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V 

INTRODUCTION 

In the generalized Markovian decision model, developed in [DE LEVE 

1964], a system is considered which has a general state space and can be 

controlled continuously. There is an underlying stochastic process, called 

the natural process. It describes the evolution of the state of the system 

during the course of time if the system is left uncontrolled. A reward 

structure is associated with the natural process. A decisionmaker controls 

the system by making interventions, chosen from an arbitrary set of fea­

sible interventions in each state. An intervention induces a reward and an 

instantaneous (possibly random) change of the state of the system. At each 

point of time either an intervention is made or the natural process is 

left untouched. In the latter case we ·speak of a null decision. It is further 

assumed that only a finite number of interventions may be made in any finite 

time interval. In this model only stationary policies are considered. A 

stationary policy associates with each state either an intervention from 

the set of interventions in that state or the null decision. A policy iter­

ation principle, hereafter called the general method, has been developed 

in [DE LEVE 1964] which is proven to approximate the maximum expected 

average reward per unit of time sufficiently good if the number of itera­

tions is large enough. 

Applications of the general method (cf. [DE LEVE, TIJMS & WEEDA 1970]) 

are versions of the automobile insurance problem and the anticipation prob­

lem in production control, continuous time inventory models and a contin­

uous version of the automobile replacement problem of [HOWARD 1960]. Al­

though the general method has a large number of potential applications, 

its use is obstructed by the fact that it is not a ready-made technique. 

The only way to solve a problem numerically is to "translate" the princi­

ples of the method in terms of the problem and develop numerical procedures 

by exploiting the special structure of the problem. A relatively simple 

numerical solution has been obtained for the automobile insurance problem. 

The mentioned version of the production control problem is much harder to 

solve. Although numerical solutions have been obtained, not much can be 

said about their quality so far. 

In this monograph the general model and method are considered under 

much stronger assumptions. In the first place the natural process is a 

finite state Markov renewal process induced by a semi Markov matrix. 
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Secondly the sets of interventions are finite sets. Thirdly, inter­

ventions can be made only at the epochs of state transitions of the natural 

process. 

On the one hand, such a specialization yields stronger n,sults like 

finite step convergence. On the other, since this specialization of the 

general method is still not a ready-made technique, computat:.onal proce­

dures have to be developed which are preferably general within this special 

model. 

The thus obtained model is called the finite generalized Markov 

programming model. It is defined in section 2.2. Each problem which satis­

fies the assumptions of this model can also be formulated as a finite 

Markov renewal decision problem and vice versa. A policy iteration method, 

which is predominantly a direct specialization of the general method, is 

presented in section 2.3. This policy iteration method has four operations, 

a preparatory part, a policy evaluation operation, a policy improvement 

operation and a cutting operation. The preparatory part is executed once 

and the remaining three operations at each iteration step. The second and 

third operation are different compared with corresponding operations in 

the well-known methods described in [HOWARD 1960] and [JEWELL 1963]. The 

preparatory part and the fourth operation do not form part of any other 

existing policy iteration method. 

In chapter IV numerical procedures, which are general within this 

special model, are developed for the cutting operation. In the general 

method the cutting operation is formulated in terms of its target set: 

the intersection of all sets that do not worsen in a lexicographical sense 

a pair of vectors defined for each set, with respect to a certain given pair. 

It is proven that the target set is an optimal cutting set, i.e. a set that 

maximizes the lexicographical improvement with respect to the given pair. 

The computational procedures obtaining an optimal cutting set are based on 

lexicographically optimal stopping in a Markov chain with two arbitrary in­

come vectors. These methods may serve as a guidance for developing tech­

niques for more general special models as in [DE LEVE, TIJMS & FEDERGRUEN 

1977]. Moreover in chapter IV less far-reaching procedures are developed 

in the sense that they aim at a suboptimal cutting set. A finite step con­

vergence proof in a sufficiently general setting to cover all variants of 

chapter IV, is presented in chapter III. 

In chapter Va numerical comparison among policy iteration methods is 
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performed. It involves the three main variants developed in chapter IV and 

the policy iteration method of Jewell/Howard. The class of problems which 

satisfy the assumptions of the finite generalized Markov programming model 

is partitioned into two subclasses. For the first subclass it is shown 

that all four methods are identical. The numerical investigation is per­

formed on members of the second subclass for which all four methods are 

different. It includes two sets of randomly generated problems as well as 

a discrete version of the production control problem mentioned above. 

The treatment of the finite generalized Markov programming model of 

section 2.2 is continued in Chapter VI. Discounting is invoked in section 

6.3 and a policy iteration method maximizing the expected discounted reward 

vector for a fixed interest rate pis presented. In section 6.4 a paramet­

ric generalized Markov programming model is considered. In this model an 

intervention is assumed to take a small time E ~ 0. During the time Ethe 

natural process is "frozen". For the parametric model a partial Laurent 

expansion for the expected discounted reward vector for a fixed policy in 

the parameter pis obtained for each sufficiently small fixed E > O. 

This Laurent expansion is utilized in chapter VII to develop a new 

type of sensitive optimality called sensitive intervention time optimality. 

It is shown that policies of this type exist and that they can be computed 

by applying the methods of this monograph. Moreover a procedure is speci­

fied for the computation of a bias-optimal policy in the finite generalized 

Markov programming model. The procedures are illustrated on a numerical 

example. 





CHAPTER I 

PRELIMINARIES 

1.1 NOTATION AND SOME PROPERTIES OF MATRICES 

Let JN be the set of natural numbers and let~ be the set of complex 

numbers. For J E JN\ { 0} we denote by ~J the set of J-o.imensional column vect~rs 

with components in~- Similarly ~JxJ denotes the set of JXK-matrices with 

entries in~- Matrix and vector operations are defined in the usual way. 

The equation in u E ~J for fixed BE ~JXK and A E ~ given by 

(1.1;1) Bu= AU 

has a nonzero solution for n E {1, •.• ,J} distinct values of A called the 

eigenvalues of B, cf. [KATO 1966, p.37]. The set of all eigenvalues of B 

is called the spectrum of Band is denoted by cr(B). 

The norm of B, notation: DBII, is defined by 

(1.1;2) IIBII 
J 

max l !Bij l­
id 1, ••• ,J} j=1 

For each matrix B E ~JXJ lim IIBnll l/n exists (cf. [KATO 1966, p.27]) and 
n-+<» 

is called the spectral radius of B, notation: spr(B). Between spr(B) and 

cr(B) the following identity holds (cf. [KATO 1966, p.38]): 

(1. 1;3) spr (B) = max I A 1-
AEO (B) 

J JXJ 
Let v E ~,BE~ and A E ~- Consider the inhomogeneous equation 

inu,s~J 

(1.1;4) [AI-B]u = v, ' 

where I is the JxJ identity matrix. This equation has a unique solution u 

if and only if Ai cr(B). Then the inverse [AI-B]-l exists and the solution 
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of (1.1;4) is given by 

(1.1 ;S) 

JXJ -1 
The matrix function RA(B): ~\cr(B)-+ ~ defined by RA(B) = [AI-B] is 

called the resolvent of matrix B. For particular A,µ i cr(B) the matrices 

RA(B) and Rµ(B) satisfy the resolvent equation, cf. [KATO 1966, p.36] 

(1.1;6) R, (B) - R (B) = (A-µ)R (B)R (B). 
" µ A µ 

If, moreover, spr((µ-A)Rµ(B)) < 1 then RA(B) has the Neumann series expansion 

(1.1;7) I 
n=0 

n n+l 
( A - µ) ( R ( B) ) • 

µ 

- d 
Let S be a subset of {1, .•. ,J}. Then S = {1, .•. ,J}\S and Isl denotes 

the number of elements in S. Let BE ~JxJ and let T,S be nonempty subsets of 

{1, ••• ,J}. The matrices with entries Bij' i,j ES, respectively Bij' i Es, 

j ET, are denoted by BS and BsT· Similarly for u E ~, the vector with com­

ponents u., i Es is denoted by us. 
iJ J 

Let JR denote the real J-dimensional Euclidean space and let JR+ denote 

the set of vectors u E JRJ with nonnegative components. For u, v E JRJ, we 

write u 2 v if ui 2 vi for i E {1, ... ,J} and u > v if u 2 v and u # v. The 

notation <u,v> denotes the scalar product of u and v. Sometimes the operation 

□ between two vectors u,v E JRJ will be used; u□v denotes the vector with 

components uivi. Observe that this operation is commutative, associative and 

distributive. The vector in JR~ with all components equal to one is denoted 

by 1. The notation 7S is reserved for the subvector of 7 corresponding to a 

nonempty set Sc {1, ••• ,J}. 

Let JRJXK denote the set of real JxK-matrices. For A E JRJXK we write 

A2 0 if all entries are nonnegative, A > 0 if A 2 0 and A # 0 and A>> 0 if all 

entries are positive. For A,B E JRJXK we write A 2 (>)(>>)B if A-B 2 (>)(>>)0. 

The same notation applies to vectors. 

A matrix A E JRJxK is called lexicographically nonnegative, notation: 

A> 0, if for each row of A either all elements vanish or the first non­

vanishing element is positive. A is lexicographically semi-positive, notation 

A? 0 if Al_ 0 and A # 0. For two matrices A,B E JRJxK we write Ac_ C>)B 

if A-B z_ (>) 0. 
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1.2 SUBSTOCHASTIC MATRICES 

JXJ 
A matrix P _ E lR + is called substochastic if 

(1.2;1) llpll :.,; 1. 

A well-known model described by a substochastic matrix and a vector a E lR~ 

such that l~ 1 a.= 1 is a finite homogeneous Markov chain. Let (n,H,JP) 
i= i d 

be a probability space and let M = {1, •.. ,J} be a finite index set. A 

sequence of possibly defective random variables in' n + M defined for n E JN 

with JP {;i0=i} = ai is a finite Markov chain if 

(1.2;2) JP {. =i 
Jn+l n+l J. = . J. = i } 

-0 1.0 1 ···• -n n j = i }, 
-n n 

whenever JP {j 0 = i 0 , .•. , j = i } > 0. A finite Markov chain is homogeneous - -n n 
if for some substochastic matrix P 

(1.2; 3) j i} for n E JN, 

whenever JP{jn=i} > 0. For a finite homogeneous Markov chain it is easily 

derived that for u ~ O and PO~ I 

(1.2;4) j i} 
n 

(P ) 
ij 

In the sequel, the Markov chains we consider are finite and homogeneous. 

Therefore, the adjectives finite and homogeneous can be omitted without 

confusion. To the indices 1, ••• ,J will be referred to as states and P will 

be called the transition matrix. 

A state i EM has access to state j if for some n E JN 
n 

(P ) ij > 0. A 

state having only access to itself is called absorbing. Two states having 

access to each other are said to communicate. The communication relation 

between two states is an equivalence relation. 

For a substochastic matrix P the Cesaro sum of nonnegative powers of P 

(1.2;5) * p d lim (n+l)-l 
n-l-00 

n 

I 
i=0 

exists and satisfies (cf. [D0OB 1953, p.175]) 
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* (1.2;6) * p * * p p * pp p P. 

* In the sequel P will be called the Cesaro sum of P. An important 

special case of a substochastic matrix is described by the following 

lemma (cf. [KEMENY & SNELL 1960]). 

LEMMA 1.2.1. For a substochastic matrix P the following statements are 

equivalent: 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

(vi) 

spr(P) < 1; 

II pnll < 1 for some n E lN\ { 0} ; 

lim Pn = O; 
n""?<>O 

'i'co n 
ln=O P converges; 

[I-P] is nonsingular; 

llpJII < 1; 

* (vii) P O. 

Each of the statements (i) - (vii) implies [I-P]-1 = 'i'co Pn. ln=O 

A substochastic matrix is called transient if one of the statements of 

lemma 1.2.1 holds. Frequently the following trivial property of a transient 

matrix will be used. 

LEMMA 1.2.2. Every square submatrix of a transient matrix is again transient. 

Also the following lemma will be in frequent use (cf. [DENARDO & FOX 

1968]). 

LEMMA 1.2.3. Let P be a transient matrix. Let s E "JR.J be an arbitrary vector. 

For each u € "JR.J define the operator L: "JR.J + lRJ by Lu~ s +Pu. Define 
n d n-1 . 1 d 

L =LL for n = 2,3, ••• with L = L. Then Lis a J-stage contraction and 

has the following properties: 

(i) 

(ii) 

lim Lnu exists and is given by u* 
n""?<>O 

Lu u - u = u*; 

(iii) Lu~ (>)(S)(<)u ~ u*~(>)(s)(<)u. 

A substochastic matrix Pis called stochastic if 

(1. 2;7) P .. 
iJ 

for i E J. 

* In this case spr(P) = 1 and P > O. 

The set of states M of a Markov chain with stochastic matrix P can be 
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partitioned uniquely into two sets of states E and T. Each state i € E satis-

. * * fies Pii > 0 and each state i € T (T may be empty) satisfies Pii O. The set 

E can be partitioned in a unique way into the equivalence classes (with respect 

to the communication relation) EA, A 1, •.• ,2 with 1 s L ~ IEI. Such an equiv-

alence class is called a subchain. The states in E are called persistent and 

those in T transient. 

The following lemma (cf. [KEMENY & SNELL 1960]) relates and specifies the 

* solution sets of the equations Px = x and Py= y. 

LEMMA 1.2.4. If Pis a stochastic matrix then the solution sets of the equa-

tions Px = x and p*y y are identical and their general solution is given by 

(1) X 

where 

aA is an arbitrary constant for each fixed A€ {1, ... ,L}, 

<PA is a vector in JR~ for each fixed A € {1, ••• ,L} such that (<PA) i 

i € EA, (<PA)i = 0 for i € E\EA and the subvector (</JA)T is given by 

(2) 

If Pis transient then x = 0 is the only solution of Px x. 

* 

1 for 

Some more properties of the matrix P are summarized in the following 

lemma (cf. [DOOB 1953, p.175-183]). 

LEMMA 1.2.5. Let P be a stochastic matrix with Cesaro sump* and subchains 

EA, A= 1, ••• ,L. Let P: be the i th row of p* for i € M. Then 

(i) p~ = p~ 
i J 

(ii) p~. 0 
iJ 

for i,j € EA; 

for i € EA, j i EA; 

(iii) Prj > 0 for i,j € EA; 
d * (iv) defining uA Pi for i € EA, A= 1, .•. ,L then 

L 

I (</JA)i UA 
A=l 

for i € M, 

where <PA is defined in lemma 1.2.4. 

Next some relations between the spectra of a stochastic matrix P and 

some matrices associated with Pare stated (cf. [VEINOTT 1969]). 
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LEMMA 1.2.6. Let P be a stochastic matrix * with P as its Cesaro sum. Let 
- d d 
P = P-I and crl (P) = cr(P)\{1}. Then 

(i) cr(P) = {>._-1, >. e: cr(P) }; 

(ii) cr(P-P*) {0} u cr 1 (P); 

- * (iii) cr (P-P ) { -1 } u { A - 1 , A E cr l (P) } • 

For a substochastic matrix P, the matrix function H: ~\cr(P-P*) -+~JXJ 
p 

is defined by 

(1.2;8) H 
p 

Observe that HO exists by lemma 1.2.6. HP and H0 satisfy the resolvent equa­

tion 

(1.2;9) 

-1 
and for IPI < [spr(H0)J , Hp can be expanded into the Neumann series 

(1.2;10) H 
p 

00 

l (-p)n H~+l. 
n=0 

The resolvent R (P): ~\cr(P)-+ ~JXJ has the following Laurent expansion (cf. 
p 

[VEINOTT & MILLER 1969]) 

(1.2;11) R (P) 
p 

-1 
for 0 < IPI < [spr(H0)J • 

00 

P-1 p* + l (-p)n H~+l 
n=0 

The following lemmas are frequently used in the sequel (cf. [DENARDO & 

FOX 1968] and [DENARDO 1971] respectively). 

LEMMA 1.2.7. For a subchain EA, A E {1, ••. ,L}, of a stochastic matrix P and 
]R IEAI and a vector r E 

LEMMA 1.2.8. Let P be a stochastic matrix and let b E 

Then x E lRJ satisfies [I-P]x = b if and only if x = 

satisfying P*r = r. 

In the subsequent chapters the set of states M of a Markov chain will be 



partitioned frequently. If (A,A) is such a partition a Markov chain with 

the set A as set of states may be considered. Such a Markov chain will be 

called an A-embedded Markov chain. Whenever spr(PA) < 1 its transition 

matrix P(A) is related to P by 

(l.2;12) p (A) 

1.3. MARKOV RENEWAL PROCESSES 

In this section a summary of Markov renewal processes is given which 

establishes the notation and states some properties needed in subsequent 

chapters. For a more extensive treatment the reader is referred to [~INLAR 

1969, 1975 resp.], unless stated otherwise. 

Let (Q,H,JP) be a probability space and let M {1, ••• ,J} be a finite 

index set. On this probability space is for each n E lN defined a sequence 

of pairs of possibly defective random variables in= Q +Mand ~n: Q + lR+ 

such that 0 =~Os ~ls ~2 s .••• The sequence of pairs <in'~n) thus 

defined, forms a Markov renewal process if 

(i) it has the Markov renewal property: 

(1.3;1) JP{in/'1 =j, ~n+l-~n st I io=io, ... ,in=in; O=~os~l s,1 s~2 

$ ••• $ t $,:} 

i }, 
n 

-n n 

7 

whenever JP{i0 =i0 , ••• , in=in' ~0 =os~1 s1:1 s~2 s 

and 

$ t $,:} > o, 
-n n 

(ii) it is homogeneous in time, which means that for n E lN 

(1.3;2) i,j EM 

for some possibly defective distribution function Q(t) .. with support 
l.J 

in lR and l - Q(t) .. s 1 for each fixed t E lR . Assume further 
+ JEM J.J + 

(1.3;3) for some i EM. 

The family of probabilities {Q(t) .. , i,j E M, t E lR+} is called a 
l.J 

semi Markov kernel and can be arranged in an JXJ-matrix Q with the functions 
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Q(t) .. as entries. Such a matrix is called a semi Markov matrix. For each 
l.J 

fixed t e: JR+ the numbers Q(t) ij' i,j e: M, form a substochastic matrix Q(t). 

A semi" Markov m.atrix Q can, therefore, also be understood as a matrix func-· 
. JXJ 

'·i:ion Q(t): JR+ + JR+ • The name semi Markov matrix will be used in either 

sense and will be abbreviated by SMM. 

For an SMM Q(t) the limit limt-+oo Q(t)ij exists for i,j e: Mand the 

numbers Pij are defined by 

(1.3;4) P .. 
l.J 

d 
lim Q(t)ij 
t-+o> 

for i,j e: M. 

The numbers Pij also constitute a substochastic matrix. The Markov chain 

induced by it is called the embedded Markov chain of the Markov renewal 

process. 

In relation to the possibly defective distribution functions Q(t) .. , 
J.J 

i,j e: M, are defined the functions Q(n) (t)ij' JR++ JR+ for n = 1,2, ... 

and i,j e: M such that 

and 

(1.3; 5) 

Q(l) (t) .. 
J.J 

Q(n) (t) .. 
l.J 

Q(t)ij' for t E JR+ 

f Q(du)ik Q(n-1) (t-u)kj' 

udO,t] 

Observe that the matrices Q(n) (t), n = 1,2, .•. , with as entries the func­

tions Q(n) (t) .. are again semi Markov matrices as a consequence of the con­
J.J 

volution theorem for (possibly defective) distribution functions (cf. 

[FELLER 1966, p.141]). 

An SMM Q(t) is called normal if 

(1.3;6) spr (Q (0) ) < 1. 

This property guarantees that the corresponding Markov renewal process 

developes beyond time zero. Normality will be postulated in the sequel of 

this section. 

For fixed i,j E M the function R(t)ij: ]R+ + ]R+ is defined by 

co 

(1.3;7) R(t)ij = I Q(n) (t) ..• 
n=O J.J 

R(t)ij is easily recognized as a renewal function and represents the expect­

ed number of renewals of state j in the time interval [O,t] if the initial 



state is i. Observe that by (1.3;7) R(t) .. is right continuous and non­
l.J 

decreasing. The matrix function t + R(t) with entries R(t) .. is called 
l.J 

the Markov renewal matrix (abbreviation: MRM) corresponding to Q(t). The 

following lemma states some equivalences. 

LEMMA 1.3.1. The following statements are equivalent: 

(i) R(0) < co; 

(ii) R(t) < co for t E lR+; 

(iii) Q(t) is normal. 

The following trivial properties of Q(t) and R(t) are frequently 

used. 

LEMMA 1.3.2. Let Q(t) be a normal SMM with MRM R(t) and P 

stochastic matrix. Let EA be some subchain of P. Then 

(i) Q(t).. 0 for all t E lR+ if and only if P .. = 0; 
l.J l.J 

(ii) R(t) ij 0 for all t E lR+ whenever i E EA and j f. EA. 

limt+co Q(t) a 

The Laplace-Stieltjes transform of a normal SMM Q(t) is denoted by 

q(s). Each entry q(s) .. , i,j EM, of q(s) is for s ~ 0 defined by 
l.J 

(1.3;8) q(s)ij 
d -st 

e Q(dt)ij" 

Observe that llq(s)II < 1 for s > 0. By an extension to finite matrices of 

the multiplication rule for Laplace-Stieltjes transforms of convolutions 

(cf. [FELLER 1966, p.411]), the transform of 

(1.3;9) for s ~ 0. 

Observe that llq(n) (s) II < 1 for s > 0. Since the sequence of partial sums 
tm (n) . 
Ln=0 q (s)ij' m = 0,1,2, ..• is bounded for s > 0 we have by the extended 

continuity theorem for Laplace-Stieltjes transforms (cf. [FELLER 1966, 

p.410]) 

(1.3; 10) r(s)ij 
d 00 

t (n) 
L q (s) ij 

n=0 f 
-st 

e R(dt)ij' for s > 0. 

Note that as a consequence of (1.3;9) and llq(slll < 1 for s. > 0 

9 
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(1.3;11) 

and 

(1.3;12) 

r (s) 2 [q(s)]n 
n=O 

r(s)q(s) = q(s)r(s). 

-1 [I-q(s)] 

The mth normalized moment of Q(t) is denoted by~, m E IN with 

entries 

J 

provided that the integral is finite for all pairs (i,j) E MxM. If Qm is 

finite then Qt is finite for i < m. Notice that P = Q0 (cf. (1.3;4)). The 

following lemma presents the asymptotic expansion for s + O of q(s) in its 

normalized moments (cf. [CHUNG 1974, p.168]). 

LEMMA 1. 3. 3. Suppose ~ is finite for some m E :IN. Then q ( s) has the 

asymptotic expansion 

q(s) s + o. 

The following asymptotic properties of r(s) for s + 0 are used in 

chapter VI (cf. [DENARDO 1971]). 

LEMMA 1.3.4. Let Q(t) be a normal SMM with corresponding MRM R(t). Let 

P = Q0 be stochastic with Cesaro sum p*. Let a E JRJ. Then 

(i) r(s) = 0(1/s), s + O; 

(ii) P*a = 0 implies r(s)a = o(l/s). 

A partial Laurent expansion for r ( s) in terms of the normali.zed 

moments of Q(t) is provided by the following lemma (cf. [DENARDO 1971, 

p.484]). 

LEMMA 1.3.5. Let Q(t) be a normal SMM and let Qm+2 be finite. Let P = Q0 
* be substochastic with Cesaro sum P. Then r(s) has a partial Laurent ex-

pansion in powers of sat the origin given by 

m 
r(s) = I 

i=-1 

where the matrices Ri E IRJxJ i 

s + 0, 

-1,0,1, ... ,m are uniquely determined by 
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the system of equations 

(1) 

with 

G. ~ Q R 
i Fi+l + 1 i 0 

In case Pis transient then the finiteness of Qm+l is required and (1) sim­

plifies to 

for i > -1 
(2) 

for i -1. 

J 
To conclude this section the Markov renewal equation in U(t): JR++ JR , 

given by 

(1.3; 13) U(t) G(t) + I Q(dy)U(t-y) 

yE[O,t] 

is considered where G ( t) : ll\ + JRJ is a given vector function and Q ( t) is 

a normal SMM. The solution space of (1.3;13) is constructed as follows. 

Let the norm in JRJ be defined as II vii = max. IV. I • Let FJ be the collection JEJ J 
of functions U ( t) : JR++ JR such that 

(i) U. is Borel measurable for j = 1, ... ,J; 
J 

(ii) llu(t)II is bounded on finite intervals. 

