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Abstract. Let A be a commutative Noetherian ring, and let R = A[X] be the polynomial ring in an infinite
collection X of indeterminates over A. Let SX be the symmetric group of X. The group SX acts on R in
a natural way, and this in turn gives R the structure of a left module over the group ring R[SX ]. We prove
that all ideals of R invariant under the action of SX are finitely generated as R[SX ]-modules. The proof
involves introducing a certain partial order on monomials and showing that it is a well-quasi-ordering. We
also consider the concept of an invariant chain of ideals for finite-dimensional polynomial rings and relate it
to the finite generation result mentioned above. Finally, a motivating question from chemistry is presented,
with the above framework providing a suitable context in which to study it.

Résumé. Soit A un anneau Noetherien commutatif, et R = A[X] l’anneau des polynomes en une infinité
d’indéterminées X sur A. Soit SX le groupe symétrique de X. Le groupe SX agit sur R de manière naturelle,
ce qui donne à R la structure d’un module gauche sur l’anneau R[SX ]. Nous prouvons que tous les idéaux
de R invariants sous l’action de SX sont finitement engendrés comme R[SX ]-modules. La démonstration
utilise le fait qu’un certain ordre partiel sur les monomes est un quasi-ordre. Nous utilisons aussi le concept
de chaˆine invariante des idéaux pour les anneaux de polynômes de dimension finie, que nous relions au
résultat de génération finie mentionné plus haut. Finalement, nous présentons une motivation pour notre
travail issue de la chimie.

1. Introduction

A pervasive theme in invariant theory is that of finite generation. A fundamental example is a theorem
of Hilbert stating that the invariant subrings of finite-dimensional polynomial algebras over finite groups
are finitely generated [5, Corollary 1.5]. In this article, we study invariant ideals of infinite-dimensional
polynomial rings. Of course, when the number of indeterminates is finite, Hilbert’s basis theorem tells us
that any ideal (invariant or not) is finitely generated.

Our setup is as follows. Let X be an infinite collection of indeterminates, and let SX be the group of
permutations of X . Fix a commutative Noetherian ring A and let R = A[X ] be the polynomial ring in the
indeterminates X . The group SX acts naturally on R: if σ ∈ SX and f ∈ A[x1, . . . , xn] where xi ∈ X , then

σf(x1, x2, . . . , xn) = f(σx1, σx2, . . . , σxn) ∈ R.

This in turn gives R the structure of a left module over the (non-commutative) group ring R[SX ]. An ideal
I ⊆ R is called invariant under SX (or simply invariant) if

SXI := {σf : σ ∈ SX , f ∈ I} ⊆ I.

Notice that invariant ideals are simply the R[SX ]-submodules of R. We may now state our main result.
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Theorem 1.1. Every ideal of R = A[X ] invariant under SX is finitely generated as an R[SX ]-module.

(Stated more succinctly, R is a Noetherian R[SX ]-module.)

For the purposes of this work, we will use the following notation. Let B be a ring and let G be a subset
of a B-module M . Then 〈f : f ∈ G〉B will denote the B-submodule of M generated by elements of G.

Example 1.2. Suppose that X = {x1, x2, . . .}. The invariant ideal I = 〈x1, x2, . . .〉R is clearly not
finitely generated over R, however, it does have the compact representation I = 〈x1〉R[SX ].

The outline of this paper is as follows. In Section 2, we define a partial order on monomials and show
that it can be used to obtain a well-quasi-ordering of the monomials in R. Section 3 then goes on to detail our
proof of Theorem 1.1, using the main result of Section 2 in a fundamental way. In the penultimate section,
we discuss a relationship between invariant ideals of R and chains of increasing ideals in finite-dimensional
polynomial rings. The notions introduced there provide a suitable framework for studying a problem arising
from chemistry, the subject of the final section of this article.

2. The Symmetric Cancellation Ordering

We begin this section by briefly recalling some basic order-theoretic notions. We also discuss some
fundamental results due to Higman and Nash-Williams and some of their consequences. We define the
ordering mentioned in the section heading, and give a sufficient condition for it to be a well-quasi-ordering;
this is needed in the proof of Theorem 1.1.

2.1. Preliminaries. A quasi-ordering on a set S is a binary relation ≤ on S which is reflexive and
transitive. A quasi-ordered set is a pair (S,≤) consisting of a set S and a quasi-ordering ≤ on S. When there
is no confusion, we will omit ≤ from the notation, and simply call S a quasi-ordered set. If in addition the
relation ≤ is anti-symmetric (s ≤ t ∧ t ≤ s⇒ s = t, for all s, t ∈ S), then ≤ is called an ordering (sometimes
also called a partial ordering) on the set S. The trivial ordering on S is given by s ≤ t ⇐⇒ s = t for all
s, t ∈ S. A quasi-ordering ≤ on a set S induces an ordering on the set S/∼ = {s/∼ : s ∈ S} of equivalence
classes of the equivalence relation s ∼ t⇐⇒ s ≤ t ∧ t ≤ s on S. If s and t are elements of a quasi-ordered
set, we write as usual s ≤ t also as t ≥ s, and we write s < t if s ≤ t and t 6≤ s.

