4

(
g0(λ)

) → 0, or equivalently,

eg0(λ)
√

2α
(

λg0(λ)
α − λ

α
√

2α
− 1

2

)
→ 0. However, λeg0(λ)

√
2α → +∞ as λ → 0+, since g0(λ) >

α
/
2λ. Therefore, eg0(λ)

√
2α
(
(λx
/
α) − (1/2)

) → +∞, as λ → 0+. In conjuction with h′
1(0+) =

δ
/√

2α, the equation (B.3) now yields M
(
g0(λ); λ

)→ +∞ as λ → 0+.
As for the second part of the claim, it suffices to show

M
(
g0(λ); λ

)≥ 0, ∀ 0 < λ ≤ λ∗, and M
(
g0(λ); λ

)
< 0, ∀λ > λ∗.

However, M
(
g0(λ); λ

) ≥ 0 ⇐⇒ M̃
(
g0(λ)− α

2λ ; λ
) ≥ 0. Now, for every λ ∈ (0, λ∗], we observe

that
M̃
(
g0(λ)− α

2λ ; λ
) ≥ M̃

(
g0(λ∗) − α

2λ∗ ; λ
)

(by Lemmata B.1 and B.2)
≥ M̃

(
g0(λ∗) − α

2λ∗ ; λ∗
)

(by Lemma B.1)
≥ 0, (since M

(
g0(λ∗); λ∗

) ≥ 0)

and similarly, M̃
(
g0(λ)− α

2λ ; λ
) ≤ M̃

(
g0(λ∗) − α

2λ∗ ; λ
)

< M̃
(
g0(λ∗) − α

2λ∗ ; λ∗
) ≤ 0, for all λ > λ∗.

C. APPENDIX: PROOFS OF RESULTS IN SECTION 10

The following identities are helpful, along with those of (10.24), and may be verified by substitution.
Where needed, the fact H ′(w) = −e2h−1

1 (w)
√

2α is used (see Lemma 8.1):

(C.1) ex
√

2α ∂H3

∂x
(x, y) = e−x

√
2α ∂H4

∂x
(x, y) =

2λy√
2α

[
x −

(y

2
+

α

2λ

)]
,

(C.2)
∂L

∂x
(x, y) =

∂H3

∂x
(x, y)

[
e2z

√
2α − e2x

√
2α
]
; z = h−1

1 (H3(x, y)).

First we establish

(C.3) H3(x, y) ∈
(
− λ

2α2
, 0
)

for y > 0, x >

(
α

2λ
+

y

2
− 1√

2α

)+

.

Clearly H3(x, y) = λy
α e−x

√
2α
(

α
2λ + y

2 − x − 1√
2α

)
< 0 in the given range. From (C.1), the function

H3(·, y) has a global minimum at x = y
2 + α

2λ , and H3(
y
2 + α

2λ ; y) = − λy

α
√

2α
e−

√
2α(y/2+α/2λ) > − λ

2α2

(use supy≥0(ye−βy) = 1
βe and e > 2).

Proof of (10.29): For x >
(

y
2 + α

2 − 1√
2α

)+
, set z = z(x, y)

�
= h−1

1 (H3(x, y)); observe z < f0 if
y > 0, and z = 0 if y = 0. From (C.1), (10.24), (C.2), we have then

(C.4) Lx(x, y) = − 2λy√
2α

[
x −

(y

2
+

α

2λ

)]
ex

√
2α
[
1 − e2

√
2α(z−x)

]
,
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(C.5) Ly(x, y) = −h4(x) +
λy

α
ex

√
2α +

√
2αh2(f0)ey

√
2α + e2z

√
2α

[
h3(x) +

λy

α
e−x

√
2α

]
,

(C.6)
(

∂

∂x
+

∂

∂y

)
L(x, y) =

√
2α
[
H4(x, y)−H3(x, y)e2z

√
2α
]

+ h3(x)e2z
√

2α − h4(x).

Reading (C.4) with x > y
2 + α

2λ > f0 > z we see that L(·, y) is strictly decreasing on ( y
2 + α

2λ ,∞),
and limx→∞ L(x, y) = −∞. Observe from (10.27), (C.5) that

(C.7) L(x, 0) = 0, Ly(x, 0) = q(x; f0), Lx(x, 0) = 0.