A property of the solution of (1.3;13) is specified by 

LEMMA 1.3.6. The Markov renewal equation (1.3;13) has a unique solution in 

F given by 
J 

U(t) I R(dy)G(t-y) 

yE[O,t] 

if Q(t) is a normal SMM and G(t) E FJ. 
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The Markov renewal equation (1.3;13) can be obviously extended to 

matrix functions. Each column vector function is the unique solution in 

F of an equation of the type (1.3;13). The name Markov renewal equation 
J . 

will also be used for this extension. Notice for example that a MRM R(t) is 

uniquely determined by 

(l.3;14) R(t) I+ f Q(dy)R(t-y). 

ydO,tJ 

In this monograph, the vector function G(t) in (1.3;13) is assumed to 

be of bounded variation. In agreement with its economic interpretation, it 

will be called a reward vector. In order to define the normalized moments 

of G(t), let G+(t) g max[G(t) ,OJ and G-(t) ~ max [-G(t) ,OJ fort E lR. 
-1 m + · -1 m - + 

If ( (m!) t G (dt) < oo and f (m!) t G (dt) < 00 then them-th 
' tElR+ l tE lR+ 

normalized moment G = f (m!)- tm G(dt) exists and is finite. 
m tElR+ 

The Laplace-Stieltjes transform g(s) of a reward vector G(t) exists for 

s ~ 0. An asymptotic expansion for g(s), s + 0, is provided by 

LEMMA 1.3.7. If a reward vector G(t) has a finite k th normalized moment Gk 

for some k ~ 0, then g(s) has the asymptotic expansion 

g(s) s + 0. 

1.4. FINITE MARKOV RENEWAL DECISION MODELS 

Markov renewal decision models with a finite number of states and a 

finite number of actions per state were considered among others by [HOWARD 

1960, 1963J, [JEWELL 1963J, [DE CANI 1964J, [SCHWEITZER 1965, 1969J, 

[DENARDO & FOX 1968J and [DENARDO 1970, 1971J. 

Primarily a description of the general finite Markov renewal decision 

model (cf. [DENARDO 1971J) will be given. Its name will be abbreviated by 

MRD-model. 

In the MRD-model a system is observed at a sequence of stochastic 

epochs !:n, n = 0, 1, 2, ... such that !:o = 0 $ _!: 1 $ _!: 2 . . . . At each epoch the 
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system is in a certain state. Let M = {1, ... ,J} be the set of states. If at 

epoch ~n state i has been observed, the decision maker chooses an action k 

from a finite set of actions K(i). Each pair (i,k), i EM, k E K(i) induces 

(i) a set of J possibly defective distribution functions Q(t)~., j EM 
l.J 

with support on IR+ each representing the joint probability that the 

next observation epoch occurs not later than ~n+t and state j is the 

next observed state (implying l· M Q .. (t) ~ 1) and 
k JE l.J 

(ii) a reward function C(t)i denoting the cumulative expected reward earned 

by the system during the interval [ t , min ( t, t 1) ) . 
-n -n+ 

Let F ~ X. K(i) and let f E F. Each component f(i) off satisfies f(i) E 
l.EM 

E K(i). Hence f specifies a decision rule. If the same decision rule f is 

applied at each observation epoch, we speak of a stationary policy. The ad­

jective stationary is omitted in the sequel. Each policy f induces a normal 

SMM Q(t;f) with entries Q(t)~!i), i,j EM and reward vector C(t;f) with 

components C(t)~(i}. Moreove~: it is assumed that for i EM, k E K(i) and 

j E M 

(1.4;1) f 
tEIR+ 

k 
t Q(dt) ij 

Each policy f E F induces a vector function V(t;f) which is the unique 

solution in FJ of the Markov renewal equation 

(1.4;2) v(t;fl C(t;f) + j Q(dt;f)V(t-u;f). 

uE[O,t] 

Each component V(t;f). of V(t;f) is interpreted as the expected reward 
l. 

earned in the time interval [O,t] during the Markov renewal decision process 

induced by policy f with initial state i EM. 

If discounting is invoked in the MRD-model then a reward at time tis 

multiplied by a discount factor e-pt where pis the interest rate. Invoking 

discounting in this model corresponds to Laplace-Stieltjes transformation of 

the functions V(t;f), C(t;f) and Q(t;f). Their Laplace-Stieltjes transforms 

are denoted by v(p;f), c(p;f) and q(p;f) and exist at least for real p > O. 

A component v(p;f)i of v(p;f) then represents the expected discounted 

reward in the time interval [0, 00 ) during the Markov renewal decision process 

induced by policy f E F with initial state i. v(p;f) uniquely satisfies 

(1.4;2) in transformed form given by 
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( 1. 4; 3) v(p;f) = c(p;f) + q(p;f)v(p;fJ for p > 0. 

For fixed p > 0 (1.4;3) represents a set of J linear equations with 

the components v(p;f)i' i EM as unknowns. A policy iteration method can be 

developed (cf. [JEWELL 1963]) which computes a policy maximizing v(p;f) over 

f E F for any fixed p > 0. Such a policy is called p-optimal. 

In [DENARDO 1971] pis considered as a variable. By substitution of the 

asymptotic expansions for p + 0 of q(p;f) (cf. lemma 1.3.3) and c(p;f) (which 

is similar to the one for g(s) in lemma 1.3.7) in equation (1.4;3) a part­

ial Laurent expansion for v(p;f) is obtained which is given by 

n 
( 1.4; 4) v(p ;fl I p + 0 

m=-1 

whenever the normalized moments Qn+2 (f) and Cn+l (f) of Q(t;f) and C(t;f) 

respectively are finite for some n E lN. The system of linear equations in 

(V (f),V 1 (f)), m = -1,0,1, ... ,n given by 
m m+ m+l 

(1.4;5) 

[I-Q0 (f)]Vm(f) = (-l)m Cm(f) + l (-l)k Qk(f)Vm-k(f) 
k=l 

with c_1 (f) ~ 0, has a solution which is unique in Vm(f). 

The coefficient v_ 1 (f) in 1.4;4) represents the expected average 

reward vector per time unit in the long run for a fixed policy f E F. It 

* * will be called the gain of policy f. A policy f E F such that v_1 (f) ~ 

~ v_ 1 (f) for f E F exists and is called gain-optimal. A gain-optimal policy 

which maximizes also v0 (f) over the set of gain-optimal policies is called 

bias-optimal. 

The computation of the gain v_1 (fl for a policy f E F requires the 

matrix Q0 (f) and the vectors T(f) ~ Q1 (f)7 and c0 (f). Hence if only the 

data 

(1.4;6) 

for i,j EM, k EK(i) 

ljEM JtEJR+ tQ(dt):j for iEM, kEK(i) 

for i EM, k E K(i) 



of the MRD-model are specified then the gain can be computed for each 
k k k 

policy. If the data of the MRD-model are restricted to (Q0)ij' Ti, (C0)i 

fork E K(i), i,j E Mand moreover 

(1.4;7) fork E K(i), i EM, 

then we speak of the undiscounted MRD-model. If the data of the MRD-model 

are restricted to (Q0):j' T:, (c0): fork E K(i), i,j EM and 

T~ ~ 0 
l. 

(1.4;8) 

holds with equality sign for some pair (i,k), i EM, k E K(i) and if 
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moreover for each policy f E F and subchain EA (f), A 1, •.• ,L (fl , of Q0 (fl 

(1.4.9) Tf(i) > 0 
i 

for some i E _EA (f) , 

then we shall use the name undiscounted MRD-model with interventions. 

Observe that assumption (1.4;7) is a sufficient and assumption (1.4;9) is 

a necessary and sufficient condition for the normality of the SMM Q(t;f) 

for each f E Fin the MRD-model. 

Usually the gain g(f) ~ v_1 (f) is computed by solving the system of 

equations in g(f) and u(f) 

(l.4;10) 
Ig(f) 

lu(f) 
(1.4;10) is a simplification of (1.4;5) form= -1. A solution (g(f) ,u(f)) 

of (1.4;10) is unique in g(f) but not in u(f). A particular solution of 

(1.4;10) is obtained by defining 

(l.4;11) d 
u(f)i(A) = 0 for A 1, •.• ,L (f) 

where i(A) is an arbitrarily chosen state in subchain EA(f). 

In all three models a gain-optimal policy can be computed by 
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METHOD 1.4.1. The following computational steps are to be executed: 

(i) Fix an initial policy f 1 E F. 

(ii) Compute a particular solution (g(f1),u(f 1)) to (1.4;10) for policy f 1 

by taking for each state i(\), A= 1, ... ,L(f 1 ) the state with the 

largest index in subchain EA(f 1). 

(iii) Compute for each i = 1, ... ,J the action sets 

and 

(iv) Choose a policy f E F such that f(i) = f 1 (i) whenever f 1 (i) E K2 (i) 

and f(i) E K2 (i) arbitrarily otherwise. If f(i) = f 1 (i) for i EM 

then stop. If f 1 ff then redefine f 1 by f 1 g f and repeat operations 

(ii), (iii) and (iv). 

Next the well-known conditions for the optimality of a policy (cf. 

[DENARDO & FOX 1968]) in the undiscounted MRD-model are stated in 

THEOREM 1.4.2. A policy f* satisfying for i EM and k E K(i) 

with 

implying 
k * k I k * * 

(CO) i g(f )T. + (QO)ij u(f ) . ,;; u (f ) . , 
l 

jEM J l. 

is gain-optimal, i.e. g(f) * ,;; g(f ) for f E F. 

REMARK 1.4.3. If each policy f E F has only one subchain then the condi­

tions of theorem 1.4.2 are reduced to 

for i EM, k E K(i). 



2.1. INTRODUCTION 

CHAPTER II 

FINITE GENERALIZED 
MARKOV PROGRAMMING MODELS 

The generalized Markov programming model, introduced in [DE LEVE 1964], 

generalizes the Markov decision models of [HOWARD 1960] and [JEWELL 1963]. 

The system considered has a general state space and can be controlled con­

tinuously. There is an underlying stochastic process, called the natural 

process, which describes the evolution of the state of the system during 

the course of time if the system is left uncontrolled. The decisionmaker 

controls it by making interventions. An intervention causes an instantaneous 

(possibly random) change of the state of the system. At each point of time 

either an intervention can be taken or the natural process is left untouch­

ed. In the last case we speak of a null decision. A policy assigns to each 

state either an intervention from a set of feasible interventions in that 

state or the null decision in that state. The process resulting from the 

natural process and a policy is called a decision process. For each fixed 

policy the decision process is assumed to have the property that only a 

finite number of interventions may be taken in any finite time interval. 

Also in [DE LEVE 1964] a policy iteration method has been developed and is 

proven to approximate the minimum expected average cost per unit of time 

sufficiently good if the number of iterations is large enough. 

Applications of the model and the method are presented in [DE LEVE & 

WEEDA 1968] and in [DE LEVE, TIJMS & WEEDA 1970]. Recently in [DE LEVE, 

TIJMS & FEDERGRUEN 1977] the general model is treated under the simplifying 

assumption that any decision process has a fixed regeneration state. The 

authors also provide some applications of this approach. 

In the sequel the general model is considered under the much stronger 

assumption that the natural process is a finite state Markov renewal process 

and the sets of interventions are finite sets. This finite model is des­

cribed in section 2.2. In section 2.3 a policy iteration method is presented 



18 

which is predominantly a direct specialization of the general method to this, 

finite model. Under these stronger assumptions a stronger result as finite 

step convergence is possible and proved in chapter III. Further such a 

specialization makes sense because the general method is no ready made tech­

nique and presents no computational procedures for its operations. Partic­

ularly the so-called cutting operation indicates no specific computational 

procedure. Such a procedure is developed in chapter IV. Furthermore, the 

finite step convergence proof of chapter III is given in a more general 

setting then is needed for the policy iteration method of section 2.3. This 

is done to allow for variants on this cutting operation. These variants 

are worked out in chapter IV and are computationally investigated in chapter 

v. Also the existing methods of HOWARD and JEWELL are included in this in­

vestigation. 

2.2. A FINITE GENERALIZED MARKOV PROGRAMMING MODEL 

d 
A system is controlled by a decision maker. Let 1 = {1, ... ,J'} be the 

set of observable states of the system. If the decision maker leaves the 

system untouched the evolution in time of the system is described by a 

stochastic process called the natural process. 

ASSUMPTION 2.2.1. The natural process is a Markov renewal process induced 

by an SMM N(t) with IIN(OJII < 1, N1 ~ J t N(dt) < 00 and associated 
tEJR+ 

with it a reward vector G(t). 

The natural process is assumed to possess some additional properties 

specified by 

ASSUMPTION 2.2.2. There exists a unique nonempty set AO c 1 such that 

(i) 

(ii) 

(iii) 

(iv) 

N(t)ij = 0 for i E A0 , j 

G(t)i = 0 for i E AO; 

ljEo/ (NO)ij = 

(N0)~ is transient. 
0 

The decision maker may only interrupt the natural process at one of 

its observation epochs. An interruption immediately followed by an instanta­

neous (possibly random) change of the state of system, is called an inter­

vention. 



ASSUMPTION 2.2.3. An intervention x in 

(i) a family of probabilities {P~., j 
1.J 

represent~ng the probability that 

state i E 'I' induces 

1 , .•. , J'} with l • "' P~ . = 1 each 
]ET 1.] 

1 is the state observed after 

applying intervention x in state i; 

(ii) a reward G~ E lR. 
1. 
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The only possible alternative to applying an intervention in some state 

is to leave the natural process untouched until its next observation epoch. 

This alternative is called the nulldecision in that state. 

ASSUMPTION 2. 2 .4. The nulldecision x0 (i) is feasible for i E A0 and not for i E A0• 

From assumption 2.2.1 it is clear that the nulldecision x0 (i) in 

induces the family of probabilities {N(t) .. , j E 'I', t E lR+} and the 
. 1.J 

reward function G(t)i. 

Immediately after applying an intervention the state of the system is 

again observed and followed by either a new intervention or the nulldecision 

in the new state. This implies that in this finite model a sequence of 

interventions at one epoch is permitted rather than only one in the general 

model (cf. [DE LEVE 1964]). 

The sets of actions at the disposal of the decision maker are specified 

by 

ASSUMPTION 2.2.5. In each state i E 'I' a finite set of actions X(i) is given 

such that 

(i) X(i) consists of the interventions in state i if i E A0 1 

(ii) X(i) consists of the interventions and the nulldecisi6n x 0 (i) in 

state i if ii A0 . 

In the sequel the symbol x will be used for an action (here either an 

intervention or a nulldecision). The notation x0 (i) will not be used unless 

the nulldecision is specifically meant. 

In this model the set of policies z is given by the Cartesian product 

(2.2;1) d X 
Z iE'I' X(i). 

The process resulting from the control of the natural process by a policy 

z E Z is called the decision process corresponding to policy z. Further, to 

each policy z E z corresponds a partition (A(z),A(z)) of 'I' with 
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(2. 2;2) 
d 

A(z) {i E '!': z(i) f- X (i) }. 
0 

An element of A_(z) is called an intervention state. The SMM associated with 

policy z E Z will be denoted by S(t;z). Notice that entry S(t;z) .. of 
l.J 

S(t;z) is given by 

f N(t)ij for i i A(z), j E '!' 

(2.2;3) S(t;z)ij 

l P~!i) for i E A(z), j E '!' 
l.J 

z(i) . The numbers P .. , 1. E A(z), j E '!', can be arranged in an IA(z) jxJ'-matrix 
l.J 

denoted by P(z)A(z)'!'" In partitioned form S(t;z) is then given by 

N(t) 

(2.2;4) s (t,z) ·[ 
--- A(z)'!' 

P(z)A(z)'!' 

ASSUMPTION 2.2.6. The SMM S(t;z) is normal for each z E z. 

REMARK 2.2.7. Assumption 2.2.6 is made to prevent that the decision process 

for each fixed policy z E Z does not develop beyond some observation epoch. 

To prevent this several conditions are possible which are either necessary 

or sufficient or both for assumption 2.2.6 to hold. By the assumptions 2.2.2 

and 2.2.3, assumption 2.2.6 implies the existence of a nonempty set A1 such 

that 

(1) X(i) for i E A1 • 

The existence of A1 is a necessary condition. A sufficient condition for the 

validity of assumption 2.2.6 is 

(2) P(z) A(z) 0 for z E z. 

A more general form of condition ( 2) is assumed in the general model (cf. 

[DE LEVE 1964]). 

A necessary and sufficient condition is 

(3) for z E z. 

In chapter VI the model of this section is parametrized by the assumption 
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that each intervention takes a small time£> 0. £ is then considered as a 

variable. Then assumption 2.2.6 can be dropped at the expense of the appear­

ance of an ex~a term in the principal part of a partial Laurent series 

expansion of the expected discounted reward vector in terms of£ and the 

interest rate p. 

2.3. POLICY ITERATION IN THE FINITE GENERALIZED MARKOV PROGRAMMING MODEL 

In the sequel the model of section 2.2 will be referred to as the 

finite GMP-model. If the data of the natural process in the finite GMP­

model are restricted to the 0-th moment N0 of N(t), the 0-th moment G0 of 

G(t) and the row sums of the 1-st moment N1 of N(t) given by T ~ N1 1, then 

the model will be called the undiscounted GMP-model. 

Summarizing we have in the undiscounted GMP-model for the natural process 

(2. 3; 1) (NO)ij 0 for j E 'I'; (GO)i = O; T. 0 for i E AO l. 

(2.3;2) (NO)ij :2: 0 for j E 'I'; I (NO)ij 1 for i i A0 
jE'i' 

(2.3;3) (GO)i E lR; 0 < T. < 00 for i i AO l. 

(2.3;4) spr ( (N0 )JC) < 1. 
0 

For convenience assumption 2.2.6 is sometimes replaced by the equivalent 

(2.3;5) for z E z. 

For the finite GMP-model a policy iteration method is developed which 

computes a policy maximizing the gain, i.e. the expected average reward 

per unit of time in the long run. The data of the undiscounted GMP-model are 

sufficient for this computation. In preparation it is necessary to 

define several quantities related to the natural process and the decision 

process for a fixed policy z E Z. Some properties of these quantities are 

developed. These results are partly used to prove some properties of the 

solution of a set of equations arising in one of the operations of the 
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policy iteration method and partly stated in preparation of the development 

in the chapters VI and VII. 

The policy iteration method is to a considerable extent a specialization 

of a general scheme given in [DE LEVE 1964]. However, it has the facility 

built in to handle policies which imply a sequence of interventions at the 

observation epochs. 

The method is iterative and consists of a preparatory part and four 

operations per iteration step. The first two operations are respectively 

related to the policy evaluation and policy improvement operation of method 

1.4.1. For the third operation, called the cutting operation, no specific 

computational procedure is indicated by the general scheme. Computational 

methods for this cutting operation are developed in chapter IV and investi­

gated on their computational merits in chapter v. 

Primarily two vectors related to the natural process are specified in 

definitions 2.3.1 and 2.3.2. 

J' 
DEFINITION 2. 3 .1 . The vector ko E lR is defined by 

d -1 
(1) (k0 ):IC" = [I- - (NO)A] (GO)A 

0 AO 0 0 

d 
(2) (kO)A 0. 

0 

J' 
DEFINITION 2.3.2. The vector to E lR is defined by 

d -1 
(1) <to>r = [I- - (NO)A] ':ic-

0 AO 0 0 

d 
(2) (tO)A 0. 

0 

Notice that (k0)i ((t0)i) represents the expected total reward incurred 

(expected total time elapsed) during the natural process with initial 

state ii A0 until the set A0 is entered. 

The next two quantities involve one action and the natural process. 

DEFINITION 2.3.3. For each action x E X(i) and state i E fa number 

k(i,x) E lR is defined. For x intervention in state ii A1 

k(i,x) 
d 

G~ + 
1. 



and for the nulldecision in state ii A0 

d 
k(i,_x0 (i)) 0. 

DEFINITION 2.3.4. For each action x E X(i) and state i E 1 a number 

t(i,x) E lR is defined. For x intervention in state ii A1 

d 
t(i,x) 

and for the nulldecision in state ii A0 

The term-(k0)i (-(t0)i) appearing in the right-hand member of the 

is interpreted above. The term G~ + 
]. 
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represents the expected total reward incurred 

if in initial state i intervention xis taken 

and after that the evolution of the system is described by the natural pro­

cess until the set A0 is entered. This interpretation covers also the case 

that in state i the nulldecision x 0 (i) is taken. 

Next two matrices related to the natural process and a set of states 

A are introduced and some of their properties are summarized in the lemmas 

2.3.5 and 2.3.6. 

LEMMA 2.3.5. Let A be a given set of states such that A0 =Ac 1. Then the 

matrix [IA - (NO)A] is nonsingular and its inverse 

exists. 

PROOF. Because Ao 2 A, (No)ro transient (cf. assumption 2.2.2 (iv)) implies 

(N0)A transient by lemma 1.2.2. The assertion follows then by lemma 1.2.1. D 

LEMMA 2.3.6. For a given set A satisfying AO c Ac 1 the matrix u (A) E 
- 0 

lR l~JxJAJ defined by 
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has the following properties 

(il u0 (ii.J ~ o; 

(ii) uo (A) 7 A 1-. 
.A 

PROOF. By the lemmas 2.3.5 and 1.2.1 the entries of the matrix R0 (A) are in­

finite sums of nonnegative real numbers implying R0 (A) ~ O. Because also 

(N0)AA ~ 0 assertion (i) easily follows. By assumption 2.2.2(iii) and because 

AO 2 A 

Hence 

R (A)[I- - (N )~] 1-
0 A O A A 

I- 1- 1A- , A A 

completing the proof. D 

Observe that R0 (A) is the oth moment of the MRM corresponding to SMM 

N(t)A (cf. lemma 1.3.5 (2)). Each entry u0 (A)ij' ii A, j € A, is interpreted 

as the probability that state j is the first state taken on in the set A by 

the natural process with initial state ii A. 

The following lemma states two relations expressing respectively (k0 )A 

in (k0 )A and (t0 )A in (t0 )A for a set of states A, AO s Ac 1. 

LEMMA 2.3.7. For each set of states A such that AO~ Ac 1, (k0)A and 

(t0)A satisfy respectively 

(il (kol A = Ro (Al (Gol A + uo (Al (kol A; 

(iil (tol A = Ro (Al 'A + uo (Al (tol A. 

PROOF. Premultiplying (1) of definition 2.3.1 by [IA - (No)A] shows that 
0 0 

Since AO ?. A and (k0) A = O 
0 

(1) 
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By the lemmas 2.3.5 and 2.3.6, (1) is equivalent to 

(2) 

The relation (ii) follows by replacing k 0 and G0 by t 0 and, respectively. D 

Some quantities related to the decision process for a fixed policy 

z E z are specified in 

DEFINITION 2.3.8. For each fixed policy z E Z the following quantities are 

defined. 

(i) 
J' The vectors k(z) and t(z) E JR with components k(i,z(i)) and t(i,z(i)), 

i E '!'. 

J'xJ' 
(ii) The matrix s0 (z) E JR by 

~ [ 
(NO)A(z) '!' 

s0 (z) ----------
P(z)A(z)'!' l 

The Cesaro sum of nonnegative powers of s0 (z) is defined in the usual 

* way and denoted by s0 (z). Observe that the matrix s0 (z) is stochastic 

by assumption 2.2.2 (iii) and assumption 2.2.3. The set of persistent 

states is denoted by E(z) and the set of all transient states by F(z). 

The subchains of s0 (z) are denoted by EA (z), A= 1, •.. ,L(z). 

(iii) The vectors G0 (z) E JR J' and , (z) E m{ by 

and 

z(i) 
respectively, where GA(z) denotes the vector with components Gi , 

i E A(z), induced by the decision process of policy z. 

(iv) The matrix PO(A(z)) E JRjA(z) lx!A(z) I of the A(z)-embedded chain, by 

Notice that P0 (A(z)) is stochastic by lemma 2.3.6 (ii) and assumption 

2.2.3. The Cesaro sum of nonnegative powers of P0 (A(z)) is defined in 
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* the usual way and denoted by P0 (A(z}). The matrix H0 (A(z}) E 

lR~(z) lxlA(z} I is defined by (cf. section 1.2) 

The set of persistent (transient) states of the A(z)-embedded Markov 

chain is denoted by E(A(z)) (F(A(z))). The subchains of P0 (A(z)) are 

denoted by EA (A(z)), \ = 1, .•. ,L' (z), where L'(z) is the number of 

subchains of P0 (A(z)). 