A map ϕ : S → T between quasi-ordered sets S and T is called increasing if s ≤ t ⇒ ϕ(s) ≤ ϕ(t) for
all s, t ∈ S, and strictly increasing if s < t ⇒ ϕ(s) < ϕ(t) for all s, t ∈ S. We also say that ϕ : S → T is a
quasi-embedding if ϕ(s) ≤ ϕ(t) ⇒ s ≤ t for all s, t ∈ S.

An antichain of S is a subset A ⊆ S such that s 6≤ t and t 6≤ s for all s 6∼ t in A. A final segment of
a quasi-ordered set (S,≤) is a subset F ⊆ S which is closed upwards: s ≤ t ∧ s ∈ F ⇒ t ∈ F , for all
s, t ∈ S. We can view the set F(S) of final segments of S as an ordered set, with the ordering given by
reverse inclusion. Given a subset M of S, the set

{
t ∈ S : ∃s ∈ M with s ≤ t

}
is a final segment of S, the

final segment generated by M . An initial segment of S is a subset of S whose complement is a final segment.
An initial segment I of S is proper if I 6= S. For a ∈ S we denote by S≤a the initial segment consisting of
all s ∈ S with s ≤ a.

A quasi-ordered set S is said to be well-founded if there is no infinite strictly decreasing sequence
s1 > s2 > · · · in S, and well-quasi-ordered if in addition every antichain of S is finite. The following
characterization of well-quasi-orderings is classical (see, for example, [8]). An infinite sequence s1, s2, . . . in
S is called good if si ≤ sj for some indices i < j, and bad otherwise.

Proposition 2.1. The following are equivalent, for a quasi-ordered set S:

(1) S is well-quasi-ordered.

(2) Every infinite sequence in S is good.

(3) Every infinite sequence in S contains an infinite increasing subsequence.

(4) Any final segment of S is finitely generated.

(5)
(
F(S),⊇

)
is well-founded (i.e., the ascending chain condition holds for final segments of S). �

Let (S,≤S) and (T,≤T ) be quasi-ordered sets. If there exists an increasing surjection S → T and S
is well-quasi-ordered, then T is well-quasi-ordered, and if there exists a quasi-embedding S → T and T is
well-quasi-ordered, then so is S. Moreover, the cartesian product S × T can be turned into a quasi-orderd
set by using the cartesian product of ≤S and ≤T :

(s, t) ≤ (s′, t′) :⇐⇒ s ≤S s
′ ∧ t ≤T t′, for s, s′ ∈ S, t, t′ ∈ T .
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Using Proposition 2.1 we see that the cartesian product of two well-quasi-ordered sets is again well-quasi-
ordered.

Of course, a total ordering ≤ is well-quasi-ordered if and only if it is well-founded; in this case ≤ is called
a well-ordering. Every well-ordered set is isomorphic to a unique ordinal number, called its order type. The
order type of N = {0, 1, 2, . . .} with its usual ordering is ω.

2.2. A lemma of Higman. Given a set X , we let X∗ denote the set of all finite sequences of elements
of X (including the empty sequence). We may think of the elements of X∗ as non-commutative words

x1 · · ·xm with letters x1, . . . , xm coming from the alphabet X . With the concatenation of such words as
operation, X∗ is the free monoid generated by X . A quasi-ordering ≤ on X yields a quasi-ordering ≤H (the
Higman quasi-ordering) on X∗ as follows:

x1 · · ·xm ≤H y1 · · · yn :⇐⇒






there exists a strictly increasing function
ϕ : {1, . . . ,m} → {1, . . . , n} such that
xi ≤ yϕ(i) for all 1 ≤ i ≤ m.

If ≤ is an ordering on X , then ≤H is an ordering on X∗. The following fact was shown by Higman [6] (with
an ingenious proof due to Nash-Williams [12]):

Lemma 2.2. If ≤ is a well-quasi-ordering on X, then ≤H is a well-quasi-ordering on X∗. �

It follows that if ≤ is a well-quasi-ordering on X , then the quasi-ordering ≤∗ on X∗ defined by

x1 · · ·xm ≤∗ y1 · · · yn :⇐⇒






there exists an injective function
ϕ : {1, . . . ,m} → {1, . . . , n} such
that xi ≤ yϕ(i) for all 1 ≤ i ≤ m

is also a well-quasi-ordering. (Since ≤∗ extends ≤H.)
We also let X� be the set of commutative words in the alphabet X , that is, the free commutative

monoid generated by X (with identity element denoted by 1). We sometimes also refer to the elements of
X� as monomials (in the set of indeterminates X). We have a natural surjective monoid homomorphism
π : X∗ → X� given by simply “making the indeterminates commute” (i.e., interpreting a non-commutative
word from X∗ as a commutative word in X�). Unlike ≤H, the quasi-ordering ≤∗ is compatible with π in
the sense that v ≤∗ w ⇒ v′ ≤∗ w′ for all v, v′, w, w′ ∈ X∗ with π(v) = π(v′) and π(w) = π(w′). Hence
π(v) ≤� π(w) :⇐⇒ v ≤∗ w defines a quasi-ordering ≤� on X� = π(X∗) making π an increasing map. The
quasi-ordering ≤� extends the divisibility relation in the monoid X�:

v|w :⇐⇒ uv = w for some u ∈ X�.