It was shown in Lemma 8.2 that q(x; f0) > 0, for 0 < x < g0. Therefore, d
dy L(y + α

2λ ; y)
∣∣∣
y=0

=

q( α
2λ ; f0) > 0, and it follows that Y

�
= sup

{
y > 0

/
L(y + α

2λ ; y) > 0
}

> 0. Since L(·, y) is strictly
decreasing on (y + α

2λ ,∞) and tends to −∞ as x → ∞, the existence of G(y) ∈ (y + α
2λ ,∞) solving

(10.28) is established for 0 < y < Y . Because H(H3(x, y)) remains bounded on the domain of L,
and because

H4

(
y +

α

2λ
; y
)

=
(
− λ

2α
y2 +

λ

α
√

2α

)
e(y+ α

2λ )
√

2α + h2(f0)ey
√

2α,

it is clear that limy→∞ L(y + α
2λ ; y) = −∞. Therefore, Y < ∞ and L(Y + α

2λ ; Y ) = 0, which shows
G(Y ) = Y + α

2λ .
With G(·) so defined, set F (y) = h−1

1 (H3(G(y), y)), 0 < y ≤ Y . ¿From (C.7) we have L(x, y) =
yq(x; f0) + R(x, y), where R(x, y)/y → 0 as y ↓ 0, uniformly for x in compact sets; it follows that
limy↓0 G(y) = g0, and the proof of (10.29) is complete.

Proof of (10.30): Just evaluate (C.6) at x = G(y), so that H3(G(y); y) = h1(F (y)) and
H4(G(y); y) = h2(F (y)), to obtain

(Lx + Ly) (G(y), y) =
√

2α
[
h2(ξ) − h1(ξ)eξ

√
2α
]

+ h3(x)eξ
√

2α − h4(x)
∣∣∣
ξ=F (y), x=G(y)

(C.8)

= q(G(y); F (y)).

Analysis of F ′(·): Differentiation in h1(F (y)) = H3(G(y), y) using (10.32), (C.2) and (10.24),
yields

h′
1(F (y)) · F ′(y) = G′(y) · ∂H3

∂x
(G(y), y)+

∂H3

∂y
(G(y), y)

=
[
G′(y)− 1

] · ∂H3

∂x
(G(y), y)+

(
∂H3

∂x
+

∂H3

∂y

)
(G(y), y)

=
q(G(y); F (y))

e2G(y)
√

2α − e2F (y)
√

2α
+ h3(G(y))−

√
2α · H3(G(y), y).

Letting y ↓ 0 gives limy↓0 F ′(y) = h3(g0)
h′
1(f0)

= f ′(0), in conjunction with (8.27) at y = 0. For the limit
calculation, use H3(g0, 0) = h1(f0) = 0 and q(g0; f0) = 0. Further manipulation gives

(C.9) F ′(y)h′
1(F (y))·

(
e2G(y)

√
2α − e2F (y)

√
2α
)

=
2λ

α

(
y +

α

2λ
− G(y)

)
eG(y)

√
2α+

√
2αh2(f0)ey

√
2α.
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The right-hand side is negative, because h2(f0) < 0 and G(y) ≥ y + α
2λ . Since h′

1(·) > 0 and
e2G(y)

√
2α − e2F (y)

√
2α > 0, it follows that F ′(y) < 0 for 0 ≤ y ≤ ȳ.

Calculation of G′(0): The function L(·, ·) has a saddle point at (x, y) = (g0, 0), and an analysis
by Taylor expansion shows that G′(0) exists and

(C.10) G′(0) = − Lyy

2Lxy
(g0, 0).

To calculate G′(0), it is actually easier to use the equation (10.13) and the linear approximation

q(G(y); F (y)) = y
[
qx(g0; f0)G′(0) + qy(g0; f0)f ′(0)

]
+ o(y).

Observe also from (8.25), (C.4) that

(C.11)
∂L

∂x
(G(y); F (y)) = y · qx(G; F ) +

λ√
2α

y2eG
√

2α
[
1 − e2

√
2α(F−G)

]∣∣∣∣
F=F (y), G=G(y)

.