E lRJ'xlA(z) I by (v) The matrix r0 (z) 

l 
The i th row of r0 (z) is easily interpreted as the probability distrib­

ution of the first future intervention state given initial state i E 'I'. 

The next lemma shows the equivalence of the solution sets of the equa­

tionsµ= s0 (z)µ andµ= r0 (z)µA(z) for a fixed policy z E z. 

J' 
LEMMA 2. 3. 9. For a vector µ E lR we have for fixed z E Z 

PROOF. By the lemmas 2.3.5 and 2.3.6 and definition 2.3.8 (ii) we have 

which is equivalent to 

Using definition 2.3.8 (ii) and (iv) 
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The use of definition 2.3.8 (v) completes the proof. D 

The next lemma proves that the number of subchains in the decision 

process of a fixed policy z E Z equals the number of subchains of the A(z)­

embedded Markov chain. 

LEMMA 2.3.10. For each fixed policy z E Z 

L' (z) L(z). 

PROOF. Since (Nol:irrzr is transient EA(z) n A(z) #¢for A 1, ... ,L(z) and 

L'(z) ~ L(z). On the other hand by (2.3;5) EA(z) n ATzf# ¢ for A=l, •.. ,L(z) 

and L' (z) ~ L(z). Hence L' (z) = L(z). D 

The lemmas 2.3.11, 2.3.12 and 2.3.13 establish some relations between 

LEMMA 2.3.11. For each fixed policy z E Z we have 

* PROOF. By partitioning the matrices s0 (z) and s0 (z) the relation 

* * s0 (z) s0 (z) = s0 (z) implies the four relations 

(1) * * * s0 (z):irrzf = s0 (z):irrzf (NO)A(zf + s0 (z)A(z}A(z)P(z)A(z)Al'zf 

(2) * * 8o(z)Al'zf (NO)Al'zfA(z) + 8o(z)A(z)A(z)P(z)A(z) 

(3) * * * SO(z)A(z):irrzf = SO(z)A(z):irrzf(NO)Al'zf + SO(z)A(z)P(z)A(z)A(z) 

(4) 

* * Solving s0 (z)A(z)ATzf from (3) and s0 (z):irrzr from (1), which is permitted 

because (NO)A\ZT is transient, yields 
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(5) 

and 

(6) 

(5) and (6) constitute assertion (i). Substitution of (6) in (4), and (5) 

in (2) yields respectively 

(7) 

and 

(8) 

(7) and (8) constitute assertion (ii). D 

LEMMA 2.3.12. For each policy z € Z the vector t(z) satisfies 

(i) t(z)A(z) = [PO(A(z)) - IA(z)J (tO)A(z)+P(z)A(z)A(z)RO(A(z)) rA(z); 

(ii) S~(z)t(z) = s;(z)o/A(ZfTATzT 

PROOF. By its definition t(z)A(z) satisfies 

(1) t(z) A (z) 

By substitution of the relation (ii) of lemma 2.3.7 into (1) implies asser­

tion (i). To prove assertion (ii) notice that by lemma 2.3.11 (ii), assertion 

(i) and lemma 2. 3 .11 (i) 

* s 0 (z)t(z) 

* s 0 (z)o/A(z) P(z)A(z)A(Zf RO(A(z)) TA(ZJ 

* SQ (z) o/ATzT TA(ZJ 

LEMMA 2.3.13. For each policy z € Z the vector k(z) satisfies 

(i) 

(ii) 

□ 



PROOF. By its definition k(z)A(z) satisfies 

( 1) 

Substitution of lemma 2.3.7 (i) into (1) implies assertion (i). To prove 

assertion (ii) observe that by lemma 2.3.11 (ii), assertion (i) and lemma 

2.3.11 (i) 

* s0 (z)k(z) 

* * SO(z)IJ'A(zT GO(z)A('zf + SO(z),A(z) GO(z)A(z) 

The following theorems are concerned with the general solution to a 

set of equations arising in the policy evaluation operation of the policy 

iteration method. 

THEOREM 2.3.14. Let z E Z be a fixed policy. Let for each fixed A E 

{1, ••• ,L(z)} µ = ~A(A(z)) be the solution to the equationµ= P0 (A(z))µ 
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□ 

with ~A(A(z))i = 1 for i E EA(A(z)) and ~A(A(z))i = 0 for i E E(A(z))\EA(A(z)). 

Then the set of equations 

(1) l (a) 

(b) 

y(z)A(z) 

has a solution (y(z)A(z)'wA(z)). The vector y(z)A(z) is uniquely given by 

L(z) 
(2) l YA (z) ~A (A(z)). 

A=l 

The scalars yA(z) are given by 

(3) 
* <S0 (z)i,k(z)> 

* <S0 (z)i,t(z)> 
for A 1, ... ,L(z), 
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* * where s 0 (z)i is the row of matrix s 0 (z) corresponding to an arbitrary state, 

i E EA(A(z)). The general solution for wA(z) is given by 

(4) 
L(z) 

H0 (A(z))(k(z) -y(z) □t(z))A(z) + l 13A <PA(A(z)), 
A=1 

l\i'here the 13A, A= 1, ••• ,L(z) are arbitrary constants. 

PROOF. By lemma 1.2.4 the general solution of (1) (a) is given by 

(5) y(z) A(z) 

L(z) 
l aA <PA(A(z)), 

A=1 

where the aA, A= 1, ... ,L(z) are constants still to be specified. To specify 

* the aA, (1) (b) is premultiplied by the matrix s 0 (z),A(z) to yield by lemma 

2.3.11 (iii) 

(6) 0. 

Substitution of (5) in (6) yields for each i E EA(A(z)) with A E {1, ... ,L(z)} 

fixed 

(7) * <S 0 (z)i 1 k(z)> - * aA<s0 (z)i 1 t(z)> 0. 

Since by lemma 2.3.11 (ii) and T(Z)i > 0 for i E A(z) 

(8) * <S0 (z)i 1 t(z)> * <S0 (z)i 1 T(z)> > o, 

aA is uniquely determined by (7). 

d Defining yA(z) = aA completes the proof of (3). By lemma 1.2.8 with 

b (k(z) -y(z) □t(z))A(z) and by lemma 1.2.4 the general solution of (1) (b) 

is given by (4). D 

COROLLARY 2. 3. 15. A particular solution of ( 1) (b) of theorem 2. 3. 14 is obtained 

if in each subchain EA (A(z)), A= 1, ••• ,L(z), one arbitrary state i (A) is chosen 

for which wi (A)= O. The scalars 13A in (4) are in this case specified by 

(1) 

THEOREM 2.3.16. If the constants 13A, A= 1, ..• ,L(z) in theorem 2.3.14 are 

specified then the system of equations in y(z) and w 
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y(z)A(z) 

(1) 
wA(z) + k(z) -y(z) □t(z) 

has a unique solution. 

PROOF. The subvectors y(z)A(z) and wA(z) are uniquely determined by theorem 

2.3.14 and corollary 2.3.15. By the lemmas 2.3.5 and 2.3.6 also y(z)A\ZT 

and wA\ZT are uniquely determined by 

and 

completing the proof. D 

Finally a policy iteration method for the finite GMP-model is stated. 

In the sequel the method will be referred to as GMPl. 

METHOD 2.3.17 (GMPl). The method consists of the following five main opera­

tions: 

(i) Preparatory part. Compute the vectors k 0 and t 0 and the real numbers 

k(i,x) and t(i,x) for i E 1, x E X(i). Fix an initial policy z E Z. 

(ii) Policy evaluation operation. Compute the particular solution 

(y(z),w(z)) to the system of equations of theorem 2.3.16 obtained 

by taking for each state i(A), A= 1, ••• ,L(z), the state with the 

largest index in subchan EA(A(z)). 

(iii) Policy improvement operation. Introduce the notation 

d 
for x = x 0 (i), 

for x E X(i), 

and 

d 
for i E A(z)\A0 

otherwise. 

Compute: 

( 1) the vector y E JRJ with components y i with 
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d 
max [ l (s0)~. y(z) .] 
X (].') J'c\11 l.J J 

XE l ~• 

(2) the set of actions in each state i e: 'JI given by 

x2 (i) ~ {x e: x1 (i): }: (s0>:j y(z). = yJ , 
je:'JI J 

(3) the vector w E lRJ with components w. given by 
l. 

(4) the set of actions in each state i e: 'JI given by 

(5) policy 2 e: z such that z(i) = z(i) whenever z(i) e: x3 (i). If 

z(i) i x3 (i) then choose z(i) e: x3 (i) arbitrarily. 

(iv) Cutting operation. Let A satisfy A0 s As A(z). For each set A define 

the vectors y' (A) and w'(A) respectively by 

[
u0 (All 

y' (A) = ~:--- y 

and 

w' (A) 

Define the collection of sets 

Define the set 

* 
d 

A (2) n A 
Ae:M(zl 

and policy z' such that 

I 2 (i) for i e: A(z') 
Z I (i) 

l xo(i) for i E A(z') 
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with A(z') defined by 

A(z'.) n A(2): y' (l(2)). = y. 
]. ]. 

and w' (A*(2)). = w.}. 
]. ]. 

(v) If z'(i) = z(i) for i E ~ then stop. Otherwise redefine z equal to z' 

and repeat operations (ii) •.. (v). 

REMARK 2.3.18. 

(i) A large part of the computation of k(z) and t(z) for a particular 

policy z is done in the policy independent preparatory part. 

(ii) The collection M(2) is nonempty because A(2) E M(2). 

(iii) A(z') ,A*(2) E M(2) is proved in chapter IV. 

(iv) No specific computational procedure is indicated in operation (iv) to 

* compute the sets A (2) and A(z'). We shall return to this problem in 

chapter IV. 

Finally the relationship between the undiscounted GMP-model and the 

undiscounted MRD-model with interventions is exhibited. 

Let IT0 denote the class of problems satisfying the assumptions of the 

undiscounted MRD-model with interventions (cf. section 1.4). Let IT 2 denote 

the class of problems satisfying the assumptions of the undiscounted GMP­

model. Then it is immediately verified that 7f E IT2 implies 7f E ITO •. conver­

sely let 7f E ITO• A transformation 0 to be applied on 7f E ITO is specified 

in 

DEFINITION 2.3.19. The transformation 0 transforms a problem 7f E IT0 into 

a problem 0(71) by the following steps: 

(i) Define a nonempty set A0 such that 

k 
M ~AO~ {i EM: Ti= 0 fork E K(i)}. 

If the right-hand set is empty then A0 may be any nonempty subset ofM. 

(ii) For each 

fying T~ 
]. 

i E M\A0 if A0 FM specify a particular action k E K(i) satis­

> O. Denote this action by x0 (i). 

(iii) Extend the set of states to 

~~Mu {m=(i,k): T~ > 0, k E K(i)\{xo(i)}, i EM}. 
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(iv) Define a substochastic matrix N0 with entries 

(i,k) € 'l'\M, {'o,,~. form. 

(NO)mj 
d 1.J • 

M\A0 , k = = or m = 1. E 

0 otherwise, 

a vector T with components 

d i 
T = lT~ 

I!l 

0 

and a reward 

form= (i,k) E 'l'\M or m 

otherwise 

vector G0 with components 

j E M 

x0 (i), 

[''~ form (i,k) € 'l'\M or m i 

(G ) ~ 
0 m 

otherwise. 

j EM, 

E M\A0 , k x(i) 

(v) For each pair (i,k), i EM, k E K(i) \{x0 (i)} such that T~ > 0, an 

intervention x in state i is defined inducing a reward G~ 0 and a 
1. 

deterministic transformation to the state (i,k) E 'l'\M. 

(vi) The set X(i), i E '!', is defined by 

X(i) {
K(i) 

{x0 (i)} 

for i EM 

for i € 'l'\M. 

It is easily shown that 0(TI) E rr2 at least if AO= M. Depending on the 

structure of the problem under consideration also other choices of A0 are 

possible to guarantee that 0(TI) E rr2 . The freedom of choice of the set A0 

can then be exploited in the computation of a gain-optimal policy. Observe 

that in this respect the number of states in 'l' is maximal and the cutting 

operation is superfluous if A0 =Mis chosen. 



CHAPTER I I I 

ON THE CONVERGENCE OF GMP-SCHEMES 

3.1. INTRODUCTION 

In this chapter a more general version of the policy iteration method 

GMP1 for the finite GMP-model is considered. This version is called a GMP­

scheme. It contains GMP1 and other variants, to be specified in Chapter IV 

as special cases. 

A GMP-scheme has the preparatory part and the policy evaluation opera­

tion in common with GMPl but replaces operations (iii), (iv) and (v) by an 

operation called a compound policy improvement operation. The computations 

to be executed in this operation are not specified but only the properties 

are stated which are required to obtain the final result of section 3.2: 

convergence within a finite number of steps to a gain-optimal policy. The 

properties imposed upon this compound policy improvement operation are 

specified by definitions 3.1.1 - 3.1.3. 

DEFINITION 3.1.1. Let z,z' e Z be policies. Let (y(z) ,w(z)) be the solution 

to the system of equations in the policy evaluation operatibn of GMP1, ob­

tained in the way indicated by corollary 2.3.15, for a particular policy z. 

The components of the vectors y((z')z),w((z')z) e nl' are for i e A(z') 

defined by 

(1) 

and 

(2) 

y((z')z). g 
]. 

w((z')z).g 
]. 

The components of y((z')z) and w((z')z) for it A(z') are defined by 

(3) 
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and 

(4) w( (z')z). g 
1. 

Observe that in (1) and (2) the vectors y(z) and w(z) are involved 

while (3) and (4) are relations among the components of the vectors y((z')z) 

and w((z')z) respectively. This difference is typical for a GMP-scheme. 

* DEFINITION 3.1.2. For each policy z E Z the sets of policies D(z) and D (z) 

are defined by 

D(z) {z' E Z: [y((z')z),w((z')z)] Z,[y(z),w(z)]} 

and 

* D (z) {z' E Z: [y((z')z)_,w((z')z)] I" [y(z),w(z)]}. 

Observe that D(z) is nonempty because z E D(z) for z E Z. However 

* D (z) may be empty. 

DEFINITION 3.1.3. An operation computing a policy z' E D(z) and redefiningz 

by z g z' is called a compound policy improvement operation. An iterative 

method consisting of the preparatory part of GMPl, the policy evaluation 

operation of GMPl and a compound policy improvement operation is called a 

GMP-scheme. 

Definition 3.1.3 specifies a minimum requirement for a method to be 

called a GMP-scheme. Two additional conditions, required for finite step 

convergence to a gain-optimal policy, are given in 

DEFINITION 3.1.4. A GMP-scheme is called 

(i) distinctive if z' E D*(z) whenever D*(z) I¢, 
(ii) preserving if z' (i) = z(i) whenever y((z')z)i 

w((z')z)i = w(z)i. 

y(z) i and 

3. 2. A FINITE STEP CONVERGENCE PROOF FOR DISTINCTIVE AND PRESERVING GMP-SCHEMES 

Because the policy evaluation operation of GMPl is maintained in a 

GMP-scheme the definitions and results of section 2.3 apply to a GMP-scheme. 

Only some additional notation is needed. For each policy z E Z we define 

(3. 2; 1) -- d --E(A(z)) = E(z) n A(z) 



and 

(3.2;2) F(A(z)) ~ F(z) n A(z). 

In relation to the compound policy improvement operation two additional 

vectors are specified by 

J' 
DEFINITION 3.2.1. The vectors y((z')z) and w((z')z) € IR are defined by 

(1) y((z')z) = s0 (z')y((z')z) 

and 

(2) w((z')z) = s0 (z')w((z')z) + k(z') - y((z')z) □t(z'). 

The following theorem specifies some properties of a GMP-scheme. 
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THEOREM 3.2.2. Let, for a given policy z E z, z' E D(z) be the policy ob­

tained by the compound policy improvement operation of a GMP-scheme. Then 

(i) y ( ( z ' ) z) . = y ( ( z ' ) z) . = y ( ( z ' ) z) . = y ( ( z ' ) z) . for i , j E E, ( z ' ) and 
i i ) ) A 

each fixed ::I. E {1, ••. ,L(z')}; 

(ii) w((z')z)i ~ w((z')z)i for i € E(A(z')); 

(iii) y(z')E(z') ~ y((z')z)E(z') ~ y(z)E(z'); 

(iv) y(z')E(z') y(z)E(z') implies w((z')z)E(z') w((z')z)E(z'); 

(v) y(z')F(z') ~ y((z')z)F(z') ~ y(z)F(z'); 

(vi) y(z') ~ y(z). 

If in definition 3.1.2 the symbol l. is replaced by~(=) then (i) - (vi) 

hold with reversed inequality signs (equality signs). 

PROOF. By the definitions 3.1.1 and 3.2.1 we have 

( 1) y((z')z) = s0 (z')y((z')z) ~ y((z')z) ~ y(z). 

Applying lemma 1.2.7 to (1) per subchain implies assertion (i). Assertion 

(i) implies 

(2) l s0 (z'). ,[y((z')z). -y(z) .J 
j€1 iJ J J 

0 for i E E(A(z')l 

and consequently 

(3) ). s0 (z') .. [w((z')z). -w(z) .] ~ O 
j€1 iJ J J 

for i € E(A(z')). 
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Adding k(z')i - y((z')z)it(z')i to both sides of (3) yields 

(4) w( (z' )z). 
. J. 

l s0 (z') .. w((z')z). +k(z'). -y((z')z) .t(z'). 
jEf J.J J J. J. J. 

~ l s0 (z') .. w(z). + k(z'). - y((z')z).t(z'). 
J.J J J. J. J. 

jEf 

for i E E(A(z')), 

which completes the proof of assertion (ii). By the definitions 3.1.1 and 

3.2.1 we have for ii A(z') 

(5) w( (z')z). 
J. 

(4) and (5) imply 

(6) w((z')zE(z') 

+ [k(z') -y((z')z) □ t(z')] 
E (z') 

* Premultiplying (6) by s0 (z')E(z') yields 

(7) 

implying the left-hand part of assertion (iii). The right-hand part of 

assertion (iii) is implied by z' E D(z). To prove assertion (iv) notice 

that y ( z ' ) E ( z , ) y(z)E(z') implies the equality sign in (7) and also 

(8) 

By lemma 1.2.5 (ii) and (iii) applied to the 

assertion (iv). To prove (v) notice that for 

and assertion (iii) 

(9) 

* matrix s0 (z) 

y((z')z)F(z') 

(8) implies 

we have by ( 1 ) 
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y(z')F(z') satisfies by theorem 2.3.16 and lemma 2.3.9 

* d The application of lemma 1.2.3 (iii) with u = y(z')F(z') and 
d 

u = y((z')z)F(z') yields y(z')F(z') ~ y((z')z)F(z') and therefore assertion 

(v). Assertion (vi) is the immediate consequence of assertions (iii) and 

(v). Observe that if in the definition of D(z) the _t sign is replaced by 

:SC=) the proof remains valid with reversed inequality signs (equality signs 

throughout) • D 

In the remaining part of this section, let {z, n = 1,2, ••• } be a 
n 

sequence of policies generated by a GMP-scheme, where z1 is arbitrarily 

chosen. 

LEMMA 3.2.3. For n ~ M0 , M0 some finite natural number, we have in a 

GMP-scheme 

(i) y(zn+l> = y((zn+l)zn) = y((zn+l)zn) = y(zn); 

(ii) w((zn+l)zn)i = w((zn+l)zn)i for i € E(zn+l). 

~- Since z is a finite set only a finite number of strict improvements 

in y(z) is possible. This implies assertion (i). Assertion (ii) is an 

immediate consequence of theorem 3.2.2 (iv). D 

LEMMA 3.2.4. For n ~ M0, where M0 is specified by lemma 3.2.3, we have 

in a preserving GMP-scheme 

(1) { 
w((zn+l)zn)i = w((zn+l)zn)i 

zn+l (i) = zn(i) 

PROOF. Fix n ~ MO and let B be the possibly empty set 

(1) B ~ {i € 'I': w((zn+l)zn)i =w((zn+l)zn)i = w(zn)i}. 

Let EA(zn+l> be an arbitrary subchain of s0 (zn+l). By lemma 3.2.3 (ii) we 

have for i € EA(A(zn+l)) 
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(2) o. 

(2) and lemma 3-.2.3 (ii) imply that j € B for some j € EA(zn+l) satisfying 

s0 (zn+l)ij > O. Hence B #¢and B n EA(zn+l) #¢.By lemma 3.2.3 (i) and the 

preserving condition we have zn+l (i) = zn(i) for i € B. 

By (1) we have for j € B n A(zn+l) 

(3) 

and for j € B n A(zn+l) since zn+l (j) 

(4) 

l SO(zn+l)ji w(zn)i 
iE'I' 

0 

w(z ) . 
n J 

(4) implies that (3) holds for j € B. Let BA~ B n EA(zn+l). For j € BA we 

have then 

(5) 0, 

implying k € BA for each k € EA(zn+l) such that s0 (zn+l)jk > O. This implies 

BA= EA(zn+l). Since EA(zn+l) was arbitrary this completes the proof. D 

LEMMA 3.2.5. For n ~ M1 , M1 ~ M0 some finite natural number and M0 

specified by lemma 3.2.3, we have for a preserving GMP-scheme 

(i) E(zn+l) = E(zn); 

(ii) w(zn+l)i = w(zn)i for i € E(zn). 

PROOF. By lemma 3.2.4 we have zn+l (i) = zn(i) for i € E(zn+l), n ~ M0 . This 

implies E(zn+l) S E(zn). Since the set of policies Z is finite, assertion 

(i) follows. Since for each subchain EA(zn), A€ {l, ... ,L(zn)}, n ~ M1 we 

have y(z 1)E ( ) = y(z ) ( ) by lemma 3.2.3. By assertion (i) and the 
n+ A zn n EA zn 

policy evaluation operation of method 2. 3 .1 7 the states i ( A) , A € { 1 , ... ,L ( zn) } 

are identical for n ~ M1 . This implies assertion (ii). D 

LEMMA 3.2.6. For n ~ M2 , M2 ~ M1 some finite natural number and M1 

specified by lemma 3.2.5, a preserving GMP-scheme converges, i.e. it has 
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z = z ' n+l n 

PROOF. For n ~ M1 , the lemmas 3.2.3, 3.2.4 and 3.2.5 imply F(zn+l> = F(zn). 

Since y(zn+l) = y(zn) we have w((zn+l)zn)i > w(zn)i whenever zn+l (i) F zn(i) 

by definition 3.1.4 (ii). By the definitions 3.1.2 and 3.2.1 and lemma 

3.2.3 we have for n ~ M1 

By the lemmas 3.2.4 and 3.2.5 (ii) 

(2) 

implying that w((zn+l)zn)F(z 1) satisfies 
n+ 

(3) 

+ [k(zn+l) -y(zn+ll CJt(zn+ll ]F(zn+l>. 

Applying lennna 1.2.3 (iii) with u ~ w((z +l)z) ( ) and 
* d n n F zn+l 

u = w(zn+llf(zn+ll yields for n ~ M1 

Hence zn+l (i) F zn(i) for i E F(zn+l) also implies w(zn+l)i > w(zn)i. 

Since the number of policies is finite we have the assertion. D 

Finally the convergence of a distinctive and preserving GMP-scheme to 

a gain-optimal policy is the subject of 

THEOREM 3.2.7. A distinctive and preserving GMP-scheme converges within a 

* finite number of steps to a policy z satisfying 

(1) for z e: z. 

PROOF. Since in a distinctive and preserving GMP-scheme zn+l e: o*czn) at 
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each step and the number of policies is finite we have zn+l = zn and 

* ¢ f f' . * d D (zn) = or n ~ M2 . De ining z = zM2 we have for each policy z E z 

(2) 

The assertion follows by theorem 3.2.2 and (2). D 

REMARK 3.2.8. The finite step convergence proof, given here for a GMP­

scheme, differs in some respects from a standard proof of method 1.4.1 

(cf. [DENARDO & FOX 1968]). The modifications implied by the structure 

of the compound policy improvement operation are rather straightforwardly. 