If we take for ≤ the trivial ordering on X , then ≤� corresponds exactly to divisibility in X�, and this
ordering is a well-quasi-ordering if and only if X is finite. In general we have, as an immediate consequence
of Higman’s lemma (since π is a surjection):

Corollary 2.3. If ≤ is a well-quasi-ordering on the set X, then ≤� is a well-quasi-ordering on X�. �

2.3. A theorem of Nash-Williams. Given a totally ordered set S and a quasi-ordered set X , we
denote by Fin(S,X) the set of all functions f : I → X , where I is a proper initial segment of S, whose range
f(I) is finite. We define a quasi-ordering ≤H on Fin(S,X) as follows: for f : I → X and g : J → X from
Fin(S,X) put

f ≤H g :⇐⇒

{
there exists a strictly increasing function ϕ : I → J
such that f(i) ≤ g(ϕ(i)) for all i ∈ I.

We may think of an element of Fin(S,X) as a sequence of elements of X indexed by indices in some proper
intial segment of S. So for S = N with its usual ordering, we can identify elements of Fin(N, X) with words
in X∗, and then ≤H for Fin(N, X) agrees with ≤H on X∗ as defined above. We will have occasion to use a
far-reaching generalization of Lemma 2.2:

Theorem 2.4. If X is well-quasi-ordered and S is well-ordered, then Fin(S,X) is well-quasi-ordered. �

This theorem was proved by Nash-Williams [13]; special cases were shown earlier in [4, 11, 14].
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2.4. Term orderings. A term ordering of X� is a well-ordering ≤ of X� such that

(1) 1 ≤ x for all x ∈ X , and
(2) v ≤ w ⇒ xv ≤ xw for all v, w ∈ X� and x ∈ X .

Every ordering ≤ of X� satisfying (1) and (2) extends the ordering ≤� obtained from the restriction of ≤ to
X . In particular, ≤ extends the divisibility ordering on X�. By the corollary above, a total ordering ≤ of
X� which satisfies (1) and (2) is a term ordering if and only if its restriction to X is a well-ordering.

Example 2.5. Let ≤ be a total ordering of X . We define the induced lexicographic ordering ≤lex of
monomials as follows: given v, w ∈ X� we can write v = xa1

1 · · ·xan
n and w = xb1

1 · · ·xbn
n with x1 < · · · < xn

in X and all ai, bi ∈ N; then

v ≤lex w :⇐⇒ (an, . . . , a1) ≤ (bn, . . . , b1) lexicographically (from the left).

The ordering ≤lex is total and satisfies (1), (2); hence if the ordering ≤ of X is a well-ordering, then ≤lex is
a term ordering of X�.

Remark 2.6. Let ≤ be a total ordering of X . For w ∈ X�, w 6= 1, we let

|w| := max {x ∈ X : x|w} (with respect to ≤).

We also put |1| := −∞ where we set −∞ < x for all x ∈ X . One of the perks of using the lexicographic
ordering as a term ordering on X� is that if v and w are monomials with v ≤lex w, then |v| ≤ |w|. Below,
we often use this observation.

The previous example shows that for every set X there exists a term ordering of X�, since every set can
be well-ordered by the Axiom of Choice. In fact, every set X can be equipped with a well-ordering every
proper initial segment of which has strictly smaller cardinality than X ; in other words, the order type of this
ordering (a certain ordinal number) is a cardinal number. We shall call such an ordering of X a cardinal

well-ordering of X .

Lemma 2.7. Let X be a set equipped with a cardinal well-ordering, and let I be a proper initial segment

of X. Then every injective function I → X can be extended to a permutation of X.

Proof. Since this is clear if X is finite, suppose that X is infinite. Let ϕ : I → X be injective. Since
I has cardinality |I| < |X | and X is infinite, we have |X | = max {|X \ I|, |I|} = |X \ I|. Similarly, since
|ϕ(I)| = |I| < |X |, we also have |X \ ϕ(I)| = |X |. Hence there exists a bijection ψ : X \ I → X \ ϕ(I).
Combining ϕ and ψ yields a permutation of X as desired. �

2.5. A new ordering of monomials. Let G be a permutation group on a set X , that is, a group G
together with a faithful action (σ, x) 7→ σx : G ×X → X of G on X . The action of G on X extends in a
natural way to a faithful action of G on X�: σw = σx1 · · ·σxn for σ ∈ G, w = x1 · · ·xn ∈ X�. Given a term
ordering ≤ of X�, we define a new relation on X� as follows:

Definition 2.8. (The symmetric cancellation ordering corresponding to G and ≤.)

v � w :⇐⇒

{
v ≤ w and there exist σ ∈ G and a monomial
u ∈ X� such that w = uσv and for all v′ ≤ v,
we have uσv′ ≤ w.

Remark 2.9. Every term ordering ≤ is linear : v ≤ w ⇐⇒ uv ≤ uw for all monomials u, v, w. Hence
the condition above may be rewritten as: v ≤ w and there exists σ ∈ G such that σv|w and σv′ ≤ σv for all
v′ ≤ v. (We say that “σ witnesses v � w.”)

Example 2.10. Let X = {x1, x2, . . .} be a countably infinite set of indeterminates, ordered such that
x1 < x2 < · · · , and let ≤ = ≤lex be the corresponding lexicographic ordering of X�. Let also G be the group
of permutations of {1, 2, 3, . . .}, acting on X via σxi = xσ(i). As an example of the relation �, consider the
following chain:

x2
1 � x1x

2
2 � x3

1x2x
2
3.