By substituting these in (10.13), recalling (C.4), and taking the limit as y ↓ 0, we obtain

(C.12) G′(0+)
�
= lim

y↓0
G′(y) = 1 − G′(0) + g′(0),

where we have used g′(0) = − (qy/qx) (g0; f0) · f ′(0) from (B.1), (B.2). From (C.12) we have that
G ∈ C1 ([0, Y ]), G′(0+) = G′(0) and, solving (C.12) for G′(0), we get G′(0) = (1 + g′(0))/2.

Proof of Lemma 10.8: By choice of F (·) and G(·), the function Q and its derivative Qx are
continuous across both boundaries {(x, y) / x = F (y)} and {(x, y) / x = G(y)}. Thus, it remains to
check the continuity of the derivative Qy or, equivalently, of the directional derivative

(C.13) U(x, y)
�
=
(

∂Q

∂x
+

∂Q

∂y

)
(x, y).

Since U(x, y) = 2δx for x < F (y), and U(x, y) = 1 for x > G(y), it is necessary to calculate
U(x, y) for F (y) < x < G(y) and show continuity at x = F (y) and x = G(y). From (10.5)

Q(x, y) =
λ

α
x2 +

λ

α2
+ H3(G(y), y)ex

√
2α + H4(G(y), y)e−x

√
2α.

Now from (10.24) and (C.1), we obtain

d

dy
H3(G(y); y) =

∂H3

∂x
(G(y); y) ·G′(y) +

∂H3

∂y
(G(y); y)

=
∂H3

∂x
(G(y); y) · (G′(y) − 1

)−√
2α · H3(G(y); y) + h3(G(y)),

d

dy
H4(G(y); y) =

∂H4

∂x
(G(y); y) · (G′(y) − 1

)
+
√

2α · H4(G(y); y)− h4(G(y))

= e2G(y)
√

2α∂H3

∂x
(G(y); y) · (G′(y)− 1

)
+

√
2α · H4(G(y); y)− h4(G(y)).

36



Straightforward differentiation and substitution, with help from (10.32) and (C.2), lead to the
expression

U(x, y) =
2λx

α
+ h3(G(y))ex

√
2α − h4(G(y))e−x

√
2α(C.14)

+
(
G′(y) − 1

) ∂H3

∂x
(G(y); y)ex

√
2α
[
1 − e2

√
2α(G(y)−x)

]
=

2λx

α
+ h3(G(y))ex

√
2α − h4(G(y))e−x

√
2α

+q(G(y); F (y)) · ex
√

2α 1 − e2
√

2α(G(y)−x)

e2G(y)
√

2α − e2F (y)
√

2α
.

Direct calculation shows U(G(y); y) = 1 by using

h3(x)ex
√

2α − h4(x)e−x
√

2α = 1 − 2λ

α
x,

and U(F (y); y) = 2δF (y) (observe e−F
√

2αq(G; F ) = 2λF
α − 2δF + h3(G)eF

√
2α − h4(G)e−F

√
2α).

Thus U is continuous at both boundaries.
Clearly, (10.34) holds by the construction of Q in (10.5). The proof of (10.33) follows the

strategy of the proof of (8.35), writing U(x, y) in place of d(x). As in that proof, it suffices to show
that x �→ ∂U

∂x (x, y) is strictly concave on (F (y), G(y)), and ∂U
∂x (G(y), y) ≥ 0. Now we can write

(C.14) in the form

(C.14)′ U(x, y) =
2λ

α
x + C(y)ex

√
2α + D(y)e−x

√
2α.

By collecting terms in (C.14) – or by noticing that U solves 1
2Uxx + 2λx = αU in F (y) < x < G(y)

with boundary conditions U(F (y), y) = 2δF (y), U(G(y), y) = 1, and then solving for C(y) and
D(y) – one finds C(y) < 0 < D(y). As a consequence, ∂U

∂x (x, y) is strictly concave.
Finally, further calculation using the definition (8.22) of q(·, ·), shows

(C.15)
(
e2G(y)

√
2α − e2F (y)

√
2α
)

Ux(G(y); y) = 2
√

2α · eG(y)
√

2α q(G(y); F (y)).

Since q(G(y); F (y)) > 0 for 0 < y < ȳ, and q(G(ȳ); F (ȳ)) = 0, we deduce Ux(G(y); F (y)) ≥ 0 for
0 < y ≤ ȳ. �
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