Only the argument to prove the implication y(zn+l) = y(zn) => w((zn+l)zn)i 

= w(zn)i for i E E(zn+l) is necessarily different and relies on the pre­

serving property postulated in lemma 3.2.4. Further the proof as a whole 

is constructed in such a way that a property of the convergence is exhib­

ited. It shows that pr.imarily convergence in the subchains is obtained and 

afterwards in the transient states. 



CHAPTER IV 

CUTTING METHODS AND OPTIMAL STOPPING 

4.1. INTRODUCTION 

In this chapter three policy iteration methods are developed for 

the finite GMP-model. All three methods are proven to be distinctive and 

preserving GMP-schemes. Theorem 3.2.7 then proves their convergence within 

a finite number of steps to a gain-optimal policy. An investigation of 

their computational performance is presented in chapter V. 

The first method considered is GMP1 (method 2.3.17). As remarked in 

section 2.3 (cf. remark 2.3.18) the formulation of the cutting operation 

of GMP1 does not provide a specific computational procedure. To develop 

such a procedure the relationship between the cutting operation of GMP1 

and the more basic problem of optimal stopping in a finite Markov chain 

is exposed in section 4.3. An optimal stopping problem in a finite Markov 

chain will be abbreviated by OSP with plural form OSPs. It is shown that 

the sets A(z') and A(z*) of GMP1 are stopping sets which are optimal in a 

lexicographical sense to a coupled pair of OSPs. In preparation some prop­

erties of coupled pairs of OSPs are proven in section 4.2. 

In section 4.4 the second method, denoted by GMP2, is developed. It 

is identical to the operations of GMP1 with the exception of the cutting 

operation, which is replaced by a suboptimal cutting method. A suboptimal 

cutting method computes, roughly speaking, a stopping set, which is 

"better" in a lexicographical sense than the set A(z). 

Finally in section 4.5 a third method, GMP3, is presented, which uses 

a suboptimal cutting method involving the vectors y(z) and w(z) of the 

current policy z. In GMP3 the policy improvement operation and the cutting 

operation can be combined to a single operation, which is identical to 

operation (iii) of method 2.3.17 with x1 (i) ~ X(i) for all i E ~-
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4.2. OPTIMAL STOPPING AND OPTIMAL CUTTING 

In this section some properties of a coupled pair of OSPs are proven. 

Primarily a brief review of optimal stopping in a Markov chain is given. 

For a discussion of this model the reader is referred to [BREIMANN 1964] 

and for a treatment as an optimal gain problem to [DERMAN 1970]. In [EMRICH 

1970] algorithms computing optimal stopping policies are developed. In 

[HORDIJK, POTHARST & RUNNENBURG 1972] optimal stopping problems with a 

countable state space are considered. This latter study is based on and 

includes several extensions of material treated in [DYNKIN & JUSCHKEWITSCH 

1969]. 

Suppose a Markov chain with set of states M = {1, ... ,J} and a sub­

stochastic matrix Pis given. In each state i EM one may choose among at 

most two alternatives. The first alternative is to stop in that state, im­

plying an income Ai. The second alternative is to continue and earn nothing. 

The objective is to find a policy specifying the alternative per state such 

that the expected income is maximized. Such a policy is called an optimal 

stopping policy. 

An optimal stopping problem is summarized by the 4-tuple 

(4.2;1) 

where As(Ac) is the largest nonempty (possibly empty) set of states with 

stopping (continuing) as the only feasible alternative. It is assumed that 

As and Ac are disjoint and that the set As and the matrix P satisfy 

(4.2;2) 

The above formulation of an OSP implies that Ai is not defined for i E Ac. 

Occasionally Ai will be defined for i EM in which case also the notation 

(4.2;1) will be used. 

An OSP can be formulated as a problem satisfying the MRD-model of 

section 1.4 with g(f) = 0 for each policy f E F. A set of states B satis­

fying As EBE Ac is called a feasible stopping set. The collection of 

feasible stopping sets is denoted by B. Obviously there exists a one-to-one 

correspondence between feasible stopping sets and policies. The following 

method is a particular version of the policy iteration method of [HOWARD 

1960] adapted to OSPs. This method computes an optimal stopping set. 



METHOD 4.2.1. The following computational steps are executed: 

(i) Fix an initial feasible stopping set B. 
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(ii) Solve the following set of equations in the components of the expected 

income vector n(B)i, i EM 

(1) 
ljEM P ij n <B\ 

Ai 

for i EB, 

for i EB. 

(iii) Construct a feasible stopping set B' by the following rule. Define 

i EB' if and only if one of the following three conditions is satis­

fied: 

(a) i E A s; 

(b) i E B n A and A. > IjEM pij n(B).; 
C l. J 

(c) i E B n A and A. <'= ljEM pij n (B) .. 
s l. J 

(iv) If B' B then an optimal stopping set is obtained. Otherwise rede-

fine B ~ B' and return to step (ii). 

REMARK 4.2.2. The above method is somewhat simplified if Ac is chosen as 

initial feasible stopping set. Then operation (iii) can be simplified by 

defining i EB' if and only if one of the following two conditions is satis­

fied: 

(a) i E As; 

(b) i EB n As and Ai<'= ljEM Pij n(B)j. 

This simplification is based on the fact that B' c Bat each nonterminal 

step in this case. 

Since PA is transient, P- is transient for each feasible stopping 
s -l B 

set B. Hence [IB - PB] exists for B E B. In the sequel of this chapter 

a matrix W(B) E R IBlxlBI will be used, defined by 

(4.2;3) W(B) ~ [I- - P-]-l P 
B B BB" 

Since l• MP .. s 1 for i EA we have W(B) 2': 0 and W(B) IB SIB- (cf. lemma 
JE l.J S 

2.3.6). The system of equations in n(B) (cf. method 4.2.1 (ii)) is then 

equivalent to 

(4.2;4) 
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DEFINITION 4.2.3. An ordered pair of OSPs (As,Ac,P,A) and (A~,A;,P',A') is 

called coupled if As= A~, Ac A; and P = P'. The expected income vectors 

corresponding to a stopping set A which is feasible to both OSPs are denoted 

by n(A) and v(A) respectively. 

LEMMA 4.2.4. Let B,C satisfy C,B EB and C ~ B for the coupled pair of OSPs 

(As,Ac,P,A) and (As,Ac,P,µ). Let y,o E RM be given vectors with components 

satisfying respectively 

(1) 
rj<M P .. yj :?'. Yi for i E C 

l.J 

Yi :;; A. for i E B, 
l. 

(2) {'''" 
P .. 0. :?'. 0, for i E C 

l.J J l. 

0. :;; )Ji . for i EB . 
l. 

Then 

(i) if for i EB n C either 

(3) IjEM P .. yj > Yi' l.J 

or 

(4) 2,jEM p ij yj = y. and lj pij o. :?'. o. 
l. · EM J l. 

then we have 

(5) [n(B),v(B)] ~ [y,oJ. 

The assertion remains true in the following cases: 

(ii) The symbols:?'. and> are replaced in (4) and (5) by> and> 

respectively. 

(iii) The symbols> and> are reversed in assertion (i). 

(iv) The symbols> and> are reversed in assertion (ii). 

(v) Equality signs hold throughout. 

PROOF. By (1), combined with either (3) or (4), we have 

(6) 

* In the setting of lemma 1.2.3 (iii) we define u 

(6) implies 

(7) 

n(B)B and u Yf:i• Then 
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Since n (B)B = yB ;:: AB by (1) we have 

(8) n(B) ;:: y. 

Consider the OSP (As,Ac,P,0A+µ) where S > 0 is sufficiently large to guar­

antee for i EB n C 

(9) 2, P .. [Sy. + o.] ;:: Sy1.. + 01. .. 
J EM 1.J J J 

(9) implies by an argument similar to the one used above 

(10) Sn(B) + v(B) ;:: Sy+ o. 

(8) and (10) imply (5). To prove assertion (ii) notice that (9) holds with 

strict inequality implying (10) and (5) with strict inequality. The other 

assertions follow by introducing the appropriate changes. D 

LEMMA 4.2.5. Let the coupled pair of OSPs (As,Ac,P,A) and (As,Ac,P,µ) be 

given. Let the vectors a,S,y,o E RM satisfy 

( 1) [a,SJ L_()'J [y,oJ. 

Moreover let for some state i E A n A either s C 

(2) ljEM P .. a. < A. 
1.J J 1., 

or 

(3) ljEM P .. a. Ai and l:jEM pij 6.j $ µi. 1.J J 

Then for such a state 

(i) either 

(4) '. P .. y.<A., lJEM 1.J J 1. 

or 

(5) 

The assertion remains true in the following cases: 

(ii) The symbol Sis replaced by< in (3) and (5). 

(iii) The symbols> and> are reversed in assertion (i). 

(iv) The symbols> and> are reversed in assertion (ii). 

(v) Equality signs hold throughout. 
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PROOF. (1) implies a 2 y. Hence (1), (2) and (3) imply 

If IjEM pij yj 

Hence 

A .• 
l. 

completing assertion (i). The assertions (ii) ••. (v) follow straight for­

wardly by introducing the appropriate changes. D 

LEMMA 4.2.6. Let B,C satisfy C,B EB and C ~ B fox a coupled pair of OSPs 

(As,Ac,P,A) and (As,Ac,P,µ). Let a,S E RM be given vectors with components 

satisfying respectively 

{'j<M P .. a. ~ a. fox i € B 
l.J J l. 

( 1) 

> 
a. = A. for i E B 

l. l. 

and 

t'" P .. sj ~ Si fox i € B 
l.J 

(2) 

> 
Si = µi fox i EB. 

Then 

(i) if fox i E B n c either 

(3) a. > Ai' l. 

or 

(4) a. = A. and Si 2 µi, 
l. l. 

then we have 

(5) [a, SJ 2: [n(C) ,v(C)]. 

The assertion remains true in the following cases: 

(ii) The symbols 2 in (4) and ~ in (5) are replaced by > and > 
respectively. 

(iii) The inequality signs including? axe reversed in assertion (i). 

(iv) The inequality signs including? axe reversed in assertion (ii). 

(v) Equality signs hold throughout. 
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PROOF. By ( 1) , combined with either ( 3) or ( 4) , we have 

(6) 

* In the setting of lemma 1.2.3 (iii) define u = n(C)C and u 

implies 

(7) 

n(C)C by (1), combined with either (3) or (4), we have 

(8) a <! n (Cl . 

Consider the OSP (As,Ac,P,0A+µ) where 0 > 0 is sufficiently large to guaran­

tee for j EB n c 

(9) 

Then (9) implies by the same argument 

(10) ea+ s <! en(cl + v(cl. 

(8) and (10) imply (5). To prove assertion (ii) notice that (9) holds with 

strict inequality implying (10) and (5) with strict inequality. The other 

assertions follow by introducing the appropriate changes. D 

The following theorem presents a sufficient condition for a feasible 

stopping set to be optimal in a lexicographical sense to a coupled pair of 

OSPs. In the terminology of the cutting operation of the GMP-model such a 

set will be called an optimal cutting set. 

THEOREM 4.2.7. Let A EB for the coupled pair of OSPs (A ,A ,P,A) and 
S C · 

( 1) ,;- . P. . n (A) . > A. , 
lJEM 1J J 1 

or 

( 2) IjEM Pij n(Alj Ai. and ,;- P v (Al <! µ . 
ljEM ij j i 

and for i EA n A either 
s 

(3) ,;- . P. . n (A) J. < Ai., lJEM 1J 



so 

or 

(4) 

Then 

(5) 

1 P n(A). ljEM ij J 

[n(B),v(B)] ~ [n(A),v(A)] for BE B. 

PROOF. Let BE 8 and B' ~AU B. Then B' ~A.Let in the setting of lemma 

4.2.6 (i} C ~ B', B ~ A, a g n(A) and S g \!(A). Then by this lemma 

(6) [n(A),v(A)] :Z: [n(B'),v(B')]. 

Let in the setting of lemma 4.2.5 (i) a g n(A), S ~ v(A), y g n(B') and 

o g v(B'). Then (3), (4) and (6) imply by this lemma that n(A) and v(A) may 

be replaced by n(B') and v(B') in (3) _and (4). Notice that An B = B' n B. 

Hence for i EB' n B we have either 

or 

1 P n(B').<J-, 
ljEM ij J i 

IJ.EM P;J· n(B')J. = >-; and I P .. v(B'). ~ µ .. 
~ ~ jEM 1] J . i 

In the setting of lemma 4.2.4 (iii) let C ~ B', B g B, y g n(B') and 

o g v(B'). Then this lemma implies 

(7) [n(B),v(B)] ~ [n(B'),v(B')] 

The proof is completed by combining (6) and (7). D 

LEMMA 4.2.8. Let Bk, k = 1,2, be feasible stopping sets to the coupled pair 

* d (As,Ac 1 P,J-) and (As,Ac,P,µ) such that Bl~ B2 . Let B = B1 u B2 and 

n B2" Then 

( 1) fork 1,2 

implies 

(2) 

for k = 1,2. 

d * d d PROOF. Let in the setting of lemma 4.2.6 (i), C = B, B = Bk, a= n(Bk) and 
d S = v(Bk). Then (1) implies the right-hand part of (2) by this lemma. To 



prove the lefthand part, let in the 

Yi~ maxk=1,2[n(Bk)i] for i EM and 

we have for i E _Bk, k = 1,2, 

(3) n(Bk)i ljEM Pij n(Bk)j s I;'. P .. yJ. lJEM l.J 
and 

(4 ) v(Bk)i = ljEM pij v(Bk)j s ljEM pij oj 

(3) and (4) imply immediately 

(5) ljEM pij yj ~ Yi ljEM pij and 0, ~ 
J 

For i E Bk n 8 3-k' 
k = 1,2, we have by (1) 

"· s Yi = n(Bk)i s 
ljEM P,. yj l. l.J 

(6) 

and provided that v(Bk)i ~ µi 

(7) µis oi = v(Bkli s LjEM Pij oj 
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0, for i * E B 
l. 

If v(Bk)i < µi = oi for some i E Bk n B3_k' which may only be true if also 

n(Bk)i > "i' then we have for sufficiently large e 

(8) 6n(Bk)i + v(Bk)i ~ 6Ai + µi 6Ai + oi. 

From (4) and (8) we obtain 

<9> ljEM Pij 0 j - 0i ~ v(Bk)i - 0i ~ 0 <\-n<Bk\l 

Relation (6) implies 

<10> 0 <\ -n(Bk)i) ~ 0 <\-LjEM Pij Yjl ~ e(yi -IjEM Pijyj) 

From (6), (7), (9) and (10) it follows that for i E Bk n B3_k' k = 1,2 

< 11 > ey, + a. s I . P. . c ey . + o . > 
• l. ]EM l.J J J 

(5) and (11) show that the assumptions of Lemma 4.2.4(i) are satisfied. As 

a consequence we have fork= 1,2, 

(12) [n(B*) ,v(B*)] t [y,o] ~ [n(Bk) ,v(Bk) J 

The assertions with~ replaced byr and= respectively follow by invoking 

the appropriate modifications. D 

The next lemma characterizes the collection of feasible stopping sets 

to a coupled pair of OSPs having identical expected income vectors. 

LEMMA 4.2.9. Let BE B be a feasible stopping set to the coupled pair of 

OSPs (As,Ac,P,A) and (As,Ac,P,µ). Let V(B) be the collection of feasible 

stopping sets given by 
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V(Bl d {AE B: n(Al n(B), v(A) V (B)}. 

Moreover let 

Then 

(i) B+ E V(B); 

(ii) B E V(B); 

(iii) C E V(B) ~ B 

A and 

+ 
~ C ~ B -

B g n 
AEV(B) 

A • 

PROOF. If V(B) contains only B then necessarily B = B+ = B and (i), (ii) 

and (iii) trivially hold. Let V(B) contain at least two sets B1 and B2 . Let 

B* g B1 u B2 and B* g B1 n B2 . Then by lemma 4.2.8 in the equality version 

we have fork= 1,2 

* This implies that if B1 ,B2 E V(B) also B ,B* E V(B). Since V(B) is a finite 

collection,repetition of this argument yields (i) and (ii). To prove (iii) 

notice that A E V(B) implies B_ ~A~ B+ by (i) and (ii). Conversely, 

notice that by assertions (i) and (ii) 

( 1) [n(B_),v(B )] [n(B),v(B)]. 

Hence we have for i EB+ n A 

and 

Let cg B+, B g A, y g n(B+) and o 

Then this lemma implies here 

(2) 

(1) and (2) complete the proof. D 

v(B+) in the setting of lemma 4.2.4 (v). 
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4.3. SOME PROPERTIES OF GMP1 

In this section we prove by means of theorem 4.3.3, preceded by the 

lemmas 4.3.1 and 4.3.2, that method 2.3.17 (GMP1) converges to a gain­

optimal policy within a finite number of steps. Also a method is presented 

which computes the set A(z'), the ultimate goal of the cutting operation 

of GMP1. This method 4.3.5 is related to the coupled pair of OSPs 

(4. 3; 1) 

and 

(4.3;2) 

It computes per iteration step the expected income vectors y' (B) and w' (B) 

for the current feasible stopping set Band constructs a new set B' with 

improved (in a lexicographical sense) expected income vectors. At each step 

the vectors y' (B) and w' (B) can both be obtained by inverting only one 

matrix. The method converges to the set A(z') within a finite number of 

steps as is proven by theorem 4.3.6 and 4.3.7. 

An alternative to method 4.3.5 is to solve OSP (4.3;1) followed by a 

second OSP which maximizes with respect tow among the collection of opti­

mal stopping sets of (4.3;1). Also this method is presented in this section 

(method 4.3.8). 

LEMMA 4.3.1. The sets A*(z) and A(z') defined in GMP1 satisfy 

PROOF. Let B1,B2 E M(z). Bl and B2 are feasible stopping sets to OSP (4.3;1) 

as well as to OSP (4. 3; 2). By lemma 4. 2. 8 in the :?:-version 

B 
* 

Because M(z) contains a finite number of sets this implies A*(z) E M(z). 
d d * _ d 

Applying lemma 4.2.4 (v) with C = A(z'), B = A (z), y = y'(A(z')) and 

o ~ w' (A(z')) we have 

* * ( 1) [y' (A(z')),w' (A(z'))] [y' (A (z)) ,w' (A (z) l J 

implying A(z') E M(z). D 
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LEMMA 4.3.2. The method GMPl satisfies at each iteration step 

[y'(A(z')),w'(A(z'))] ~ [y(z),w(z)] 

with the equality sign holding if and only if z' = z. 

PROOF. By the policy improvement operation of GMPl we have 

(1) 

where the equality sign holds if and only if z = z. In the setting of 

lemma 4.2.6 (iii) let c ~ A(z), B ~ A(z), a~ y(z) and S ~ w(z). By this 

lemma, (1) implies 

(2) [y(z) ,w(z) J ~ [y' (A(z)) ,w' (A(z)) J. 

By the cutting operation of GMPl, we have since A*(z) E M(Z) by lemma 4.3.1 

(3) * * [y'(A (zl),w'(A (zl)JA(z) t [y'(A(z)),w'(A(z))JA(z)' 

Let, in the setting of lemma 4.2.4 (iii), c ~ A(z), B ~ A*(z), y ~ y'(A(z)) 

and o ~ w' (A(z)). Then by this lemma and (1) of lemma 4.3.1 we have 

(4) [ y I (A ( z I ) ) , w I (A ( z I ) ) J C [ y I (A ( z) ) , w I (A ( z) ) J . 

By Lemma 4.2.9 the equality sign holds in (4) and (2) i.f and only if z z'. 

(2) and (4) imply the assertion. D 

THEOREM 4.3.3. The method GMPl converges within a finite number of steps 

to a gain-optimal policy. 

PROOF. In the setting of a GMP-scheme we have y((z')z) = y' (Z(z')) and 

w((z')z)=W' (A(z')). By lemma 4.3.2 z' E n*(z) unless z' = z. Hence GMPl 

is distinctive. By the policy improvement operation and the cutting 

operation GMPl is also preserving. Theorem 3.2.7 completes the proof. D 

DEFINITION 4.3.4. Let (AO,A(z),NO,y) and (AO,A(z),NO,w) be a coupled pair 

of OSPs with B denoting the collection of feasible stopping sets. Then a 

set Boes EB satisfying for BE B 
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is called an optimal cutting set. The collection of optimal cutting sets is 

denoted by 

V g {Be B: y' (B) = y' (B ) and w' (B) = w' (B ) }. 
ocs ocs ocs 

Next a method is presented which computes a feasible stopping set 3** 
** In theorem 4.3.6 B is proved to be the optimal cutting set with the 

largest number of states. 

METHOD 4.3.5. The following computational steps are executed: 

(i) Fix B = A(z) as initial feasible stopping set to the OSPs 

CA0 ,A(zl ,N0 ,y) and CA0 ,A(z) ,N0 ,-Q-J. 

(ii) Compute the matrix u0 (B) and the vectors y'(B) and w'(B) 

(cf. method 2.3.17, operation (iv)). 

(iii) Compute the set B' such that i e B' whenever 

(1) i E A(z), 

(2) i e B n A0 satisfies either 

or 

(iv) If B' = B then define B** =Band stop. Otherwise redefine B g B' 

and return to step (ii). 

THEOREM 4.3.6. Method 4.3.5 converges within a finite number of steps to a 
** feasible stopping set B satisfying 

3** U B. 
BEV ocs 

PROOF. Method 4.3.5 generates a sequence of feasible stopping sets satis­

fying 

The method stops at the smallest value of n such that Bn = Bn+i· Then 
** --B B. At each nonterminal step we have for i e B n B 1 either n n M 
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( 1) 

or 

(2) 

In the setting of lemma 4.2.4 (ii) let cg Bn' B d Bn+l' yd y' (Bn) and 

o g w' (Bn). This lemma implies then for each nonterminal n 

(3) 

Since the collection Bis finite, the method converges within a finite 

number of steps to some set B** EB satisfying for i EB** n A0 either 

IjE'I' 
** (4) (NO) ij y' (B ) j < Yi' 

or 

IjE'I' 
** = y i and ljE'I' w' (B**). < -(5) (Nol ij y' (B ) . (NO)ij - w .• 

J J J. 

Notice that for i E ~ n A(z) (1) and (2) are satisfied for some n E JN. 

In the setting 
d d 

of lemma 4.2.5 (iii) with a= y' (Bn), S = w'(Bn), 
d ** y = y' (B ) , o g w' (B**i, (1), (2) and (3) of this lemma are satisfied for 

---;/"'If" ~ 
i E B n A(z) and some n E ]'.(I. Hence (1) and (2) hold for i E B n A(z) 

** with Bn replaced by B . By this modification of (1) and (2) and the rela-

tions (4) and (5) we have by theorem 4.2.7 

(6) ** ** [y' (B) ,w' (B)] :::_ [y' (B ) ,w' (B ) ] for BE B, 

implying B** EV 
ocs 

For any set BE B such that B n B** f ¢ the <-sign 

holds in (6). Hence BEV implies 
ocs 

** B ~ B . By lemma 4.2.9 the assertion 

follows. D 

** The following theorem shows the relationship between the set B and 

* the sets A(z') and A (z) used in method 2.3.17 (GMPl). 

** THEOREM 4.3.7. Let B be the optimal cutting set specified by theorem 

4.3.6. Let B** be defined by 

d ** {i E A0 n ** 
IjE'I' 

** 
B = B \ B Yi (NO)ij y' (B \ and 

** 

IjE'I' 
** w. (NO)ij w' (B ) j}. 

J. 
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Then 

(i) 

(ii) B** = A(z'). 

** PROOF. By theorem 4.3.6 and the definitions of B and B** 

(1) 

** ** * implying B ,B** E M(z). Hence also B ,B** ~ A (z) (cf. method 2.3.17 (iv)). 
* ** Suppose A (z) c B**" Since B satisfies (4) and (5) of theorem 4.3.6 for 

--y-
i EA (z) n B** and so does by lemma 4.2.8 B** with strict inequality in (5) 

--y-
of theorem 4.3.6, we have for i EA (z) n B** either 

(2) 

or 

(3) 

Wl..th C ~ d * ~ Now lemma 4.2.4 (iv) is applicable B**' B A (z), y y' (B**) 

and o ~ w' (B ) yielding 
** 

(4) 

Let in the setting of lemma 4.2.5 (ii) a~ y' (B**), S ~ w' (B**), 

d * d * y = y' (A (z)), o = w' (A (z)). Then by this lemma we may replace B** by 

A*(z) in (2) and (3). Then (2) and (3) imply A*(z) i M(z), a contradiction. 