To verify the first inequality, notice that x1x
2
2 = x1σ(x2

1), in which σ is the transposition (1 2). If v′ =
xa1

1 · · ·xan
n ≤ x2

1 with a1, . . . , an ∈ N, an > 0, then it follows that n = 1 and a1 ≤ 2. In particular,
x1σv

′ = x1x
a1
2 ≤ x1x

2
2. For the second relationship, we have that x3

1x2x
2
3 = x3

1τ(x1x
2
2), in which τ is the

cycle (1 2 3). Additionally, if v′ = xa1
1 · · ·xan

n ≤ x1x
2
2 with a1, . . . , an ∈ N, an > 0, then n ≤ 2, and if n = 2,

then either a2 = 1 or a2 = 2, a1 ≤ 1. In each case we get x3
1τv

′ = x3
1x

a1
2 x

a2
3 ≤ x3

1x2x
2
3.
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Although Definition 2.8 appears technical, we will soon present a nice interpretation of it that involves
leading term cancellation of polynomials. First we verify that it is indeed an ordering.

Lemma 2.11. The relation � is an ordering on monomials.

Proof. First notice that w � w since we may take u = 1 and σ = the identity permutation. Next,
suppose that u � v � w. Then there exist permutations σ, τ in G and monomials u1, u2 in X� such that
v = u1σu, w = u2τv. In particular, w = u2(τu1)(τσu). Additionally, if v′ ≤ u, then u1σv

′ ≤ v, so that
u2τ(u1σv

′) ≤ w. It follows that u2(τu1)(τσv
′) ≤ w. This shows transitivity; anti-symmetry of � follows

from anti-symmetry of ≤. �

We offer a useful interpretation of this ordering (which motivates its name). We fix a commutative ring
A and let R = A[X ] be the ring of polynomials with coefficients from A in the collection of commuting
indeterminates X . Its elements may be written uniquely in the form

f =
∑

w∈X�

aww

where aw ∈ A for all w ∈ X�, and all but finitely many aw are zero. We say that a monomial w occurs in f
if aw 6= 0. Given a non-zero f ∈ R we define lm(f), the leading monomial of f (with respect to our choice
of term ordering ≤) to be the largest monomial w (with respect to ≤) which occurs in f . If w = lm(f), then
aw is the leading coefficient of f , denoted by lc(f), and aww is the leading term of f , denoted by lt(f). By
convention, we set lm(0) = lc(0) = lt(0) = 0. We let R[G] be the group ring of G over R (with multiplication
given by fσ · gτ = fg(στ) for f, g ∈ R, σ, τ ∈ G), and we view R as a left R[G]-module in the natural way.

Lemma 2.12. Let f ∈ R, f 6= 0, and u,w ∈ X�. Suppose that σ ∈ G witnesses lm(f) � w, and let

u ∈ X� with uσ lm(f) = w. Then lm(uσf) = uσ lm(f).

Proof. Put v = lm(f). Every monomial occurring in uσf has the form uσv′, where v′ occurs in f .
Hence v′ ≤ v, and since σ witnesses v � w, this yields uσv′ ≤ w. �

Suppose that A is a field, let v � w be in X� and let f , g be two polynomials in R with leading
monomials v, w, respectively. Then, from the definition and the lemma above, there exists a σ ∈ G and a
term cu (c ∈ A \ {0}, u ∈ X�) such that all monomials occurring in

h = g − cuσf

are strictly smaller (with respect to ≤) than w. For readers familiar with the theory of Gröbner bases,
the polynomial h can be viewed as a kind of symmetric version of the S-polynomial (see, for instance, [5,
Chapter 15]).

Example 2.13. In the situation of Example 2.10 above, let f = x1x
2
2+x2+x2

1 and g = x3
1x2x

2
3+x

2
3+x

4
1x3.

Set σ = (1 2 3), and observe that

g − x3
1σf = x4

1x3 + x2
3 − x3

1x3 − x3
1x

2
2

has a smaller leading monomial than g.

We are mostly interested in the case where our term ordering on X� is ≤lex, and G = SX . Under these
assumptions we have:

Lemma 2.14. Let v, w ∈ X� with v � w. Then for every σ ∈ SX witnessing v � w we have σ(X≤|v|) ⊆
X≤|w|. Moreover, if the order type of (X,≤) is ≤ ω, then we can choose such σ with the additional property

that σ(x) = x for all x > |w|.

Proof. To see the first claim, suppose for a contradiction that σx > |w| for some x ∈ X , x ≤ |v|. We
have σv|w, so if x|v, then σx|w, contradicting σx > |w|. In particular x < |v|, which yields x <lex v and
thus σx ≤lex σv ≤lex w, again contradicting σx > |w|. Now suppose that the order type of X is ≤ ω, and let
σ witness v � w. Then |v| ≤ |w|, and σX≤|v| can be extended to a permutation σ′ of the finite set X≤|w|.
We further extend σ′ to a permutation of X by setting σ′(x) = x for all x > |w|. One checks easily that σ′

still witnesses v � w. �
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2.6. Lovely orderings. We say that a term ordering ≤ of X� is lovely for G if the corresponding
symmetric cancellation ordering � on X� is a well-quasi-ordering. If ≤ is lovely for a subgroup of G, then
≤ is lovely for G.

Example 2.15. The symmetric cancellation ordering corresponding to G = {1} and a given term
ordering ≤ of X� is just

v � w ⇐⇒ v ≤ w ∧ v|w.

Hence a term ordering of X� is lovely for G = {1} if and only if divisibility in X� has no infinite antichains;
that is, exactly if X is finite.

This terminology is inspired by the following definition from [3] (which in turn goes back to an idea in
[2]):

Definition 2.16. Given an ordering ≤ of X , consider the following ordering of X :

x v y :⇐⇒

{
x ≤ y and there exists σ ∈ G such that σx = y
and for all x′ ≤ x, we have σx′ ≤ y.

A well-ordering ≤ of X is called nice (for G) if v is a well-quasi-ordering.

In [2] one finds various examples of nice orderings, and in [3] it is shown that if X admits a nice ordering
with respect to G, then for every field F , the free F -module FX with basis X is Noetherian as a module
over F [G]. It is clear that the restriction to X of a lovely ordering of X� is nice. However, there do exist
permutation groups (G,X) for which X admits a nice ordering, but X� does not admit a lovely ordering;
see Example 3.4 and Proposition 5.2 below.

Example 2.17. Suppose that X is countable. Then every well-ordering of X of order type ω is nice for
SX . To see this, we may assume that X = N with its usual ordering. It is then easy to see that if x ≤ y in
N, then x v y, witnessed by any extension σ of the strictly increasing map n 7→ n + y − x : N≤x → N to a
permutation of N.

The following crucial fact (generalizing the last example) is needed for our proof of Theorem 1.1:

Theorem 2.18. The lexicographic ordering of X� corresponding to a cardinal well-ordering of a set X
is lovely for the full symmetric group SX of X.

For the proof, let as above Fin(X,N) be the set of all sequences in N indexed by elements in some
proper initial segment of X which have finite range, quasi-ordered by ≤H. For a monomial w 6= 1 we define
w∗ : X≤|w| → N by

w∗(x) := max {a ∈ N : xa|w}.

Then clearly w∗ ∈ Fin(X,N), in fact, w∗(x) = 0 for all but finitely many x ∈ X≤|w|. We also let 1∗ := the
empty sequence ∅ → N (the unique smallest element of Fin(X,N)). We now quasi-order X� × Fin(X,N) by
the cartesian product of the ordering ≤lex on X� and the quasi-ordering ≤H on Fin(X,N). By Corollary 2.3,
Theorem 2.4, and the remark following Proposition 2.1, X� ×Fin(X,N) is well-quasi-ordered. Therefore, in
order to finish the proof of Theorem 2.18, it suffices to show:

Lemma 2.19. The map

w 7→ (w,w∗) : X� → X� × Fin(X,N)

is a quasi-embedding with respect to the symmetric cancellation ordering on X� and the quasi-ordering on

X� × Fin(X,N).

Proof. Suppose that v, w are monomials with v ≤lex w and v∗ ≤H w∗; we need to show that v � w.
For this we may assume that v, w 6= 1. So there exists a strictly increasing function ϕ : X≤|v| → X≤|w| such
that

(2.1) v∗(x) ≤ w∗(ϕ(x)) for all x ∈ X with x ≤ |v|.

By Lemma 2.7 there exists σ ∈ SX such that σX≤|v| = ϕX≤|v|. Then clearly σv|w by (2.1). Now let
v′ ≤lex v; we claim that σv′ ≤lex σv. Again we may assume v′ 6= 1. Then |v′| ≤ |v|, hence we may write

v′ = xa1
1 · · ·xan

n , v = xb1
1 · · ·xbn

n
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with x1 < · · · < xn ≤ |v| in X and ai, bj ∈ N. Put y1 := ϕ(x1), . . . , yn := ϕ(xn). Then y1 < · · · < yn and

σv′ = ya1
1 · · · yan

n , σv = yb1
1 · · · ybn

n ,

and therefore σv′ ≤lex σv as required. �

2.7. The case of countable X. In Section 4 we will apply Theorem 2.18 in the case where X is
countable. Then the order type of X is at most ω, and in the proof of the theorem given above we only
need to appeal to a special instance (Higman’s Lemma) of Theorem 2.4. We finish this section by giving a
self-contained proof of this important special case of Theorem 2.18, avoiding Theorem 2.4. Let S(X) denote
the subgroup of SX consisting of all σ ∈ SX with the property that σ(x) = x for all but finitely many
letters x ∈ X .

Theorem 2.20. The lexicographic ordering of X� corresponding to a cardinal well-ordering of a countable

set X is lovely for S(X).

Let X be countable and let ≤ be a cardinal well-ordering of X . Enumerate the elements of X as
x1 < x2 < · · · . We assume that X is infinite; this is not a restriction, since by Lemma 2.14 we have:

Lemma 2.21. If the lexicographic ordering of X� is lovely for S(X), then for any n and Xn := {x1, . . . , xn},
the lexicographic ordering of (Xn)� is lovely for SXn

. �

We begin with some preliminary lemmas. Here, � is the symmetric cancellation ordering corresponding
to S(X) and ≤lex. We identifty S(X) and S∞ := S(N) in the natural way, and for every n we regard Sn, the
group of permutations of {1, 2, . . . , n}, as a subgroup of S∞; then Sn ≤ Sn+1 for each n, and S∞ =

⋃
n Sn.