* ** Hence A (z) = B** and moreover by lemma 4.2.9 A(z') = B D 

Alternatively the set A(z') can be computed by solving a sequence of 

two separate OSPs. The first OSP maximes the expected income with respect 

toy and the second computes among its optimal stopping sets the set which 

maximizes the expected income with respect tow and contains the largest 

number of states. 

METHOD 4.3.8. The set A(z') can be computed by the following four steps. 

Compute: 

(i) 

(ii) 

An optimal stopping set Bopt to OSP (AO,A(z),NO,y) by method 4.2.1. 

The sets (B )+ and B )- defined respectively by 
opt opt 

+ B U {i E A(z) n B IjE'Y (NO)ij y'(B t).=y.} 
(Bopt) opt opt op J l. 

and 

(Bopt)- B \ {i E AO n B 
opt IjE'Y (NO)ij y' (Bopt)j = yi}. 

opt 



58 

(iii) An optimal stopping set A t to OSP ((B t) ,(B t)+,N0 ,w) by method op op - op 
4.2.1. 

(iv) The set A(z') by 

The question, which of the two methods is the most efficient, is not 

resolved here. However if all policies have exactly one subchain, both 

methods reduce to solving the OSP (4.3;2). 

4.4. SUBOPTIMAL CUTTING METHODS 

In this section cutting methods are introduced which do not necessa­

rily lead to an optimal cutting set. Such methods will be called suboptimal 

cutting methods. A policy iteration method having the operations (i), (ii), 

(iii) and (v) in common with method 2. 3.17 and operation (iv) of method 2. 3.17 

replaced by a suboptimal cutting method, is temporarily denoted by GMP2. 

Primarily it is shown that such a policy iteration method satisfies the 

requirements of theorem 3.2.7. Furthermore a particular suboptimal cutting 

method is presented which requires no matrix inversion. The method GMP2, 

referred to in chapter v, contains this particular suboptimal cutting method 

as cutting operation. 

The next definition specifies the goal of a suboptimal cutting method. 

DEFINITION 4.4.1. Consider the coupled pair of OSPs (Ao,A(z),No,Y> 

and (A0 ,A(z),N0 ,w). A feasible stopping set B satisfying either 
d scs 

(i) Bscs = A(f) if and only if for A0 s B s A(z) 

[n(A(zl),v(A(z)JJ ~ [n(BJ,v(B)J, 

or 

(ii) each state i € Bscs n A(z) satisfies either 

or 

is called a suboptimal cutting set. 
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The policy obtained at the end of each iteration step of GMP2 will be 

denoted by z". Notice that for a given policy z E Z its successor z" is uni­

quely specified only for a particular suboptimal cutting method. 

The following lemma and theorem describe the convergence properties 

of GMP2. 

LEMMA 4.4.2. The method GMP2 satisfies at each iteration step 

[y' (A(z")) ,w' (A(z"))] 2:. [y(z) ,w(z)] 

with the equality sign holding if and only if z" z. 

PROOF. According to definition 4.4.1 we have either A(z") = A(z) implying 

z" = z or A(z") c A(z). In the latter case we have for i e: A(z") n A(z) by 

definition 4.4.1 either 

or 

Let in the setting of lemma 4.2.6 (ii) a ~ y' (A(z")), 13 d w' (A(z")), 

C ~ A(z), B ~ A(z"). By this lemma 

(1) [y' (A(z")) ,w' (A(z"))] >- [y' (A(z)) ,w' (A(z))]. 

As in the proof of lemma 4.3.2 the policy improvement operation of GMP2 

implies 

(2) [y(z) ,w(z) J :S [y' (A(z)) ,w' (A(z)) J 

with the equality sign holding if and only if z 

from (1) and (2). D 

z. The assertion follows 

THEOREM 4.4.3. The method GMP2 converges within a finite number of steps 

to a gain-optimal policy. 

PROOF. In the setting of a GMP-scheme we have y ( ( z' ) z) = y' (A ( z") ) and 

* w((z')z) = w' (A(z")). By lemma 4.4.2 z" ED (z) holds in GMP2 unless 

z" = z. Hence GMP2 is distinctive. By the policy improvement operation and 

the construction of a suboptimal cutting set, GMP2 is also preserving. 

Hence the requirements of theorem 3.2.7 are satisfied, completing the proof. □ 
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A suboptimal cutting set can be obtained by truncating method 4.3.5 

at some iteration step. However at least one matrix inversion is required. 

For the initial feasible stopping set A(z) the computation of the vectors 

y' (A(z)) and w' (A(z)) requires the matrix [rA{z) - (NO)A(z)]-1 . A subopti­

mal cutting set, the computation of which does not require a matrix in­

version, is the subject of 

LEMMA 4.4.4. Consider the coupled pair of OSPs (A0 ,A(z),N0 ,y) and 

(A0 ,A(z),N0 ,w). Let the set BE B satisfy for i E A(z) n B either 

( 1) 
ljd (NO) ij yj > Yi, 

or 

(2) ljE'¥ (NO)ij yj Yi and ljE'!-' (NO) ij w. > W., 
J J. 

then Bis a suboptimal cutting set. 

00 t . th . fl 425(''') d_ od- d '((-)) PR F. Le in e setting o emma . . 111 a= y, µ = w, y y A z , 

o ~ w' (A(z)) then (1) and (2) imply for i E A(z) n B either 

(3) 

or 

(4) > w .• 
J. 

In the setting of lemma 4.2.4 (ii) let B dB, c ~ A(z), yd y'(A(z)), 

o ~ w' (A(z)). Then this lemma implies 

[y' (B) ,w' (B)] ?° [y' (A(z)) ,w' (A(z)) ], 

excluding possibility (i) of definition 4.4.1. Let in the setting of lemma 

4.2.5 (ii) a ~ y' (B), f3 ~ w' (B), y ~ y' (A(z)), o ~ w' {A(z)). Then this 

lemma implies that y' (A(z)) and w' (A(z)) may be replaced by y' (B) and 

w' (B) in (3) and (4). Hence B satisfies possibility (ii) of definition 

4.4.1, completing the proof. D 

The method, referred to as GMP2 in the sequel, has as cutting opera­

tion the computation of a particular suboptimal cutting set B. This set 

satisfies (1) and (2) of lemma 4.4.4 and moreover for i E A0 n B either 

(4. 4; 1) 

or 



(4.4;2) 

4.5. A THIRD SPECIAL VERSION OF A GMP-SCHEME 

Finally in this section a third special case of a GMP-scheme is con­

sidered. It has the operations (i), (ii), (iii) and (v) in common with 
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GMP1 and GMP2. Its cutting operation computes a set A0 = c = A(z) such that 

if A(z) f c for i E A(z) n c either 

(4.5; 1) IjE'I' (NO)ij y(z)j > Yi' 

or 

(4.5;2) IjE'I' (NO) ij y (z) j Yi and IjE'I' (NO)ij w(zj) > w. 
l. 

and for i E A0 n c either 

(4.5;3) IjE'I' (NO)ij y(z)j < Yi' 

or 

(4. 5; 4) IjE'I' (Nol ij Y (z) j Yi and IjE'I' (N0 )ij w(z)j ~ w .• 
l. 

The GMP-scheme specified in this way will be denoted by GMP3. A finite 

step convergence proof of GMP3 is covered by theorem 4.4.3. To see this let, 

in the setting of lemma 4.2.5 (iv), a~ y(z), S ~ w(z), y ~ y'(A(z)) and 
d -o = w'(A(z)). By this lemma, (4.5;1) and (4.5;2) imply (3) and (4) of lemma 

4.4.4. Replacing B by C in the remaining part of the proof of lemma 4.4.4 

shows that also c is a suboptimal cutting set. If A(z) = c then only (4.5;3) 

and (4.5;4) hold. A(z) is then a suboptimal cutting set by (2) of lemma 

4.3.2 and definition 4.4.l(i). Consequently theorem 4.4.3 can be applied 

to establish finite step convergence in both cases. 

Notice that GMP3 is obtained from GMP1 if in operation (iii) x 1 (i) 

~ X(i) for all i E 'I' and the operations (iv) and (v) are omitted. 





5.1. INTRODUCTION 

CHAPTER V 

A NUMERICAL COMPARISON 
AMONG POLICY ITERATION METHODS 

In section 2.3 it has been shown that a problem satisfying the assump­

tions of the undiscounted MRD-model with interventions can be transformed 

to a problem satisfying the assumptions of the undiscounted GMP-model and 

vice versa. For this purpose a transformation 0 has been introduced in 

definition 2.3.19. 

For the numerical investigation in this chapter a related transforma­

tion Tis needed to establish a similar relationship between the undis­

counted GMP-model and the undiscounted MRD-model where interventions are 

excluded by condition (1.4;7). As a consequence, the class of problems 

which satisfy the assumptions of the undiscounted GMP-model can be par­

titioned into two subclasses. For one subclass the methods GMP1, 2 and 3 

applied to one of its members and the method Jewell/Howard (method 1.4.1) 

applied to the transformed problem are identical. For the other subclass 

this is not true. The numerical comparison is performed on members of this 

latter subclass. For this purpose two sets of randomly generated problems 

are solved by the methods GMPl,2,3 and Jewell/Howard in section 5.3. 

In section 5.4 a production control problem is formulated and solved 

numerically by each of the four methods. 

Finally in section 5.5 some general conclusions are drawn on the 

numerical results. 

5.2. SOME CONNECTIONS BETWEEN THE UNDISCOUNTED MRD- AND GMP-MODELS 

In this section we display some connections between the undiscounted 

MRD-model of section 1.4 and the undiscounted GMP-model of section 2.3 and 

also between the policy iteration method of Jewell/Howard (method 1.4.1) 
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and the special cases GMPl, GMP2 and GMP3 of a GMP-scheme, discussed in 

chapter IV. Primarily a relationship between the two models is established. 

This is done by, defining two transformations T and T'. 

Let rr 1 denote the class of problems satisfying the assumptions of the 
· k k Then for each problem TT E rr 1 the data (Q0 ) .. , T., 

1.J 1. 
undiscounted MRD-model. 

k 
(CO)i fork E K(i), i,j EM are given and condition (1.4;7) is satisfied. 

Let rr2 denote the class of problems satisfying the assumptions of the un-

discounted GMP-model. Then for each problem TT E rr 2 the data N0 , G0 and, 

are given and the conditions (2.3;1)-(2.3;5) and the assumptions 2.2.3-

2.2.5 are satisfied. A subclass rr 21 c rr 2 is specified in 

DEFINITION 5.2.1. A problem TT E rr2 satisfies TT E rr21 if the following 

additional conditions are imposed on-TT: 

(i) There exists a unique nonempty set Ac~ such that x0 (i) i X(i) for 

i EA and X(i) = {xo(i)} for i EA. 

(ii) For each pair (i,x) with i EA, x E X(i) we have G~ 
1. 

P~. = 1 for some state j EA. 
1.J 

(iii) (NO)ij = 0 for i,j E i. 

0 and 

The two transformations T and T' are specified by the definitions 5.2.2 

and 5.2.3. 

DEFINITION 5.2.2. The transformation T transforms a problem TT E rr1 into a 

problem T(TT) by defining 

(i) The set of states of problem T(TT) by 

~~MU {m= (i,k): i € M, k E K(i)}. 

(ii) A substochastic matrix NO with entries 

J(Qo>~- form= (i,k) E '¥\M, 

(NO)mj 
d 1.J 

-l 
0 otherwise, 

a vector T with components 

{

T~ 
d 1. 

form (i ,k) E ~ \ M, 

T = 
m 

0 otherwise, 

and a reward vector G0 with components 

j € M, 
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for m = (i ,kl E 'I' \ M 

otherwise. 

(iii) Exactly one action x for each k E K(i), i EM such that each pair 

(i ,x) induces a reward G; = 0 and a family of probabilities {P;j, j E 'I'} 

such that P~ (' k) 1 and P~. = 0 for j f (i,k). 
i, i, 1] 

(iv) The set X(i) for ,i E 'I' by 

for i EM 

for i E 'I'\ M. 

DEFINITION 5.2.3. The transformation T' transforms a problem TIE rr 21 into 

a problem T'(TI) by defining 

(i) Exactly one action k for each intervention x E X(i), i EA such that 

k d I X 
(Qol ij PH (N0 ) R,j , 

R-EA 

T~ g L X 
PH '.e, 1 

R.EA 

and 

k d L X 
(GO) R,. (CO) i = PH 

R-EA 

(ii) The set of actions K{i) g X(i) for i EA. 

(iii) The set of states Mg A. 

It is easily verified that the transformed problem T(TI) for TIE rr1 
satisfies the conditions (2.3;1)-(2.3;5), the assumptions 2.2.3-2.2.5 and 

the additional conditions specified in definition 5.2.1 with A= M. Hence 

(5.1;1) for TIE rr1 . 

Similarly problem T' (TI) satisfies 

(5.1;2) for TIE IT21 

by verifying the assumptions of the undiscounted MRD-Model (cf. section 1.4). 

Moreover, it is easily proved that 

(5 .1; 3) T'(T(TI)) = TI for TIE Ill 
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and 

(5.1 ;4) T(T' (Tr)) = Tr for rr E rr 21 , 

or, equivalently, T and T' are each others inverse and establish a bijective 

mapping between rr 1 and rr 21 • 

The main reason for considering subclass rr 21 is lying in the fact that 

the computations to be executed by the method Jewell/Howard (in the sequel 

abbreviated by J/H) if applied to a problem rr E rr 1 are, except for a minor 

modification, identical to those to be executed by GMP1 if applied to prob­

lem T(rr) E rr 21 • This fact is proven in 

THEOREM 5.2.4. Let Tr E II 1 • If 

(i) in the definition of the set K2 (i) for i EM in operation (iii) of 

method 1.4.1 (J/H), gJ.. is replaced by maxk K(') l· M(Q0 )~. g., . E J. JE J.J J 
(ii) the states i(A) in the operations (ii) of the method J/H and GMP1 are 

identically chosen for corresponding policies, 

(iii) corresponding initial policies are chosen, 

then the computations to be executed by J/H 011 rr and GMP1 on T(rr) are 

identical. 

PROOF. For problem T(rr) E rr 21 we have A= AO = A(z) for z E Zand (NO)A=O 

by definition 5.2.1. This implies (kO)Ao = (GO)Ao and (tO)Ao = TA by O 

definitions 2.3.1 and 2.3.2. Hence the computation of kO and t O ig the pre­

paratory part of GMP1 is superfluous. The fact that A= A(z) for z E Z im­

plies that also the cutting operation is superfluous. Furthermore for cor­

responding intervention x and action k 

L X L X k 
( 1) k(i,x) P ij <ko> j-<kol i Pij(GO)j (CO) i' 

jEA jEA 

(2) t(i,x) L X L P~.T. T~ Pij(tO)j-(tO)i 
je:A jEA J.J J J. 

and 

L X k 
(3) PH (NO) R,j <Qol ij · 

R.e:A 



(4) 

By (1)-(4) it ~s easily verified that for corresponding policies z and f 

under the conditions (i), (ii) and (iii) 

and 

y(z)A(z) = g(f) 

y(z)A(z) = YA(z) 

completing the proof. D 

w(z)A(z) = u(f). 

5.3. NUMERICAL RESULTS FOR A CLASS OF RANDOMLY GENERATED PROBLEMS 

67 

From theorem 5.2.4 it follows that a numerical comparison between 

algorithms based on J/H and GMPl makes no sense for problems in the sub­

class rr21 • This conclusion can be extended to GMP2 and GMP3 because these 

methods differ only in the cutting operation with GMPl and this operation 

is supe~fluous for problems in rr21 • If one of the conditions of definition 

5.2.1 is violated then theorem 5.2.4 is not valid. Hence it seems appropri­

ate to investigate the subclass n2\rr21 • In this section a numerical compar­

ison is performed on randomly generated problems, which are members of a 

subclass rr22 c rr2\rr21 • This subclass rr22 is specified by 

DEFINITION 5. 3 .1 • A problem ,r € rr2 \ rr21 is a membe:i:· of subclass rr22 if it 

has the following properties 

(i) All interventions imply deterministic transformations of the state of 

the system. For convenience a positive natural number is assigned to 

the symbol x, which is equal to the index of the state occupied after 

the intervention. 

(ii) For each pair of interventions x 1 ,x2 € X(i) there exists an interven-
xl X2 x2 

tion x2 € X(x1). The associated rewards Gi, Gx1 andGi satisfy 
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Next a transformation T" is introduced, which transforms a problem 

1T e: rr22 into a problem in rr 1 . 

DEFINITION 5.3.2. The transformation T" transforms a problem 1r e: rr 22 into 

a new problem T"(,r) by defining 

(i) Its set of states M identical to the set of states 'I' of problem 1T. 

(ii) Exactly one action k for each intervention x e: X(i), i e: 'I' such that 

(G0 ) + rJ<:, 
X l. 

p~ '( '( . 
l.X X X 

(iii) Exactly one action k for each nulldecision such that 

k 
(Qol ij (Nol ij, 

k 
(CO) i (GO)i, 

T~ , .. 
l. l. 

REMARK 5.3.3. It is easily verified that problem T"(,r) satisfies the 

assumptions of the undiscounted MRD-model. Hence T"(,r) e: rr 1 • The sets 

of policies of the two problems 1r e: rr 22 and T"(,r) e: rr 1 are identical. 

However, the implications of two corresponding policies may not be identical. 

For example, a policy z e: Z for problem ,r may have z(i) = intervention and 

z(z(i)) = intervention for some state i e: '!'. Then for problem T"(,r) the 

matrix Q0 (f) for the policy f corresponding to z, may satisfy Q0 (f) i s0 (z). 

Hence it is not immediately clear that a policy for problem 'I'" (,r) corres­

ponding to an optimal policy for problem ,r is also optimal for T"(1r). How­

ever, the conditions of definition 5.3.1 guarantee the existence of an op­

timal pair of corresponding policies. This fact is proven by theorem 5.3.8 

preceded by the lemmas 5.3.4-5.3.7. 

LEMMA 5.3.4. Let 1T e: rr22 and let z 1 ,z2 e: Z be two policies satisfying 



(i) 

(ii) z1 (i) = z2 (i) for i E ~ except for one state i E A(z2), 

(iii) A(z 1) = A(z2), 

(iv) z2 (i) z 1 (z1 (t)) with z2 (i) E A(z2) and z 1 (i) E A(z 1). 

Then 

PROOF. By the assumptions on z 1 and z2 it follows that 
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If z 2 (i) = z 1 (i) for i E A(z1), i-/ i then y((z2)z 1\ = y(z 1)i for iEA(z1) 

and also for i E A(z1), since 

By property (ii) of definition 5.3.1 we have 

implying 

(1) k(t,z1 (i)) + k(z1 (i) ,z2 (t)) 

z 1 (i) z2 (t) 

Gt + (kO)zl (i) - (kO)i + Gz 1 (i) + (k0)z2 (t) - (kO)z1 (i) < 

z2 (i) 

< Gt + (k0)z2 (t) - (kO)i = 

k(t,z2 (t)). 

Also we have 

(2) t(t,z1 (i)) + t(z1 (i) ,z2 (i)) = 

(to> z (tl - (to) i + <to> z ci> 
1 2 

t(t,z2 (i)). 



70 

Hence by (1) and (2) 

For the remaining states iii we have w(z 1)i w((z2 )z1)i for i E A(z 1 ) 

and for i E A (z 1 ) 

* Hence y((z2 )z 1) = y(z 1 ) and w((z2 )z1 ) > w(z 1 ) implying z 2 ED (z 1). D 

LEMMA 5. 3. 5. Let one of the methods GMPl, 2, 3 be applied to a problem 1T E rr22, 

* * yielding a gain-optimal policy z . Then z satisfies 

* s0 (z ) * = O. 
A(z) 

PROOF. Suppose the contrary. Then a policy z' can be constructed such that 

the assumptions (i) ••• (iv) of lemma 5.3.4 are satisfied with z1 and z2 re­

placed by z* and z' respectively. Hence z' E n*<z*) contradicting the opti-

* mality of z (cf. theorem 3.2.7). D 

LEMMA 5. 3.6. For a problem 1T E rr22 with transform T" (1T) E rr 1, we have for 

i E A1 and intervention x E X(i) in 1T and corresponding action k E K(i) in 

T" (1!) 

(1) k(i,x) 

and 

(2) t(i,x) T~ + 
J. 



PROOF. Applying transformation T" we obtain easily 

k(i,x) 

and 

t(i,x) 

□ 

LEMMA 5.3.7. Let z E z be a policy for problem TIE rr 22 satisfying 

s0 (z)A(z) = O. Let (y(z),w(z)) be a particular solution of the system of 

equations of theorem 2.3.16. Then 

d (g(f),u(f)) = (y(z),w(z) + k0 - y(z) □ t 0 ) 

is a solution of the system of equations (1.4;10) for the policy fin 

problem T"(TI) corresponding to z. 

PROOF. For y(z)i and w(z)i we have for i E f respectively 

(1) 

and 

(2) w(z)i = k(i,z(i)) - y(z). t(i,z(i)) + l s0 (z) .. w(z) .• 
1 jEf 1J J 

Applying transformation T" to (1) and (2) and lemma 5.3.6 to (2) yields 

for i EM 

(3) 

and 
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Identifying (3) and (4) with (1.4;10) completes the proof. D 

* For a problem TIE rr 22 the following theorem proves that the policy f 

* for problem T"(~), corresponding to a gain-optimal policy z for TI, is gain-

optimal for T" (TI). 

* THEOREM 5. 3. 8. Let z be a gain-optimal policy for problem TIE 11 22 obtained by 

* one of the methods GMPl,2,3. Let f be the policy in the setting of prob-

* * lem T" (TI) E rr 1 , which corresponds to z • Then f is gain-optimal for problem 

T" (TI). 

PROOF. From the construction of the methods GMP1,2,3 it follows that for 

* i E f, x E X(i) and an optimal policy z for problem TI 

(1) 

For iEA1, xEX(i)\{x0 (i)}itfollowsbythelemmas5.3.6,5.3.7and (1) that 

(2) 

and 

(3) 

* * * k(i,x) - y(z \ t(i,x) + w(z )x ~ k(i,x) - y(z ) i t(i,x) + 

for corresponding action k and policy f* in problem T"(TI). Observe that (2) 

and (3) hold with equality for i E A0 and x = x0 (i). Substitution of (2) 

and (3) in (1) yields the optimality conditions for the undiscounted MRD­

model (cf. theorem 1.4.2). 
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REMARK 5.3.9. The idea behind the transformation T" has been applied by 

[HOWARD 1960] to the automobile replacement problem. This problem also 

satisfies the conditions of definition 5.3.1. In practice these conditions 

are often satisfied. Another example is presented in section 5.4. 

The methods GMPl,2,3 and J/H are compared for two sets of problems 

s 1,s2 c rr22 • s1 contains 10 problems with 10 states and s2 contains 5 prob­

lems with 50 states. Each problem satisfies A0 = {J} and the triple 

(N0 ,G0 ,T) is obtained as follows. Each row of the matrix (N0 )A ~ is obtain-
0 

ed by generating J random numbers and dividing by their sum. The vectors 

G0 and Tare obtained by generating IA0 1 random numbers which are multi­

plied by a common factor. The numbers G: are obtained by generating J 

random points in the unit square and taking G~ equal to the Eucledian dis-
J. 

tance between point i and point x after which these quantities are multi-

plied by a common factor. 

To evaluate the effect of the initial policy on the results, two 

initial policies were used for problems from the set s1• These are 

(5.3;3) z 1 (i) 

and 

(5.3;4) z 1 (i) 

= { 
xo(i) 

1 

{ x0 ~il 

for i = 1 

otherwise, 

for i = J 

otherwise. 

In the tables 5.3.10 ••• 5.3.12 the following results are presented for 

each method: 

( 1) the number of iteration steps per problem (NIS), 

(2) the total number of iteration steps for the whole set (TNIS), 

(3) the total execution time in seconds (TET), 

(4) the average execution time per step (AET). 