Lemma 2.22. Suppose that xa1
1 · · ·xan

n � xb1
1 · · ·xbn

n where ai, bj ∈ N, bn > 0. Then for any c ∈ N we

have xa1
1 · · ·xan

n � xc
1x

b1
2 · · ·xbn

n+1.

Proof. Let v := xa1
1 · · ·xan

n , w := xb1
1 · · ·xbn

n . We may assume v 6= 1. Clearly v ≤lex w and bn > 0

yield xa1
1 · · ·xan

n ≤lex x
c
1x

b1
2 · · ·xbn

n+1. Let now σ ∈ S∞ witness v � w. Let τ be the cyclic permutation τ =

(1 2 3 · · · (n+ 1)) and set σ̂ := τσ. Then σv|w yields σ̂v|τw, hence σ̂v|xc
1τw = xc

1x
b1
2 · · ·xbn

n+1. Next, suppose
that v′ ≤lex v; then σv′ ≤lex σv. By Lemma 2.14 and the nature of τ , the map τσ({1, . . . , |v|}) is strictly

increasing, which gives σ̂v′ = τσv′ ≤lex τσv = σ̂v. Hence σ̂ witnesses xa1
1 · · ·xan

n � xc
1x

b1
2 · · ·xbn

n+1. �

Lemma 2.23. If xa1
1 · · ·xan

n � xb1
1 · · ·xbn

n , where ai, bj ∈ N, bn > 0, and a, b ∈ N are such that a ≤ b,

then xa
1x

a1
2 · · ·xan

n+1 � xb
1x

b1
2 · · ·x

bn+1

n+1 .

Proof. As before let v := xa1

1 · · ·xan
n , w := xb1

1 · · ·xbn
n . Once again, we may assume v 6= 1, and it is

clear that xa
1x

a1
2 · · ·xan

n+1 ≤lex x
b
1x

b1
2 · · ·x

bn+1

n+1 . Let σ ∈ S∞ witness v � w. By Lemma 2.14 we may assume

that σ(xi) = xi for all i > n. Let τ be the cyclic permutation τ = (1 2 · · · (n + 1)). Setting σ̂ = τστ−1, we
have σ̂x1 = x1, hence

(2.2) σ̂(xa
1x

a1
2 · · ·xan

n+1) = σ̂(xa
1)σ̂(xa1

2 · · ·xan

n+1) = xa
1τσv.

Since σv|w, this last expression divides xb
1τw = xb

1x
b1
2 · · ·xbn

n+1. Suppose that v′ = xc1
1 · · ·x

cn+1

n+1 ≤lex

xa
1x

a1
2 · · ·xan

n+1, where ci ∈ N. Then, since we are using a lexicographic order, we have

xc2
2 · · ·x

cn+1

n+1 ≤lex x
a1
2 · · ·xan

n+1

and therefore

τ−1(xc2
2 · · ·x

cn+1

n+1 ) = xc2
1 · · ·xcn+1

n ≤lex τ
−1(xa1

2 · · ·xan

n+1) = v.

By assumption, this implies that στ−1(xc2
2 · · ·x

cn+1

n+1 ) ≤lex σv and thus by (2.2)

σ̂(xc2
2 · · ·x

cn+1

n+1 ) ≤lex τσv = σ̂(xa1
2 · · ·xan

n+1).

If this inequality is strict, then since 1 /∈ σ̂
(
{2, . . . , n+ 1}

)
, clearly

σ̂v′ = xc1
1 σ̂(xc2

2 · · ·x
cn+1

n+1 ) <lex x
a
1τσv = σ̂(xa

1x
a1
2 · · ·xan

n+1).

Otherwise xc2
2 · · ·x

cn+1

n+1 = xa1
2 · · ·xan

n+1, hence c1 ≤ a, in which case we still have σ̂v′ ≤lex σ̂(xa
1x

a1
2 · · ·xan

n+1).

Therefore σ̂ witnesses xa
1x

a1
2 · · ·xan

n+1 � xb
1x

b1
2 · · ·x

bn+1

n+1 . This completes the proof. �
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We now have enough to show Theorem 2.20. The proof uses the basic idea from Nash-Williams’ proof
[13] of Higman’s lemma. Assume for the sake of contradiction that there exists a bad sequence

w(1), w(2), . . . , w(n), . . . in X�.

For w ∈ X� \ {1} let j(w) be the index j ≥ 1 with |w| = xj , and put j(1) := 0. We may assume that

the bad sequence is chosen in such a way that for every n, j(w(n)) is minimal among the j(w), where w
ranges over all elements of X� with the property that w(1), w(2), . . . , w(n−1), w can be continued to a bad
sequence in X�. Because 1 ≤lex w for all w ∈ X�, we have j(w(n)) > 0 for all n. For every n > 0, write

w(n) = xa(n)

1 v(n) with a(n) ∈ N and v(n) ∈ X� not divisible by x1. Since N is well-ordered, there is an infinite
sequence 1 ≤ i1 < i2 < · · · of indices such that a(i1) ≤ a(i2) ≤ · · · . Consider the monoid homomorphism
α : X� → X� given by α(xi+1) = xi for all i > 1. Then j(α(w)) = j(w) − 1 if w 6= 1. Hence by minimality
of w(1), w(2), . . . , the sequence

w(1), w(2), . . . , w(i1−1), α(v(i1)), α(v(i2)), . . . , α(v(in)), . . .

is good; that is, there exist j < i1 and k with w(j) � α(v(ik)), or there exist k < l with α(v(ik)) � α(v(il)).
In the first case we have w(j) � w(ik) by Lemma 2.22; and in the second case, w(ik) � w(il) by Lemma 2.23.
This contradicts the badness of our sequence w(1), w(2), . . . , finishing the proof.