The results are taken from [WEEDA 1974]. 
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TABLE 5.3.10 

Results for the set s 1 with initial policy (5.3;3) 

- - -
Method NIS TNIS TET AET 

1 2 3 4 5 6 7 8 9 10 
GMPl 5 5 6 4 5 4 4 5 6 1 45 36 .80 
GMP2 5 4 5 4 4 4 4 4 5 1 40 29 .71 
GMP3 4 3 5 4 3 3 3 3 3 1 32 24 .75 
J/H 3 2 3 3 3 2 2 2 2 1 23 20 .85 

-- -- - --~ 

TABLE 5.3.11 

Results for the set s 1 with initial policy (5.3;4) 

- - -
Method NIS TNIS TET AET 

1 2 3 4 5 6 7 8 9 10 
GMPl 4 4 5 5 4 4 3 4 5 4 42 33 .so 
GMP2 4 3 4 5 4 3 3 3 4 3 36 27 .75 
GMP3 3 2 4 5 3 2 2 2 2 2 27 22 .83 
J/H 3 2 3 4 3 2 2 2 2 2 25 25 .98 

-

TABLE 5.3.12 

Results for the set s2 with initial policy (5. 3; 3) 

--

Method NIS TNIS TET AET 
1 2 3 4 5 

GMPl 6 6 5 6 5 28 480 17.1 
GMP2 5 5 4 5 4 23 315 13.5 
GMP3 4 4 4 5 3 20 295 14.8 
J/H 3 3 3 3 3 15 610 41. 2 

-

5.4. A PRODUCTION CONTROL PROBLEM 

In this section the methods GMPl,2,3 and J/H are applied to a produc­

tion control problem, which is in subclass rr 22 • In order to apply method 

J/H to this problem, transformation T" (cf. definition 5.3.2) is used. A 

continuous time version of this problem has been solved numerically in 

[DE LEVE, TIJMS & WEEDA 1970]. 

A product can be produced at m+l production rates, which are denoted 

by r 0,1, ••• ,m. r = 0 corresponds to the situation that the production is 

switched off. r > 0 corresponds to production at a rate of r units of prod­

uct per unit of time. The demand per unit of time is Poisson distributed 

with parameter A and supplied by the stocks, available at the beginning of 
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each unit time period. If the demand exceeds the available stock,theshort­

age is replenished by an emergency purchase. M denotes the maximum stock 

level. Stockholding costs are c 1 per unit of time and per unit of product 

in stock at the end of each unit time period. An emergency purchase costs 

c 2 per unit product. Production cost amounts to c 3r per unit of time for 

production rater. Changing the production rate from r' tor" costs an 

amount b(r' ,r"). The criterion is to minimize the expected average cost per 

unit of time. Successively the basic notions of the undiscounted general­

ized Markov programming model are specified for this problem. 

The set of states 

'I'~ {i= (r,s): r=0,1, ••• ,m, s=0,1, ••• ,M}. 

The natural process and the set A0 

The set A0 is defined by 

A0 d {i= (r,M): r 1 , ••• , m} u { ( 0, 0) } u { (1 , 0) }. 

The natural process describes the mutations in the stock level at a fixed 

production rate. Let i = (r,s) i A0 be an arbitrary initial state of the 

natural process. Then production is continued at fixed rater and the ran­

dom stocks' after one unit time period is given by 

if 0 < s+r-k < M 

s' if s+r-k 2:: M 

if s+r-k :s; O 

where k denotes the random demand in that period with probability 

ak d JP {k = k} 

We have then 

lP {:;:' = Mj (r,s)} 

JP{s'=Oj(r,s)} 

JP {s'=s' j (r,s)} 

s+r-M 
JP {k :s; s+r-M} Y. ak, 

k=O 

JP {s+r-k :s; O} JP {k ;;: r+s} 

r+s-s'} = a 
r+s-s' 0 < s' < M. 
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For i E (r,s) E A0 the probabilities (N0)ij are given by 

I5+r-M 
k=O ~ if j (r,M) 

l;=s+r ~ if j (r,O) 

(NO)ij 
ar+s-s' if j (r,s'), 0 < s' 

0 otherwise. 

For i (r,s) E AO we have Ti= 1 and 

s+r-M M-1 

l 
k=O 

ak - cl l ar+s-s' s' + 
s'=l 

+ c2 l ak(s+r-k) - c 3r. 
k=s+r+l 

For i = (r,s) E AO we have by condition (2.3;1) (N0)ij 

Ti= 0 and (GO)i 0. 

Interventions 

< M 

0 for j E '¥, 

The interventions in this problem change the production rate but maintain 

the stock level. Hence they imply deterministic transformations of the 

state of the system. In each state i = (r,s) E '¥ m interventions are fea­

sible, which are denoted by x = (r',s) with r ~ r'. The intervention cost 

G~ is given by 
J. 

Gx = b(r,r') 
i 

for i (r,s), x = (r' ,s) r ~ r'. 

d For r = r' we take b(r,r') = 0 and for r,r',r" E {0,1, ••• ,m} the number 

b(r,r') are assumed to satisfy 

b(r,r') < b(r,r") + b(r",r'). 

Observe that the conditions of definition 5.3.1 are satisfied. 

Three different numerical examples of this problem are solved by each 

of the four considered methods. 



Numerical example 1 

M = 20, m = 3, c 1 

b [l 
Numerical example 2 

M = 20, m = 3, c 1 

b [l 
Numerical example 3 

M = 25, m = 3, c 1 

b [l 

2 2 
0 2 
1 0 
1 1 

3 
0 
3 
3 

3 
3 
0 
3 

5 5 
0 5 
5 0 
5 5 
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1, " 1.2 and 

ll · 
1, " 1. 7 and 

il · 
1, " 1.9 and 

The first two numerical examples use the same initial policy given by 

{ 

(3,0) 

z 1 (r,s) = (0,20) 

x0 (r,s) 

for r 

for r 

0, 1 

1,2,3 

otherwise. 

and s = 0 

and s = 20 

The third numerical example uses the initial policy given by 

{ 

(3 ,0) 

(0,25) 

x0 (r,s) 

for r = 0,1 

for r 1,2,3 

otherwise. 

The computational performance of the four methods on these three numerical 

examples is summarized in table 5.4.1. The number of iteration steps and 

the execution time are abbreviated by NIS ( i) and ET ( i) for problem i = 1 , 2, 3 

respectively. 
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TABLE 5.4.1 

Results for the three numerical examples 

Method NIS(1) NIS(2) NIS(3) ET(1) ET(2) ET(3) 

GMP1 6 6 7 105(+4)*) 119(+4) 220(+6.4) 

GMP2 6 4 4 98(+4) 73(+4) 117(+6.4) 

GMP3 5 6 6 98(+4) 119(+4) 189(+6.4) 

J/H 6 6 8 170 171 349 

In addition, information about the convergence of y(z) and the optimal 

policies are given in the tables 5.4.2 •.• 5.4.7. 

TABLE 5.4.2 

Convergence of y(zn) for example 1 

z y(zn) 
n 
n GMP1 GMP2 GMP3 J/H 

1 -3.674 -3.674 .-3.674 -3.674 
2 -2.836 -2.836 -2.710 -2.710 

3 -2.484 -2.470 -2.489 -2.438 
4 -2.346 -2. 340 -2.351 -2.360 
5 -2.339 -2.339 -2.339 -2.341 

6 -2.339 -2.339 -2.339 

TABLE 5.4.3 

Optimal policy for example 1 

r=O r=1 r=2 r=3 

r=O r' s r' s r' s r' 

0, 1 3 0, 1 3 0,1,2,3 2 0, 1, 2 3 
2 2 2, ••• , 7 1 4,5,6 1 3, ••• , 7 1 
3, ••• , 20 0 8, ••• , 20 0 7, ••• , 20 0 8, ••• , 20 0 

*) The numbers between parentheses are the times required for the computa­
tion of the vectors k0 and t 0 • 
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TABLE 5.4.4 

Convergence of y(zn) for example 2 

z y(zn) n 

n GMP1 GMP2 GMP3 J/H 

1 -4.453 -4.453 -4.453 -4.453 
2 -3.653 -3.560 -3.600 -3.600 
3 -3.392 -3.267 -3.400 -3.380 
4 -3.293 -3.249 -3.249 -3.291 
5 -3.260 -3.249 -3.249 
6 -3.249 -3.249 -3.249 

TABLE 5.4.5 

Optimal policy_for example 2 

r=O r=l r=2 r=3 

s r' s r' s r' s r' 

0,1 3 0,1 3 0 3 0 I• o o ,6 3 
2,3 2 2 2 1, ••• ,7 2 7, ••• ,10 1 
4, ••• ,20 0 3, ••• ,13 1 8,9,10 1 11, ••• ,20 0 

14, ••• ,20 0 11, ••• , 20 0 

TABLE 5.4.6 

Convergence of y(zn) for example 3 

z y(z ) 
n n 
n GMP1 GMP2 GMP3 J/H 

1 -5.147 -5.147 -5.147 -5.147 
2 -4.313 -4.196 -4.550 -4.550 
3 -4.007 -3.742 -4.099 -4.094 
4 -3.850 -3.733 -3.797 -3.770 
5 -3.741 -3.733 -3.744 
6 -3.733 -3.733 -3.733 
7 -3.733 -3.733 
8 -3.733 

TABLE 5.4.7 

Optimal policy for example 3 

r=O r=1 r=2 r=3 

s r' s r' s r' s r' 

0,1 3 0,1 3 0 3 o, ... ,4 3 
2,3,4 2 2,3,4 2 1, ••• , 10 2 5,6 2 
5, ••• , 25 0 ~ •••• ,18 1 11, 12 1 7 3 

19, ••• ,25 0 13, ••• ,25 0 8, ••• ,12 1 
13, ••• ,25 0 
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S.S. SOME CONCLUSIONS 

In this section some general conclusions are drawn from the numerical 

results of the sections 5.3 and 5.4. In table 5.5.1 the total execution time 

(TET) over all elements of the three sets of problems s 1 , s 2 and PCP (the 

latter denoting the three numerical examples of the production control prob­

lem) is presented. The 4 methods are ordered in decreasing performance. Each 

problem of the set s 1 is counted twice, once for initial policy (5.2;2) and 

once for initial policy (5.2;3). 

TABLE 5.5.1 

The total execution time (TET) in sec. 

sl TET s2 TET PCP TET 

J/H 45 GMP3 295 GMP2 288 

GMP3 46 GMP2 315 GMP3 406 

GMP2 56 GMPl 480 GMPl 444 

GMPl 69 J/H 610 J/H 690 

From the results of table 5.5.1 we conclude that for problems of re­

latively small size the method J/H is preferred over the GMP-methods. This 

preference is reversed for problems of a larger size such as those in s 2 and 

PCP. In table S.S.2 the average execution time per iteration step is exhib­

ited. 

TABLE 5.5.2 

The average execution time (AET) per iteration step 

sl 

GMP3 

GMP3 

GMPl 

J/H 

AET 

.74 

.78 

.so 

.94 

s 2 AET 

GMP2 14 

GMP3 15 

GMPl 17 

J/H 41 

PCP 

GMP2 

GMPl 

GMP3 

J/H 

AET 

21 

23 

24 

35 

It is observed in table 5.5.2 that the method J/H consumes the largest 

amount of time per iteration step. This is mainly due to the difference 

between the policy evaluation operations of a GMP-scheme and method J/H. The 

computation time for inverting a square matrix is a third degree polynomial 
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in its size. Since its coefficients are positive the inversion of 2 

matrices of size !A(z) I and A(z) respectively will be less time consuming 

than the inversion of one matrix of size !A(z) I+ !A(zl I as in method J/H. 

A second c·ontributor to the overall execution time is the number of 

iteration steps. In table 5.5.3 the total number of iteration steps is 

presented for the sets s1 , s 2 and PCP. 

TABLE 5.5.3 

The total number of iteration steps (TIS) 

sl 

J/H 

GMP3 

GMP2 

GMP1 

TIS 

48 

59 

76 

87 

s2 

J/H 

GMP3 

GMP2 

GMP1 

TIS 

15 

20 

23 

28 

PCP 

GMP2 

GMP3 

GMP1 

J/H 

TIS 

14 

17 

19 

20 

Since the GMP-methods take about the same computation time per step, 

a secondary criterion to distinguish between them is the number of itera­

tion steps. Although it is true that larger sample sizes are needed to 

draw more definite conclusions, it remains remarkable that the number of 

steps is non-decreasing in the order GMP3-2-1 uniformly for all randomly 

generated problems. For the set PCP this order is GMP2-3-1 except for the 

first example. 

If the methods GMPl,2 and 3 are used with a common initial policy z 

and z', z" and z"' are respectively its successors then, by the results 

of chapter IV, 

A(z') S A(z") S A(z"'). 

However, a "deeper" cutting operation implies neither a systematically 

larger nor a systematically smaller increase in the gain. This observation 

is confirmed by the results presented in the tables 5.5.4 and 5.5.5 for 

the three problems of the set PCP. Recall that in the experiments of sec­

tion 5.4 the same initial policy z 1 is used per problem for each of the 

methods GMP1, 2 and 3. In table 5.5.4 the deepness of the cutting operation 

is defined by the ratio 

!A(~1) I - !A(z2 ) I 
!A(z1i 1 
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The increase y(z2) - y(z 1) in the gain is presented in table 5.5.5. 

TABLE 5.5.4 

The deepness of the cutting method 

Example 

1 

2 

3 

The 

Example 

1 

2 

3 

GMPl 

.43 

.61 

.44 

Method 

GMP2 

.43 

.48 

.39 

TABLE- 5.5.5 

increase in the gain 

Method 

GMPl GMP2 

.838 .838 

.800 .893 

.834 .951 

y(z2) 

GMP3 

0 

0 

0 

- y(zl) 

GMP3 

.964 

.853 

.597 



CHAPTER VI 

GMP-MODELS WITH DISCOUNTING 

6.1. INTRODUCTION 

This chapter builds on the finite GMP-model of section 2.2. In section 

6.2 some additional quantities are defined. In section 6.3 discounting is 

invoked. The value of a reward obtained at time tis multiplied by a factor 

e-pt where pis a fixed real positive number which is interpreted as an 

interest rate. A policy iteration method, computing a policy maximizing 

the expected discounted reward vector over the set of policies z for a 

fixed interest rate pis presented. 

In section 6.4 a parametric GMP-model (abbreviated as PGMP-model) is 

considered. The interest rate pis no longer fixed. Moreover, an interven­

tion is assumed to take a small variable time£ c O and to induce a reward 

that is an infinitely differentiable function of the parameter£. During 

the time£ the natural process is temporarily "frozen". For this model a 

partial Laurent expansion for the expected discounted reward vector for 

a fixed policy in the parameter pis obtained for sufficiently small fixed 

£ > O. A numerical example is worked out in section 6.5. 

In the PGMP-model assumption 2.2.6 of the finite GMP-model is dropped. 

The PGMP-model permits a unified treatment of problems which satisfy the 

assumptions of the finite GMP-model, including assumption 2.2.6 or not. 

Moreover, the model can be applied to decision problems in which cer­

tain actions take a small but not exactly specified amount of time. It is 

of interest in that case to obtain a policy which is optimal for sufficient­

ly small non-negative values of£. For this purpose a new type of sensi-

tive optimality is introduced with respect to the parameter£ in chapter VII. 

6.2. SOME ADDITIONAL QUANTITIES IN THE FINITE GMP-MODEL 

In this section some quantities are derived from the basic assumptions 
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of the finite GMP-model introduced in section 2.2. Also the corresponding 

Laplace-Stieltjes transforms are defined, because of their use in GMP-models 

with discounting. In the sequel a Laplace-Stieltjes transform is abbreviated 

by LST with plural form LSTs. 

Frequently we meet in this chapter the convolution between a MRM 

R(t) and a vector function B(t) E FJ1 given by 

(6. 2; 1) f R(dy)B(t-y). 

yE[0,t] 

For convolution the notation* is used so that (6.2;1) becomes 

(6. 2; 2) R(t) * B(t). 

Observe that for B(t) also a matrix function with column vectors in FJ1 can 

be substituted. Notice also that (6.2;1) can be viewed as the unique solu­

tion in FJ1 of the Markov renewal equation (cf. section 1.3) in V(t) given 

by 

(6.2;3) V(t} B(t) + Q(t) * V(t). 

Related to the SMM N(t) and reward vector G(t} of the natural process 

are the quantities specified by 

DEFINITION 6.2.1. Let A be a given set such that AO~ Ac o/. Define 

(i) the MRM R(t;A) by 

R(t;A) g I 
m=0 

(m) th 
where N (t)A denotes them convolution of N(t)A; 

(ii) the matrix function U(t;A) by 

(iii) the vector function K(t;A) by 

K(t;A)A 
d 

R(t;A) G(t)A * 

and 

K(t;A)A 
d 

0. 
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An entry U(t;A) .. of U(t;A) is interpreted as the probability that j 
1.J 

is the first state taken on in the set A on or before time t by the natural 

process with i~itial state i EA. 

A component K(t;A). of K(t;A) represents the expected reward earned 
1. 

during the natural process with initial state i EA. The natural process 

stops at time tor at the epoch the set A is entered for the first time 

depending on which of the two events occurs first. 

The LSTs of R(t;A), U(t;A) and K(t;A) are denoted by r(p;A), u(p;A) 

and k(p;A) respectively and exist at least for p > 0. However, r(p;A) also 

exists for p = 0 since (N0 )A is transient using lemma 1.2.1. The same is 

true for u(p;A) and k(p;A). By their definitions and the application of the 

multiplication rule for LSTs (cf. [FELLER 1960], p.411) we have 

(6.2;4) uCp ;Al for p ~ 0 

and 

( 6.2;5) k(p ;A) rCp;A)g(plA for p ~ 0. 

Next a reward associated with action x E X(i) in state i E ~ is 

introduced, which is related to k(i,x) of definition 2.3.3. 

DEFINITION 6.2.2. For each action x E X(i) and state i E ~ a function 

K(t)~ is defined by 
1. 

for x x0 (i) 

for XI xo(i). 

Notice that according to this definition the relation with k(i,x) is 

k(i,x) = limt->oo K(t)~. The term K(t;A0)i is interpreted under definition 

6.2.1, taking A= A0 . The expression G~ + IjE~ P~j K(t;A0)j represents 

the expected reward during a stochastic walk with initial state i E A1 at 

t = 0. In the initial state i intervention x E X(i) is taken, which trans­

fers the system to a state j with probability P~. and induces. a reward G1.~· 
- 1.J 

From state j on the evolution of the system is described by the natural 

process. It stops either at time tor at the epoch the set AO is entered 

for the first time, depending on which of the two events occurs first. 

Thus K(t)~ represents the difference in expected reward of two stochastic 1. 
walks each with state i as initial state. Notice that this interpretation 

is also valid for x = x 0 (i). 
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The LST of K(t)~ is denoted by k(p)~ and satisfies for p ;:,, 0 
]. ]. 

Jo for x xo(i) 
(6.2;6) k(pj~ 

]. 

LG: lwy p:j k(p;ii:0 i j - k(p;AO)i for X "F XO (i). + 

The next quantities are related to the decision process for a fixed 

policy z E z. 

DEFINITION 6.2.3. For each fixed policy z E Z are defined 

(i) the matrix function 

d 
P(t;A(z)) = P(z)A(z) + P(z)A(z)A(z)U(t;A(z)), 

(ii) the matrix function 

d rU(t;A(z))] 
r(t;z) = L--------­

P(t;A(z)) 

(iii) the vector function 

and 

d 
G(t;z) i 

for i E A(z) 

for i E A(z), 

(iv) the vector function K(t;z) with components K(t)~(i), i E 1. 
]. 

The LSTs of P(t;A(z)), f(t;z) and K(t;z) are denoted by p(p;A(z)), 

y(p;z) and k(p;z) respectively. We have for p;:,, 0 

(6.2;7) 

(6.2;8) 

and 

p(p;A(z)) = P(z)A(z) + P(z)A(z)A(z) u(p;A(z)), 

[
u(p;A(z))l 

y(p;z) = ---------J 
p(p;A(z)) 

k(p ;z). 
]. 

if z (i) = XO (i) 

otherwise. 

In the finite GMP-model the following integral equation arises for 
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a fixed policy z E Z 

(6.2;9) V(t;_z) K(t;z) + r (t;z) * V(t;z) A(z) • 

Since P(t;A(z)) is a normal SMM by assumption 2.2.6 and K(t;z) E FJ, since 

FJ' is closed under addition and scalar multiplication, the part of equa­

tion (6.2;9) in V(t;z)A(z) 

(6.2;10) V(t;z)A(z) = K(t;z)A(z) + P(t;A(z)) * V(t;z)A(z) 

is a Markov renewal equation and has a unique solution in FIA(z) 1 • 

V(t;z)A(z) is uniquely determined by 

(6.2;11) V(t;z)A{z) = U(t;A(z)) * V(t;z)A(z). 

Hence (6.2;9) has a unique solution in FJ' for each z E z. In the sequel 

V(t;z) denotes this solution. 

By Laplace-Stieltjes transformation of (6.2;9) it follows that the 

LST of V(t;z), denoted by v(p;z), uniquely satisfies for z E Zand p > 0 

(6.2;12) v(p;z) = k(p;z) + y(p;z)v(p;z)A(z). 

With the exception of a policy independent term specified below, V(t;z)i 

(v(p;z)i) is interpreted as the expected reward in [O,t] (the expected 

discounted reward in [0, 00 )) earned during the decision process of policy 

z E Z with initial state i. 

To specify the policy independent term the connection with the Markov 

renewal equation (1.4;2) in the MRD-model is exhibited. In the notation 

of the finite GMP-model (1.4;2) becomes 

(6.2;13) V(t;z) G(t;z) + S(t;z) * V(t;z). 

Since V(t;z). represents the true expected reward in [O,t] for initial 
J. 

state i and fixed policy z E z, the following lemma shows that this policy 

independent term is given by K(t;A0). 

LEMMA 6.2.4. The unique solutions V(t;z) and V(t;z) respectively of the 

Markov renewal equations (6.2;9) and (6.2;13) satisfy for a fixed policy 
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Z E Z 

V(t;z) = V(t;z) - K(t;Ao). 

PROOF. By elimination of G(t;z)A(z) from 

and 

K(t;z) A(z) = G(t;z) A(z) + P(z) A(z) 'I' K(t;A0 ) - K(t;A0 ) A(z) 

and by elimination of G(t;z)A(z) from 

and 

it follows that (6.2;13) is equivalent to 

( 1) K(t;z) + S(t;z) * [V(t;z) -K(t;Ao) ]. 

Since 

U(t;A(z)) * V(t;z)A(z) 

is equivalent to 

V(t;z)A(z) = N(t)A(z)'I' * V(t;z), 

equation (6.2;9) is equivalent to 

(2) V(t;z) K(t;z) + S(t;z) * V(t;z). 

The assertion is a consequence of (1) and (2). D 

6.3. POLICY ITERATION IN THE DISCOUNTED GMP-MODEL 

In this section a reward earned at time tis discounted by a factor 

e -pt, where P > 0 is the interest rate. Invoking discounting in the finite 

GMP-model is equivalent to applying Laplace-Stieltjes transformation to the 
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normal SMM N(t) and the reward vector G(t) of the natural process. A policy 

iteration method is presented which computes a policy maximizing the expect­

ed discounted reward vector v(p;z) for a fixed interest rate p > 0 over the 

set of policies z. This method is a special case of the method GMPl. Notice 

that the elements n(p) .. of n(p) can be interpreted as probabilities and 
l.J 

moreover that 

(6. 3; 1) II n(p) II < 1 for p > 0. 

The system of equations (1) of theorem 2.3.16 remains valid in a simplified 

version. The matrix r0 (z) is replaced by y(p;z) and the vector k(z) by 

k(p;z). Since P(t;A(z)) is normal, (6.3;1) implies that p(p;A(z)) is a 

transient matrix. By lemma 1.2.4 y(z)A(z) = 0 is the only solution of the 

equation y(z)A(z) = p(p;A(z)) y(z)A(z)" This implies that the system of 

equations (1) of theorem 2.3.16 can be reduced to the single equation 

w = k(p;z) + y(p;z)wA(z)' 

which is exactly (6.2;12) if we identify w with v(p;z). Moreover, all opera­

tions concerning y(z), y and y' in GMPl can be omitted. In summary method 

2.3.17 then becomes 

METHOD 6.3.1. The method consists of the following main operations: 

(i) Preparatory part. Compute the vector k(p;A0 ) from (6.2;5) and the 

number k(p)~ for each i E ~, x E X(i) from (6.2;6). Fix an initial 
l. 

policy z E z. 
(ii) Policy evaluation operation. Compute the unique solution of (6.2.;12) 

in v(p;z). 