Question. Careful inspection of the proof of Theorem 2.18 (in particular Lemma 2.7) shows that in the
statement of the theorem, we can replace SX by its subgroup consisting of all σ with the property that the
set of x ∈ X with σ(x) 6= x has cardinality < |X |. In Theorem 2.18, can one always replace SX by S(X)?

3. Proof of the Finiteness Theorem

We now come to the proof our main result. Throughout this section we let A be a commutative
Noetherian ring, X an arbitrary set, R = A[X ], and we let G be a permutation group on X . An R[G]-
submodule of R will be called a G-invariant ideal of R, or simply an invariant ideal, if G is understood. We
will show:

Theorem 3.1. If X� admits a lovely term ordering for G, then R is Noetherian as an R[G]-module.

For G = {1} and X finite, this theorem reduces to Hilbert’s basis theorem, by Example 2.15. We also
obtain Theorem 1.1:

Corollary 3.2. The R[SX ]-module R is Noetherian.

Proof. Choose a cardinal well-ordering of X . Then the corresponding lexicographic ordering of X� is
lovely for SX , by Theorem 2.18. Apply Theorem 3.1. �

Remark 3.3. It is possible to replace the use of Theorem 2.18 in the proof of the corollary above by the
more elementary Theorem 2.20. This is because if the R[SX ]-module R was not Noetherian, then one could
find a countably generated R[SX ]-submodule of R which is not finitely generated, and hence a countable
subset X ′ of X such that R′ = A[X ′] is not a Noetherian R′[SX′ ]-module.

The following example shows how the conclusion of Theorem 3.1 may fail:

Example 3.4. Suppose that G has a cyclic subgroup H which acts freely and transitively on X . Then
X has a nice ordering (see [2]), but R = Q[X�] is not Noetherian. To see this let σ be a generator for H ,
and let x ∈ X be arbitrary. Then the R[G]-submodule of R = Q[X�] generated by the elements σnxσ−nx
(n ∈ N) is not finitely generated. So by Theorem 3.1, X� does not admit a lovely term ordering for G.

For the proof of Theorem 3.1 we develop a bit of Gröbner basis theory for the R[G]-module R. For the
time being, we fix an arbitrary term ordering ≤ (not necessarily lovely for G) of X�.

3.1. Reduction of polynomials. Let f ∈ R, f 6= 0, and let B be a set of non-zero polynomials in R.
We say that f is reducible by B if there exist pairwise distinct g1, . . . , gm ∈ B, m ≥ 1, such that for each i
we have lm(gi) � lm(f), witnessed by some σi ∈ G, and

lt(f) = a1w1σ1 lt(g1) + · · · + amwmσm lt(gm)
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for non-zero ai ∈ A and monomials wi ∈ X� such that wiσi lm(gi) = lm(f). In this case we write f −→
B

h,

where

h = f −
(
a1w1σ1g1 + · · · + amwmσmgm

)
,

and we say that f reduces to h by B. We say that f is reduced with respect to B if f is not reducible by B.
By convention, the zero polynomial is reduced with respect to B. Trivially, every element of B reduces to 0.

Example 3.5. Suppose that A is a field. Then f is reducible by B if and only if there exists some g ∈ B
such that lm(g) � lm(f).

Example 3.6. Suppose that f is reducible by B as defined (for finite X) in, say, [1, Chapter 4], that is:
there exist g1, . . . , gm ∈ B and a1, . . . , am ∈ A (m ≥ 1) such that lm(gi)| lm(f) for all i and

lc(f) = a1 lc(g1) + · · · + am lc(gm).

Then f is reducible by B in the sense defined above. (Taking σi = 1 for all i.)

Remark 3.7. Suppose that G = SX , the term ordering ≤ of X� is ≤lex, and the order type of (X,≤)
is ≤ ω. Then in the definition of reducibility by B above, we may require that the σi satisfy σi(x) = x for
all 1 ≤ i ≤ m and x > | lm(f)|. (By Lemma 2.14.)

The smallest quasi-ordering on R extending the relation −→
B

is denoted by
∗

−→
B

. If f, h 6= 0 and f −→
B

h,

then lm(h) < lm(f), by Lemma 2.12. In particular, every chain

h0 −→
B

h1 −→
B

h2 −→
B

· · ·

with all hi ∈ R \ {0} is finite. (Since the term ordering ≤ is well-founded.) Hence there exists r ∈ R such

that f
∗

−→
B

r and r is reduced with respect to B; we call such an r a normal form of f with respect to B.

Lemma 3.8. Suppose that f
∗

−→
B

r. Then there exist g1, . . . , gn ∈ B, σ1, . . . , σn ∈ G and h1, . . . , hn ∈ R

such that

f = r +

n∑

i=1

hiσigi and lm(f) ≥ max
1≤i≤n

lm(hiσigi).