(iii) Policy improvement operation. Introduce the notation 

d r(p)i. for X XO (i) 
s(p) .. = J 

l.J P~. for X ,f XO (i) 
l.J 

and 

d r(i) 
for i E A(z) U AO 

x 2 (i) 
x(i) \{x0 (i)} for i E A(z) \ AO. 

Compute: 

(1) the vector v E lRJ' with components v. given by 
l. 
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(2) the set of actions 

x3 (i) ~ {x E x2 (i): k(p)x1. +' s(p)x v(p;z). v 1.}, ljE1 ij J 

(3) policy z E z such that z(i) = z(i) whenever z(i) E x3 (i). If 

z(i) i x3 (i) then put z(i) equal to an arbitrary element of x3 (i). 

(iv) Cutting operation. Compute (cf. section 4.3) 

( 1) 

(2) 

(3) 

an optimal stopping 
+ the set (B t) , op 

policy z' such that 

z' (i) 

set B to OSP (A0 ,A(z) ,n(p),v), 
opt 

+ 
for i E (B opt) 

otherwise. 

(v) If z'(i) = z(i) for i E 1 then stop. Otherwise redefine z equal to z' 

and repeat operations (ii) ... (v). 

6.4. A PARTIAL LAURENT EXPANSION FOR THE EXPECTED DISCOUNTED 

REWARD VECTOR IN A PARAMETRIC GMP-MODEL 

In this section the GMP-model of section 2.2 is parametrized by the 

assumption that each intervention takes a time£~ O, where£ is consider­

ed as a variable. The partial Laurent expansion in p for the expected dis­

counted reward vector is derived for sufficiently small fixed£> O. Primar­

ily the asymptotic expansions for p + 0 of n(p), g(p), r(p;A), u(p;A) and 

k(p;A) are presented. After that the parametric GMP-model is defined. 

Finally, after some preparatory results, the partial Laurent expansion is 

developed in theorem 6.4.16. 

The lemmas 6.4.1-6.4.7 state the asymptotic expansions for p + 0 of 

various quantities of the finite GMP-model in their normalized moments. 

LEMMA 6.4.1. If Nk is finite for some k E lN then n(p) has the asymptotic 

expansion 

k 
n(p) I p + o. 

m=O 



PROOF. The assertion is an immediate consequence of lemma 1.3.3. D 

LEMMA 6.4.2. If Gk is finite for some k E lN then g(p) has the asymptotic 

expansion 

k 
g(p) t p + o. 

m=O 

PROOF. The assertion is an immediate consequence of lemma 1.3.7. D 

LEMMA 6.4.3. If (Nk+l)A is finite for some k E lN and Ao= Ac f then 

r(p;A) has the asymptotic expansion 

k 
r(p;A) = l 

m=O 

R (A) 
m 

p ,j, o, 

form= 1, ••• ,k. 

PROOF. The assertion is a consequence of lemma 1.3.5 and the fact that 

(NO)A is transient. 

LEMMA 6.4.4. If (Nk+l>A and (Nk)AA are finite for some k E lN and 

A0 =Ac~ then u(p;A) has the asymptotic expansion 

k 
( 1) u(p;Al I p + o, 

m=O 

where the coefficients um (Al E ~A Ix IA I,' area) uniqu~ly detei:mined by 

(2) u (Al 
m 

form 0,11, ••• ,k •. 

PROOF. The assertion follows by invoking the results of the lemmas 6.4.1 

and 6.4.3 in (6.2;4) arid working out the product. 

LEMMA 6.4.5. If (Nt+l)A and (Gt)A are finite for some t EN and 

A0 =Ac f th~n k(p;A)A has the asymptotic expansion 

f pm Km(A)A + o(i), 
m=O 

p + o, 

where the coefficients K (A)- E lR IAI are uniquely determined by 
m A. . 
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form 0,1, ••• ,£. 

PROOF. The assertion follows by invoking the results of the lemmas 6.4.2 

and 6.4.3 in (6.2;5) and working out the product. D 

Observing that k(p;A)A = 0, the expansion of lemma 6.4.5 is extended 

to the whole state space by taking Km(A)A = 0 form= 0,1, ••• ,£. 

LEMMA 6.4.6. If Nk+l is finite for some k E lN then p(p;A(z)) has for each 

z E Z the asymptotic expansion 

p(p;A(z)) 
k m k L Pm(A(z))p + o(p ), 

m=0 
p + o, 

IA(z) Ix IA(z) I 
where the coefficients Pm(A(z)) E JR _ are given by 

for m 0 

form= 1, ••• ,k. 

PROOF. The assertion follows by substitution of the result of lemma 6.4.4 

in ( 6 • 2 ; 7 ) • D 

LEMMA 6.4.7. If Nk+l is finite for some k E lN then y(p;z) has for each 

fixed policy z E Z the asymptotic expansion 

k l m k 
m=0 P rm(z) + o(p ), y {p ;z) p + o, 

J'x IA(z) I where the coefficients rm (z) E JR are given by 

PROOF. The assertion follows from the lemmas 6.4.4 and 6.4.6. D 

Next a parametric GMP-model is introduced in 

DEFINITION 6.4.8. A parametric GMP-model (abbreviation: PGMP-model) is 

defined by extending the finite GMP-model as follows. 

(i) Assumption 2.2.6 is dropped. 

(ii) Each intervention x E X(i), i E 1 induces 

(1) after£~ 0 time units an instantaneous (possibly random) trans-
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formation of the state of the system to a state j with probability 
X 

p ij, 

(2) an infinitely differentiable function G(E): for each£ E JR re­

presented by its Taylor expansion at£= 0 given by 

I 
j=O 

where G.(0)~ is the j-th derivative of G(£)~ at£ O, 
J l l 

(3) a function K(t,£)~ defined by 
l 

lG(E)~ + }:. 111 P~. K(t-£;A0 )J. fort~£ 
l JET lJ 

-K(t;AO)i 

0 otherwise. 

The notation of the finite GMP-model is extended to the PGMP-model by 

DEFINITION 6.4.9. For each fixed policy z E Z define 

(i) the matrix function P(t,£;A(z)) by 

d {P(t-E;A(z)) 
P(t,E;A(z))= 

0 

(ii) the matrix function f(t,£;z) by 

fort~£ 

otherwise, 

(iii) the vector function K(t,£;z) with components 

{ 
z (i) 

d K(t,£). 
K(t,£;Z). = l 

l Q 

and 

for i E A(z) 

for i f. A(z) 

(iv) the vector function G(E;z) by its components 

~ {GO(E)~(i) 
G(E;Z\ 

for i E A(z) 

for i i A(z). 

The LSTs with respect tot of the first three of these quantities 

are respectively denoted by p(p,£;z), y(p,£;z) and k(p,E;z). It follows 

easily that 
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(6.4.1) p(p,E;A(z)) 

and 

(6.4;2) 

for p , E E JR+. 

Observe that k(p,E;z)Afz) = O. 

In the sequel some results are derived for the PGMP-model. 

LEMMA 6.4.10. For each fixed policy z E Zand fixed E ~ 0 the function 
PE 

e k(p,E;z)A(z) has the following expansion 

PE ~ k. ~ £ m 
e k(p,E;z)A(z) = l p l E ¾:i(z)A(z) + o(p), p + o, 

k=O £=0 

if Nm+l and Gm are finite for some m E IN. The coefficients ¾:i(z)A(z) 

are given by 

{ -1 fork= 0 and 0 ~£!) G£(0;z)A(z) i ~ 

¾:i (z) A(z) 
otherwise 

{:(z)A(z)o/ ¾:(Ao) for i = 0 and k ~ 0 
+ 

otherwise 

- {;-,''o'•<•> ,,,,-, fork~ i ~ 0 

otherwise. 

PROOF. The assertion follows straightforwardly from lemma 6.4.5 and 

relation (6.4;2). D 

The following lemma extends lemma 6.2.4 to the PGMP-model. 

LEMMA 6.4.11. In the PGMP-model the integral equation 

V(t,E;Z) = K(t,E;Z) + f(t,E;Z) * V(t,E;z)A(z) 

has for each fixed E > 0 and policy z E Z a unique solution in F • 
J' 

+ 

+ 

PROOF. The assertion follows since K(t,E;z) E FJ' and P(t,E;z) is a normal 

SMM for each fixed E > 0. D 
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In the sequel V(t,E;z) denotes the solution specified by lemma 6.4.11 

for fixed E > O. Its LST with respect tot, v(p,E;z), satisfies for 

p > 0, E > 0 

(6.4;3) v(p,E;Z) = k(p,E;Z) + y(p,E;z)v(p,E;Z)A(z)· 

';!'he interpretations of V(t,E;Z)i and v(p,E;z)i, i E ~ are related to those 

given for V(t;z)i and v(p;z)i in an obvious way. In preparation of theorem 

6.4.16 some additional results are needed. The first is related to the 

natural process in any GMP-model. 

LEMMA 6.4.12. Let the set A satisfy Ao~ Ac~- Then 

PROOF. By the lemmas 6.4.3 and 6.4.4 

-u1 (A) 

Postmultiplying by 7A and applying lemma 2.3.6 (ii) yields 

-u 1 (Al 7 A Ro (Al [ CN 1 > A 7 A + CN 1 > AA 7 A J 

completing the proof. D 

LEMMA 6.4.13. Let b(z),q(z) E lR IA(z) I be given vectors and let 

* sO(z)A(z) b(z) = O. Let P(t,E;A(z)) be a normal SMM for E O and let 

P1 (A(z)) be finite. Then the system of equations in yA(z) and wA(z) given 

by 

(1) l(a) 

(b) 

has a unique solution in yA(z)" This solution is given by 

(2) 
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where H0 (A(z)) is specified by definition 2.3.8 (iv), ¢A(A(z)) is defined 

similarly as in theorem 2.3.14 and the scalars aA(z), A= 1, ... ,L(z) are 

given by 

(3) 
* <S0 (z)i,d(z)> 

* <S0 (z)i,t(z)> 

J' 
The vector d(z) E IR in (3) is defined by 

d 
d(z) A(z) q(z) + P1 (A(z)) HO (A(z) )b(z) 

d 
d(z) A(z) = 0. 

PROOF. By lemma 1.2.8 the general solution to (1) (a) is given by 

d \'L(z) 
where S (z) L.A=l aA (z)¢ A (A(z)). 

For subchain EA(A(z)) we have then 

1, ... ,L (z) • 

By applying successively the lemmas 6.4.6, 6.4.12, 2.3.11 (ii) and 2.3.12 

(ii) we have for subchain EA {A(z)) 

(4) 

* aA (z) [So (z) EA (z)EA (A(z)) p (z) EA (A(z)) EA (A(z)) 

RO(A(z))EA(A(z))'EA(~))J 
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. * By premultiplying the EA(A(z))-part of (1) (b) with s0 (z)EA(z)EA(A(z)) and 

substituting (4), it follows that for subchain EA(z), A= 1, .•• ,L(z) 

which implies (3) and completes the proof. D 

The following lemma extends the result of lemma 6.4.13 to the set 

of states 'I'. 

J' * LEMMA 6.4.14. Let b(z),q(z) E lR and let So(z)A(z)b(z)A(z) = o. Let 

P(t,£;A(z)) be a normal SMM for£= 0 and let P1 (A(z)) be finite. Then the 

system of equations in (y,w) given by 

(1) {

(a) 

(bl 

has a unique solution in y. yA(z) is specified by lemma 6.4.13 (2) and (3) 

and y A(z) by 

(2) Yi(z) 

PROOF. The A(z)-part of the assertion follows immediately from lemma 6.4.13. 

The A(z)-part of (1) is identical to (2) and uniquely determines yA(z). D 

Observe that the system ( 1) of lemma 6 .4 .14 with b (z') ~ 0 is closely 

related to the system of equations considered in theorem 2.3.16. The fol­

lowing corollary states the connection between their solutions. 

COROLLARY 6.4.15. The system of equations in (y,w) given by 

(1) 

and 

(2) {
Y - ro(z)yA(z) 

w - r 0 (z)wA(z) 

0 
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have identical and unique solutions in y. 

PROOF. The assertion follows from theorem 2.3.16 and lemma 6.4.14 with 

q(z) = k(z) and b(z) = 0. D 

In preparation of theorem 6.4.16, a distinction among policies in z 

is introduced. A policy is called normal if P(t,E;A(z)) is a normal SMM 

for E = 0 and non-normal otherwise. For a non-normal policy we have 

(6.4;4) for some A E {1;••-,L(z)}. 

A subchain satisfying (6.4;5) is called a non-normal subchain. 

THEOREM 6.4.16. Let Nm+3 and Gm+l be finite for some m E JN. Then for a 

fixed policy z E z, v ( p, E; z) has a partial :,aurent expansion in p, which 

is for each sufficiently small fixed E > 0 given by 

(1) 

For fixed h E {-1,0,1, ... ,m} and£ E {-1,0,1, •.. } and normal z the system 

of equations 

(2) l(a) 

(b) 

vht(z) - ro(z)Vht{z)A(z) = ~,t(z) + rl (zbVh-1,£(z)A(z) + 

- vh-1,£-1 (z) 

Vh+l,£(z) -ro(z)Vh+l,£(z)A(z) =~+1,£(z) +~1 (z)vh,£(z)A(z) + 

-vh,£-1 (z) 

has a solution (Vh,£(z) ,Vh+l,£i?,)) which is unique in vh,£(z). Define 

vh,£(z) = 0 otherwise. In (2) Vht(z) and ~£(z) are respectively defined 

by 

(3) 

and 

(4) ( ) ,h+l r (z)V (z) _ 1min(h,£)+1 • 
¾£ z + lk=2 k h-k,£ A(z) L.k=2 

• (k!)-1 ~h-k,£-k(z). 
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For non-normal z (2) (b) has to be replaced by 

(2) (c) 

for each non-normal subchain EA (z). 

PROOF. Consider equation (6.4;3) in v(p,£;z). It will be proven that the 

expansion 

(5) 

satisfies (6.4;3) with f (p,£) = o(pm), pf O for each fixed and suffi-m . 
ciently small£> 0 if the.vectors vh2 (z), h E {-1,0,1, ... ,m}, 2 E 

{-1,0,1, ... } are uniquely determined by (2). 

If the A(z)-part of (6.4;3) is multiplied by eP£ and the expansions of 

eP£p(p,£;A(z)) = p(p;A(z)) (cf. lemma 6.4.6 and relation 6.4;1), 

eP£k(p,£;z)A(z) (cf. lemma 6.4.10), v(p,£;z) (cf. (5)) and ep£ are inserted 

then we obtain 

(6) 

,m+1 h ,oo 2 ,m+2 k ,m h 
lh=O p lt=O £ ~,Q,(z)A(z) + lk=O Pk(A(z))p lh=-1 P 

• l~=-1 £2 Vh,Q,(z)A(z) +p(p;A(z))fm(p,£)A(z) + g1 (p,£)' 

where g 1 (p,£) = o(pm+l), pf O for each sufficiently sm~ll fixed£> 0 (cf. 

the lemmas 6.4.6 and 6.4.10). Observe that 

(7) 
,oo k -1 ,m h ,oo 2 
lk=O (p£) (k:) lh=-1 p lt=-1 £ VM (z) A(z) 

,m h ,oo 2 ,min(h,2)+1 
lh=-1 p lt=-1 £ lk=O Vh-k,2-k(z)A(z) + 

and 
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m+l ,oo t ,m+2 
+ p lt=-1 E lk=l Pk(A(z))Vm+l-k,t(z)A(z) + g3(p,E), 

= o(pm+l) m+l where g 2 (p, E) and g 3 (p, E) .= o (p ) for p -1- 0 and sufficiently 

small fixed E > 0. Substitution of (7) and (8) in (6) yields 

m+l[,oo Et{,min(m+l,t)+l(k!)-1 V (z) + 
+ p lt=-1 lk=l m+l-k,t-k A(z) 

,m+2 l 
- lk=l Pk(A(z))Vm+l-k,t(z)A(z)j + 

+ fepE I - p(p;A(z))] fm(p,E)A(z) = 
I_ A(z) 

,m h ,oo t m+l ,oo t 
lh=O p lt=O E ¾t(z)A(z) + p lt=O E Km+l,t(z)A(z) +g(p,E)' 

d 
where g(p,E) = g 1 (p,E) - g 2 (p,E) + g3(p,E) · 

If the vectors Vht(z)A(z) satisfy 

(l0) ,min(h,t)+1(k!)-1V (z) ,h+l P ( ( )) () 
lk=O h-k,t-k A(z) - lk=O k A z vh-k,t z 

= ¾t (z) A(z) 

for h E {-1,0,1, ... ,m}, t E {-1,0,1, ... } then (9) implies 

m+l[, 00 t ,oo t ,m+2 
= p lt=O E Km+l,t(z)A(z) + lt=-1 E lk=l Pk(A(z))• 

• Vm+l-k,t(z)A(z)] + 

pm+l[z:;=-1 Et z:::7(m+1,t)+1(k!)-1Vm+1-k,t-k(z)A(z)] + g(p,E). 

Substitution of (3) and (4) in (10) yiel~s the A(z)-part of (2) (a). The 

A(z)-part of (2) (b) is obtained if his replaced by h+l in (10). Lemma 



6.4.13 guarantees the unique solution for vh,i(z)A(z) of the A(z)-part 

of (2) if the vectors V .. (z), i :5 h-1 and j :5 i are known. To show that 
1,J 

fm(p,E)A(z) = o(pm), p + 0 (4) is substituted in (11), yielding 

(12) 

Pm+l(I;=-1 Ei{K~+l,i(z)A(z) + Pl (A(z))Vmi(z)A(z) + 

- vm,i-1 (z)A(z))}] + g(p,£). 

Since p(p,E;A(z)) is transient for each fixed p > 0 and£> O, lemma 

1.2.1 (ii) implies that (12) is equivalent to 

(13) 
-PE -1 

e {[IA(z) -p(p,E;A(z))] g(p,£)} + 

-p£{ m+l ~oo i -1 
+ e p li=-1 £ [IA(z) -p(p,E;A(z)) J • 

Applying (l.3;11) and lemma 1.3.4 yields for each fixed£> 0 

( 14) 
-1 

[IA(z) - p(p,E;A(z))] = O(1/p), p + 0, 

and 

( 15) 
-1 

[IA(z) - p(p ,E;A(z))] [K~+l ,i (z) A(z) + pl (A(z) )Vmi (z) A(z) -

- vm,i-1 (z) A(z) J = o(l/p)' P + O. 

Substitution of (14) and (15) in (13) and the observation that g(p,£) 
m+l 

o(p ), p + 0 for each sufficiently small fixed£> 0 yields 

(16) 

for each sufficiently small fixed£> 0, completing the A(z)-part of the 

assertion for a normal policy z. 
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For v(P,E;z)A(z) we have by (6.4;4) 

(17) v(p,s;z)A(z) = u(p;A(z) )v(p,s;z)A(z) 

Inserting (1) of lemma 6.4.4 and the A(z)-part of (5) yields 

(18) [ 1m+l h - m+l] Lh=O p Uh(A(z)) + o(p ) • 

p + o. 

for sufficiently small fixed s > 0. By developing the product in the right­

hand member of (18) 

(19) 

is obtained implying the assertion for a normal policy z. 

For a non-normal policy z we have for each non-normal subchain EA (z) 

(20) fork> 0. 

Hence in (2) (b) the term r 1 (z)EA(z) vh,t(z)EA(z) vanishes and Vkt(z)EA(z) 

cannot be determined by (2). Instead of the equation for Vh+l,t(z) we take 

the one for Vh+l,£+l (z), yielding (2) (c) for non-normal subchain EA (z). By 

taking P1 (EA (A(z)) = -IEA(A(z)) in lemma 6.4.13 it follows that Vht(z)EA(z) 

is uniquely determined by (2) (a) and (2) (c) in this case. 

REMARK 6.4.17. The partial Laurent expansion for the expected discounted 

reward vector v(p;f) in the MRD-model (cf. [DENARDO 1971]) is obtained if 

s = 0 is substituted in theorem 6.4.16 for a normal policy z. Then we 

obtain 

( 1) 

where vh,O(z) satisfies 

(2) 1h+l 
~,O(z) + Lk=l fk(z) • 

Vh-k, 0 (z) A (z) 



and is uniquely determined by (2) and the equation in Vh+l,O(z). The 

coefficient Vh(f) of the expansion in the MRD-model is obtained from 

(3) (-l)hC (f) + ,h+l (-l)k Qk(f)Vh-k(f) h Lk:;,l 

and a similar equation in Vh+l(f). To display the connection between (3) 

and (2) observe that the following notational identities hold for 

corresponding z and f 

h 1, 2, ••• 

h 0,1, ••• 
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where oh= 1 if h = 0 and oh= 0 otherwise. The derivation will be restrict­

ed to an indication of the main steps. The relation 

(4) 

is used, which implies the following relation between the moments (whenever 

they exist) 

(5) 

Using (5) and lemma 6.4.10 we have for ~, 0 (z)A(z) 

(6) 
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Inserting (5) and (6) into (2) yields 

(a) vh,O(z)A(z)-UO(A(z)Ji\,o(z) ¾(A(z))A(z) + 

1h+1 - -
+ lk=l Uk(A(z))Vh-k,O(z)A(z) 

(7 ) (b) vh,O(z)A(z)-PO(A(z))Vh,O(z)A(z) = GO(O;z)A(z)oh+P(z)A(z)A(z) 0 

[ - ,h+l 
¾(A(z))A(z)+lk=l • 

• Uk(A(z))Vh-k,O(z)A(z)] 

- d -
where vh,O(z) = vh,O(z) + ¾,o(A0). Substitution of (7) (a) in (7) (b) 

immediately yields for vh,O(z)A(z) the equation 

(8) 

Inserting the moment expansions of the lemmas 6.4.1-6.4.4 and the 

relationship 

(9) 

yields 

It follows that (8) and (10) are identical to (3) which implies 

A direct derivation of a partial Laurent expansion in the MRD-model 

corresponding to the one of theorem 6.4.16 has been given in [WEEDA 1976]. 
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6.5. NUMERICAL EXAMPLE 

Consider the following problem 

'I' {1,2,3} 

Natural process 

n(p) g(p) 

Interventions 

r•o(i)) for i 2,3 

X(i) 

{1,2,3,4} for i 1 

X 

1 l:i l:i 0 1 0 

2 0 1 0 2 1 

3 l:i 0 l:i 1 0 

4 0 0 1 2 0 

X for j > 1, € X (1). Gj(0) 1 = 0 X 

Results are given for the vectors v_1 , 0 (z), v_111 (z) and v010 (z), z E z. 

(6.5; 1) 

(6.5;2) 
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(6.5;3) k(p;A0 ) = r(p;A0)g(Pl- = 2[e-p l 
AO -\p -½p -1 

e (2-e ) 

By the expansions for u(p;A0 ) and k(p;A0) we have (cf. the lemmas 6.4.4 

and 6.4.5) 

(6.5;4) uo<Ao> [ ~ ] ; ul (Aol [ =~ ] ; u2<Aol [ ~ ] 

(6.5;5) K0 (A0l = [ ~ ] ; Kl (Aol 
= [ =~ l . 

Denoting the policy with z(l) 1,2,3,4 we have 

(6.5;6) 

Each policy z E Z is normal and has one subchain. In this example we have 

(6.5;7) E(A(z)) =A(z) {1} for z E z 

and hence 

(6.5;8) 

Using theorem 6.4.16, v_ 110 (z), v_ 111 (z) and v010 (z) in this example are 

respectively obtained from 

(6.5;9) 

(6.5; 10) 

and 

(6.5; 11) 

Io= Ko,o<z)l + Pl(A(z))ll v-1,o<z)l 

lv-1,o<z)A(z)= 0 o(A(z)) v-1,o<z)l 

10 = Ki,o(z)l + Pl (A(z)) VO,O(z)l - V0,-1 (z)l 

vo,o<z)A(z) = uo(A(z)) vo,o<z)l + ul (A(z)) v-1,o<z)l 



It is easily verified that since KO,-l (z) = 0 we have v0 ,_ 1 (z) = O. The 

computations are summarized in the tables 6.5.1, 6.5.2 and 6.5.3. 

TABLE 6.5.1 

Ingredients for and result of the computation of v_ 110 (z) 

Policy p 1 (A (z)) 11 KO,O(z)l v-1,0 (z) 

zl -½ 2 [4,4,4] 

z2 -1 4 [4,4,4] 

z3 -½ 2 [4,4,4] 

Z4 -1 4 [4,4,4] 

TABLE 6.5.2 

Ingredients for and result of the computation of v_ 1 1 (z) , 

Policy Pl (A(z))ll K0,1 (z)l v_l 1 (z) 
I 

zl -½ 0 [-8,-8,-8] 

z2 -1 1 [-3,-3,-3] 

z3 -½ 0 [-8,-8,-8] 

z4 -1 0 [-4,-4,-4] 

TABLE 6.5.3. 

Ingredients for and the result of the computation v0 , 0 (z) 

Policy Pl(A(z))ll P2 (A(z)) 11 Kl,O(z)l vO,O (z) 

zl -½ ¼ 0 [0,-4,-4] 

z2 -1 ½ 0 [0,-4,-4] 

z3 -½ % ½ [1,-3,-3] 

Z4 -1 ¾ 1 [1,-3,-3] 

Observe that moreover (6.5;4) and (6.5;5) are needed. Notice also that 

P2 (A(z)) 11 is required to obtain K110 (z) 1• 
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CHAPTER VII 

SENSITIVE OPTIMALITY IN THE PGMP-MODEL 

7.1 INTRODUCTION 

Sensitive discount optimality criteria were introduced in [VEINOTT & 

MILLER 1969] and [VEINOTT 1969] in finite state and action discrete time 

Markov decision problems with a substochastic transition matrix for each 

policy. In these papers a lexicographical method is developed which com­

putes a sensitive discount optimal policy in a finite number of computa­

tions. An alternative computational approach has been given in [DENARDO 

1970]. It performs the computation of bias-optimal policies by solving a 

sequence of three discrete Markov decision problems by policy iteration or 

linear programming. The basic tool is the Laurent expansion for the expect­

ed discounted reward vector for a fixed policy based upon (1.2;11). 

The results in [VEINOTT & MILLER 1969] and [VEINOTT 1969] were recently 

generalized by [ROTHBLUM 1975] to discrete Markov decision problems having 

for each policy a non-negative transition matrix with spectral radius not 

exceeding one. In this case the principle part of the Lau~ent expansion con­

tains v terms with 1 s vs J. Other generalizations are treated by [SLADKY 

1974] (equivalence between sensitive discount and sensitive averaging crite­

ria) and by [HORDIJK&SLADKY 1977] (extension to a countable state space). 

The partial Laurent expansion (1.4;4) obtained by [DENARDO 1971] is closely 

related to the special case e = 0 and a normal polj_cy in the partial Laurent 

expansion of theorem 6.4.16 as remark 6.4.17 exhibits. 

Theorem 6.4.16 is used in this chapter in two ways. Its first use is 

the development of a new kind of sensitive optimality in the PGMP-model, 

which has also significance in the MRP-model with interventions. 

It is called sensitive intervention time optimality. In section 7.2 

sensitive intervention time optimal policies are defined and some of their 

properties established. Their computation is considered in section 7.3. 
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It is shown that this task can be accomplished by solving a sequence of 

problems, each satisfying the conditions of the undiscounted GMP-model, 

by means of one of the methods GMP 1,2,3. 

Its second use is in the computation of bias-optimal policies in the 

PGMP-model by means of one of the methods GMP 1,2,3. The method suggested 

here uses an idea developed in [DENARDO 1970] for the computation of bias­

optimal policies for discrete Markov decision problems. The procedures in 

the sections 7.3 and 7.4 are illustrated on the numerical example of sec­

tion 6.5. 

7.2 SENSITIVE INTERVENTION TIME OPTIMALITY 

In this section sensitive intervention time optimal policies are de­

fined in the PGMP-model and some of their properties are consinered. In 

the sections 7.2 and 7.3 it is tacitly assumed that the matrix N2 is finite. 

Primarily a Laurent expansion in Eis derived from theorem 6.4.16 in 

LEMMA 7.2.1. Let z E Z be a fixed policy. Then the limit 

exists for each fixed E E{O,E0) for some sufficiently small EO > 0 and 

v0 {E;z) has the Laurent expansion 

{ 1) 

PROOF. By multiplying (1) of theorem 6.4.16 with p and taking the limit we 

obtain (1) of this lemma for fixed E in {O,E0 ). By the uniqueness theorem 

for Laurent expansions (1) holds on the whole interval O < E < E0 • D 

Observe that the domain of the function v0 {E;z) can be extended by 

analytic continuation to the annular domain O < Ir.I < E0 , EE~ by defining 
{ . Q ~00 j v0 E,z) - l· 1 E V 1 .{z) on the points for which it is not yet defined J=- - ,J 

by lemma 7.2.1. 

DEFINITION 7.2.2. A policy z* E Z is {p,E)-optimal if for fixed p > 0 and 

fixed E > 0 

for z E z. 

The set of {p,E)-optimal policies will be denoted by D 
P;E 
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DEFINITION 7.2.3. A policy z* € Z is (O,e)-optimal if for fixed e > 0 

The set of (O,e)-optimal policies is denoted by D0 • ,e 

DEFINITION 7.2.4. A policy z* € z is sensitive intervention time optimal 

if it is (O,e)-optimal on some real interval O < e <µwhere µ is positive. 

The set of these policies is denoted by D0 • 

REMARK 7.2.5. Observe that the PGMP-model withe fixed corresponds to a 

MRP-model where each intervention is replaced by an action with time e. 

Hence (p,e)-optimality and (O,e)-optimality in the PGMP-model are equivalent 

with p-optimality respectively gain-optimality on the MRP-model. Consequent-

ly the sets D and D0 are non-empty. 
p ,e , e 

Some properties of sensitive intervention time optimal policies are 

considered in 

THEOREM 7.2.6. Let n0 denote the set of policies, which are (O,en)-optimal 

for some sequence {en+ O, n = 1,2, ••• } depending on the policy. Then 

(i) n0 is non-empty. 

(ii) If Jn0 J > 1 then for any pair of policies y,o E n0 

(1) for o < lei < µ(y,01 

where µ(y,o) is some real positive number. 

Ciiil D0 = n0 • 

~- To prove (i) consider a sequence {vn + O, n = 1,2, ••• }. For each 

n D 
O,en 

is nonempty. Since z is finite, some policy is (O,v )-optimal on 
nk 

a subsequence {v + 
nk 

O, k = 1,2, ••• } which implies n0 ~~-Suppose n0 con-

tains at least two policies y and o. Let i €~be an arbitrary state. By 

lemma 7.2.1 v0 (e;z). is analytic and hence continuous on O < e < e0 • Since 
i (i) 

y,o € n0 we have v0 (e;y)i?: v0 (e;o)i fore€ {ek + O, k = 1,2, ... } and 

v0 (e;o)i?: v0 (e;y)i for eE{viil, l = 1,2~···}. Hence there exist sub-
{ (i) } { (i) } sequences ek + O, m = 1,2, ••• and Vp + O, m = 1,2, ••• such that 

(i) (i) m (i) (i) . "-Ill (i) 
vl-1<ek < Vp < ek +1 withvo(e;y)i?: vo(e;o), fore= ek and 

m m "-Ill m (') 1 m 
v0 (e;y), ~ v0 (e;o). fore= vp 1 form= 1,2, •••• By the intermediate value 

i i "-Ill (i) (i) 
theorem v0 (e;y). = v0 (e;o). fore da + O, m = 1,2, ••• } where a 

i i m m 
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{i) 
satisfies e:k 

m 

(i) 
:,; a 

m 
(i) :,; vlm for each m. Defining 

then g(e:). = 0 for e: da(i) + O, m = 1,2, ••• }. Since g(e:). is analytic for 
i {') m i (') 

0:,; le:1 < µ J. (y,o) this implies g(e:). = 0 for O:,; le:1 < µ i (y,o). Conse-
i (') 

quently v0 (e:;y). = v0 (e:;o). 
d . i (i) i 

for O < le:! < µ i (y,o) and (1) holds for 

µ(y,o) =min.I/![µ (y,o)]. 
J.E 

To prove (iii) observe that definition 7.2.4 implies 60 ~ D0 • If 

!ll0 1 = 1 then obviously either D0 = n0 or D0 = 0. By assertion (ii) the 

same holds if !n0 1 > 1. However D0 = 0 implies that some policy n i n0 is 

(O,Sn)-optimal on some sequence {Sn+ O, n = 1,2, ••• } contradicting the 

definition of 60 • This completes the proof. 0 

To facilitate the computation of sensitive intervention time optimal 

policies, the following sets of policies ar,, defined, 

d DEFINITION 7.2.7. Let Z(-1,-2) = Z, The sets of policies Z(-1,l), 

l = -1,0,1, ••• are defined by 

Z(-1,-1) ~ {z* E Z: v_ 1 ,_1 (z*) ~ v_ 1 ,_ 1 (z) for z E z} 

and for l = 0,1, ••• 

Definition 7.2.7 implies immediately 

(7.2;1) Z(-1,l-1) ~ Z(-1,l) 

By (7.2;1) the sets Z(-1,l), l 
we may introduce 

for l = 0, 1, ... 

-1,0,1, ••• form a monotone sequence and 

DEFINITION 7.2.8. The set of policies Z(-1, 00 ) is given by 

The relation between the sets D0 and Z(-1, 00 ) is established in 

THEOREM 7.2.9. In the PGMP-model we have 



113 

PROOF. The assertion follows from the equivalence between 

(1) for 0 < E < µ(y,o) 

µ(y,o) some real positive number and 

(2) 

for two polices y,o € z. D 

As a consequence of theorem 7.2.9 and (7.2;1) we have 

(7 .2;2) Z(-1,l) f 0 for l = -1,0,1, ••• 

7.3 ON THE COMPUTATION OF SENSITIVE INTERVENTION TIME OPTIMAL POLICIES 

According to the results of the preceeding section a sensitive inter­

vention time optimal policy in the PGMP-model can be obtained by solving 

a sequence of optimization problems ~l' l = -1,0,1, ••• maximizing v_ 11,e_(z) 

over Z(-1,l-1). If Z(-1,l) contains only one policy for some l then this 

policy is sensitive intervention time optimal and only a finite number of 

problems ~,e_ have to be solved. Otherwise Z(-1, 00 ) contains at least two po­

licies and the procedure is not finite. To solve problem ~,e_ theorem 6.4.16 

is used as a starting-point. 

If z € Z(-1,l-1) is a normal policy then theorem 6.4.16 implies that 

a solution (v_ 11,e_(z),v01,e_(z)) of the system of equations 

(7 .3; 1) 

fv_ 11,e_(z) - r 0 (z)v_1 ,,e_(z)A(z) = o 

lvo,.e. (z) - ro (z)vo,.e. (z) A(z) = Ko,.e. (z)+r 1 (z)V_1,.e. (z) A(z)-t-1,.e.-1<z) 

0 
is unique in v_ 11,e_(z). Observe that V-l,l-l (z) is a known and common vector 

for z € Z(-1,l-1). By corollary 6.4.15 the same solution for v_ 11,e_(z) is 

obtained if (7.3;1) is replaced by 

(7. 3; 2) 

fv-1,f(z) - fO(z)V_1,l(z)A(z) 

lvo,.e.(z) - ro{z)vo,.e.(z)A(z) 

0 
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where 

Hence for a normal policy z E Z(-1,l-1) the vector v_ 1 ,l(z) can be obtained 

by solving the system of equations in the policy evaluation operation of a 

GMP-scheme with k(z) replaced by K0 l(zl. , 
In the special case l = -1 observe that if z is normal KO,l(z) O, 

implying by lemma 6.4.14 with b(z) q(z) = 0 that 

(7 .3;3) v_ 1 _ 1 (z) = O , for z normal. 

Hence if Z contains only normal policies then Z(-1,-1) 

can be omitted. 

z and problem ~-l 

If Z contains a non-normal policy z then EA (z) = EA(A(z)) for some 

subchain E, (z). According to theorem 6.4.16, V 1 0 (z)E can be uniquely 
" - ,-<- A (z) 

solved from the system of equations 

(7.3;4) lv-1,l(z)EA (z) -

vO,l+l(z)EA(z)-

The system (7.3;4) shows that V-l,-l (z)EA(z) f O in general for a non-normal 

subchain EA (z). 

Returning to the case that Z contains only normal policies, let policy 

z* E Z(-1,l) be obtained by solving ~l. Then v_ 1 ,l(z1) v_ 1,l(z2 ) for 

arbitrary z 1 , z 2 E Z(-1,l). Denote this common vector by V~l,l" Further 

define for intervention x E X(i) and state i E o/ 

for l o 
(7 .3;5) 

for l > 0 

Finally define simultaneously the action sets X(l) (i) for i E o/ and 

l = 0,1,2, ••• 

(7 .3;6) * (V 1 0 ) • and 
- ,-<- l. 



* 1 * * . where (v_ 1 l'wl(z )) is a particular solution of (7.3;2) for policy z , 
I 

set of policies for l 0,1,2, ••• 

(7.3;7) z (-1,l) d X x<l> (i), 

iE'I' 

the set of states for l 0,1,2, ••• 

(7.3;8) A(-1,l) ~ U E(z), 
ZEZ(-1,l) 

and the action sets Y (l) (i) for i E- '¥, l 

~ X(i) 

-1,0,1, ..• 
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the 

(7.3;9) lx(l) (i) · for i E A(-1,l) 
d -
= (l-1) . x * * . {x E Y (i) :}:. (s0 ) .. (V 1 0 ).= (V 1 0 ).} otherwise. 

JE'!f lJ - ,,c, J - ,,c, l 

Observe that for l 0,1,2, ••• 

(7.3;10) Z(-1,l) X y(l>Ci), 
iE'I' 

(7.3;11) zc-1,l> ~ z (-1,l) 

and 

(7.3;12) A(-1,l) u E (z). 
ZEZ(-1,l) 

The necessary information for the computation of a policy z**E Z(-1,l+l) 

* is contained in the solution of problem 1;1 which specifies a policy z EZ (-1,l) 

and the vectors v:l,l and wl<z*). The following method specifies the compu­

tation. 

** METHOD 7.3.1. Given the solution of problem l;l, a policy z E Z(-1,l+l) is 

obtained in the following two steps 

(i) Compute the sets E(z) for z E Z(-1,l) and their union A(-1,l). For this 

purpose a method developed in [FOX & LANDI 1968] can be used, which 

identifies the subchains of a stochastic matrix and hence E(z) per po­

licy. 

(ii) Solve problem l;l+l by applying one of the methods GMP 1,2,3 with the 

* terminating policy z for problem l;l as initial policy. Problem l;l+l 
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has the sets Y(l) (i), i E ~ as action sets. Moreover the numbers 

(K~ f_ 1)~ specified by (7.3;5) replace the numbers k(i,x) for XE Y(l)(i) 
, -+ l. ** 

and i E ~- This yields policy z 

The computation of a sensitive intervention time optimal policy is now 

illustrated on the numerical example of section 6.5. Primarily v_110 (z) is 

obtained for z E Z by the policy evaluation operation of GMP 1. It is easily 

verified that 

and t(zlll = { ~1 
for l 

for l 

v_110 (z) is then obtained from the system of equations 

{
o = k (zl -

v_, ,o c,1 :,,1 

1,3 

2,4 

which results in v_ 110 (z) 

is solved with 
[ 4l ] for each z E z. Next problem ~l 

and the action sets 

[
{1,2,3,4} 

{x0 (i)} 

for x = 2 

otherwise 

for i 1 

otherwise. 

Since in this problem A(-1,0) =~,step (ii) of method 7.3.1 is sufficient 

for this computation. Taking z 1 as initial policy, v_ 111 (z 1) is obtained 

from 

{
o = K~,1 (z1l1 

V-1,1 (zl)A(z 1) 

0 we obtain 
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In view of the fact that each policy has only one subchain the policy im­

provement operation can be restricted to the computation of wi. This yields 

0 for i 2,3 

and 

max[4,9,4,8] = 9. 

The maximum is obtained for x = 2. Since A(z) = A0 for z € z, no cutting 

operation is needed. Hence the next policy in the iteration is z 2 • In the 

same way we obtain 

and 

[

ljE'l' (N0 ) ij wi (z) j = o 

maxxEXl (i) [G1 (O)~ + 3 t(i,x) J = max[f,4,f,3J = 4 

for i = 2,3 

for i 1 

implying that policy z 2 € Z(-1,1) is sensitive intervention time optimal 

in agreement with the result of table 6.5.2. 

7.4 ON THE COMPUTATION OF BIAS-OPTIMAL POLICIES 

The Laurent expansion of theorem 6.4.16 can also be used to compute 

sensitive discount optimal policies. In this section only the computation 

of bias-optimal policies is considered. The question is whether an unaltered 

use of GMP-schemes for this computation remains possible. 

In this section we assume that z contains only normal policies. This 

implies v_ 11 _1 (z) = 0 for z € z (cf. (7.3;3)). Further we substitute E = 0 

in the partial Laurent expansion for the PGMP-model of theorem 6.4.16 which 

becomes then (1) of remark 6.4.17. As a consequence we have in fact returned 
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to the finite GMP-model but retain the notation and use the results of the 

PGMP-model. The coefficient vectors vh,O(z), h = 1,0,1, ••• of this expan­

sion are uniquely determined by the system of equations consisting of 

(7 .4; 1) 

and the corresponding equation in Vh+l,O(z). 

The computation of bias-optimal policies involves only the coefficient 

vectors .v_ 1, 0 (z) and v0 , 0 (z). Each particular solution (y_ 1 (z),w0 (z)) of 

the system of equations 

(7 .4 ;2) l (a) 

(b) 

0 

has the property that y_ 1 (z) = v_ 1 , 0 (z). 

Consider the system of equations in (v0 , 0 (z),v1 , 0 (z)) given by 

(7 .4;3) l (a) 

(b) 

For a given particular solution (v_ 1 , 0 (z), w0 (z)) of (7.4;2) let 
d 

y0 (z) = v0 , 0 (z)-w0 (z). By subtraction of (7.4;2) (b) from (7.4;3) (a) it 

follows that y0 (z) can be uniquely obtained from the system of equations 

in (y0 (z),w1 (z)) given by 

(7.4;4) l(a) 

(b) 

0 

where 

(7 .4 ;5) 

Observe the si~ilarity between the systems (7.4;2) and (7.4;4). The fol­

lowing lemma exhibits the relationship between the solution of (7.4;2) and 

the one of the corresponding policy evaluation operation of a GMP-scheme. 

LEMMA 7.4.1. Let the system of equations in (y_ 1 (z),w0 (z)) be given by 

(7.4;2) and one in (y~ 1 (z),w6(z)) by 



(1) {
(a) y: 1 (a) - r0 (a)y:l (a)A(a) 

(b) w0 (z) - r0 {z)w0 {z)A(z) 

0 

= k {z) - y_: 1 (z) □ t(z). 

Then corresponding particular solutions satisfy 

(2) 

(3) 
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1 PROOF. Corollary 6.4.15 implies y_ 1 (z)i = y_ 1 (z)i for i E 1. It remains to 

prove (3). This is done for an arbitrary subchain EA(z). For (t0 )EA(A{z)) 

the following relation holds (cf. lemma 2.3.7 (ii)) 

(4) 

Hence 

(5) 

= Ro(A(z) )EA(A{z)) 'EA (A(z)) □ Y _1 (z)EA (A(z)). 

Addition of (5) and the EA (A(z))-part of (7.4;2) (b) yields 

Further by lemma 2.3.12 (i), which may also be applied here, 
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[t(z)E (A(z)) 
;i_ 

Substitution of (7) in (7.4;2) (b) yields 

[k(z) - y_ 1 (z) □ t(z)]E (A(z)) 
;i_ 

(6) and (8) imply the assertion. D 

Suppose a gain optimal policy z* E Z(-1,0) is obtained by using one 

of the methods GMP 1,2 or 3. In section 7.3 this optimization problem has 

been denoted by , 0 • In addition, the solution of , 0 specifies the vectors 

* 1( * (0)(') . "' v_ 110 and w0 z ). Based on these data we define for each x EX i, iE r 

for X = x0 (i) 

otherwise. 

Notice that (K7,o)~(i) f K7 10 (z)i in this notation. The next step to be 

* performed is concerned with a second optimization problem denoted by, . 

Problem,* is solved by means of one of the methods GMP 1,2 or 3. It is 

obtained by replacing k(i,x) by (K7,oi: and X(i) by X(O) (i) in the setting 

of problem , 0 • The policy evaluation operation of the solution methods com­

putes a particular solution (y0 (z), wi(z)) to the system of equations 
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fO(z)yO(z)A(z) 0 

where K7 0 (z) is defined by (7.4;5). In the policy improvement operation 
I * X 

k(i,x) is replaced by (K110)i. 

The solution of s* specifies a policy z which is gain-optimal for iE~ 

and bias-optimal for i E A(-1,0). An improvement upon policy z can only be 

obtained in the states that are transient for all policies z E Z(-1,0), 

which may be done by returning to problem s 0 with initial policy~ and poli-

- - * cy evaluation (7.4;2) where for w0 (z) is substituted y0 (z) +w0 (z ) • The method 

proposed to compute a bias-optimal policy in the PGMP-model is summarized in 

** METHOD 7.4.2. A bias-optimal policy z is obtained by the following com-

putational steps. 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

Problem s 0 is solved by applying GMP 1,2, or 3, specifying the vectors 
* 1 * * v_ 110 , w0 (z) and policy z E z(-1,0). 

Compute the set of actions X(O) (i). 
* * * 1 * Compute w0 (z ) i for i E E (z ) by using the relation w0 (z \ = w0 (z ) i + 

- (v: 1 0 )i(t0 )i and for i E F(z*) by using (7.4;2). 
I * * Solve problems by applying GMP 1,2 or 3 with initial policy z 

This results in policy z and vector y0 (z). Compute the vector 

- d - * w0 (z) = y0 (z)+w0 (z ). 

Return to problem s 0 and use GMP 1,2 or 3 with policy evaluation 

- ** operation (7.4;2) to improve policy z. This yields policy z 

REMARK 7.4.3. 

(i) Observe that there is no need to compute the set A(-1,0) in this 

procedure. 

(ii) The system of equations (7 .4;2) is used in the steps (iii) and (v). In 

either case u1(A(z))y_1(z)A(z) may be replaced by -R0(A(z))(Nt'A(z)~y_1 (z) 

(cf. (10) of remark 6.4.17) if this is computationally convenient. 

(iii) The computation of K7 10 (z) may be simplified by using the relation 
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The computation of a bias-optimal policy by means of method 7.4.2 is 

now illustrated on the numerical example of section 6.5. Assuming that step 

1 of method 7.4.2 terminates with policy z 1 . Then 

In step 2 the action set X(O) (i) is determined which is given here by 

X(i) 

Since 

J{1,2,3,4} 

tx0 (i)} 

It follows from (7.4;6) that 

r1 -2 
* X 

(K1 ,0) i 

l 2 

1 

for i 

otherwise. 

for i 1 and X = 1,3 

for i 1 and X = 2,4 

for i 2 and X = XO (i) 

for i 3 and X = xo(i) 

1 In step 3 w0 (z 1) is computed from w0 (z 1). By lemma 7.4.1 it follows that 

1 
w0 (z 1)i = w0 (z 1)i - y_ 1 (z 1)i. (t0)i for i = 1,2. 

Since state 3 is transient for this policy, w0 (z 1 ) 3 is obtained from 

This yields 



Next step 4 is applied with initial policy z 1 . The vector y 0 (z 1) is 

obtained from the equations 

{
K;~o<z1l1 - Yo<z1l1t<z1l1 = o 

y0(z1)A(z 1) = UO(A(z1))y0(z1)1 

1 and the vector w1 (z1) from 

{ 

1 d 
wl (z1)1 = 0 

w~(z1)A(z) 

* This yields, noting that K110 (z) 

Observe that indeed v010 (z 1) = y0 (z 1) + w0 (z 1), (cf. table 6.:). 

Applying the policy improvement operation we obtain for w1 

= max[-1+½.2, -2+1.2, -1+½.3, -2+1.3] 

= max[0,0,½,1] = 1. 
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Since only the null decision is feasible in state 2 and 3 this shows that 

policy z4 is the next policy. By the policy evaluation operation we obtain 

Applying the policy improvement operation yields for w1 
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= max[-1-½+½.2, -2-1+1.2, -1-½+½.3, -2-1+1.3] 

= max[-½,-1,0,0] = 0. 

This implies that z 3 and z4 are both bias-optimal in agreement with table 

6.5.3. 
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