(In particular, f − r ∈ 〈B〉R[G].)

Proof. This is clear if f = r. Otherwise we have f −→
B

h
∗

−→
B

r for some h ∈ R. Inductively we may

assume that there exist g1, . . . , gn ∈ B, σ1, . . . , σn ∈ G and h1, . . . , hn ∈ R such that

h = r +

n∑

i=1

hiσigi and lm(h) ≥ max
1≤i≤n

lm(hiσigi).

There are also gn+1, . . . , gn+m ∈ B, σn+1, . . . , σn+m ∈ G, an+1, . . . , an+m ∈ A and wn+1, . . . , wn+m ∈ X�

such that lm(wn+iσn+ign+i) = lm(f) for all i and

lt(f) =

m∑

i=1

an+iwn+iσn+i lt(gn+i), f = h+

m∑

i=1

an+iwn+iσn+ign+i.

Hence putting hn+i := an+iwn+i for i = 1, . . . ,m we have f = r +
∑n+m

j=1 hjσjgj and lm(f) > lm(h) ≥
lm(hjσjgj) if 1 ≤ j ≤ n, lm(f) = lm(hjσjgj) if n < j ≤ n+m. �

Remark 3.9. Suppose that G = SX , ≤ = ≤lex, and X has order type ≤ ω. Then in the previous lemma
we can choose the σi such that in addition σi(x) = x for all i and all x > | lm(f)|. (By Remark 3.7.)
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3.2. Gröbner bases. Let B be a subset of R. We let

lt(B) :=
〈
lc(g)w : 0 6= g ∈ B, lm(g) � w

〉
A

be the A-submodule of R generated by all elements of the form lc(g)w, where g ∈ B is non-zero and w is a
monomial with lm(g) � w. Clearly for non-zero f ∈ R we have: lt(f) ∈ lt(B) if and only if f is reducible
by B. In particular, lt(B) contains

{
lt(g) : g ∈ B

}
, and for an ideal I of R which is G-invariant, we simply

have

lt(I) =
{

lt(f) : f ∈ I
}
.

(Use Lemma 2.12.) We say that a subset B of an invariant ideal I of R is a Gröbner basis for I (with respect
to our choice of term ordering ≤) if lt(I) = lt(B).

Lemma 3.10. Let I be an invariant ideal of R and B be a set of non-zero elements of I. The following

are equivalent:

(1) B is a Gröbner basis for I.
(2) Every non-zero f ∈ I is reducible by B.

(3) Every f ∈ I has normal form 0. (In particular, I = 〈B〉R[G].)
(4) Every f ∈ I has unique normal form 0.

Proof. The implications (1) ⇒ (2) ⇒ (3) ⇒ (4) are either obvious or follow from the remarks preceding
the lemma. Suppose that (4) holds. Every f ∈ I \ {0} with lt(f) /∈ lt(B) is reduced with respect to B, hence
has two distinct normal forms (0 and f), a contradiction. Thus lt(I) = lt(B). �

Suppose that B is a Gröbner basis for an ideal I of the polynomial ring R = A[X�], in the usual sense of
the word (as defined, for finite X , in [1, Chapter 4]); if I is invariant, then B is a Gröbner basis for I as defined
above (by Example 3.6). Moreover, for G = {1}, the previous lemma reduces to a familiar characterization
of Gröbner bases in the usual case of polynomial rings. It is probably possible to also introduce a notion
of S-polynomial and to prove a Buchberger-style criterion for Gröbner bases in our setting, leading to a
completion procedure for the construction of Gröbner bases. At this point, we will not pursue these issues
further, and rather show:

Proposition 3.11. Suppose that the term ordering ≤ of X� is lovely for G. Then every invariant ideal

of R has a finite Gröbner basis.

For a subset B of R let lm(B) denote the final segment of X� with respect to � generated by the lm(g),
g ∈ B. If A is a field, then a subset B of an invariant ideal I of R is a Gröbner basis for I if and only if
lm(B) = lm(I). Hence in this case, the proposition follows immediately from the equivalence of (1) and (4)
in Proposition 2.1. For the general case we use the following observation:

Lemma 3.12. Let S be a well-quasi-ordered set and T be a well-founded ordered set, and let ϕ : S → T
be decreasing: s ≤ t⇒ ϕ(s) ≥ ϕ(t), for all s, t ∈ S. Then the quasi-ordering ≤ϕ on S defined by

s ≤ϕ t :⇐⇒ s ≤ t ∧ ϕ(s) = ϕ(t)

is a well-quasi-ordering. �

Proof of Proposition 3.11. Suppose now that our term ordering of X� is lovely for G, and let I be
an invariant ideal of R. For w ∈ X� consider

lc(I, w) :=
{

lc(f) : f ∈ I, and f = 0 or lm(f) = w
}
,

an ideal of A. Note that if v � w, then lc(I, v) ⊆ lc(I, w). We apply the lemma to S = X�, quasi-ordered by
�, T = the collection of all ideals of A, ordered by reverse inclusion, and ϕ given by w 7→ lc(I, w). Thus by
(4) in Proposition 2.1, applied to the final segmentX� of the well-quasi-ordering ≤ϕ, we obtain finitely many
w1, . . . , wm ∈ X� with the following property: for every w ∈ X� there exists some i ∈ {1, . . . ,m} such that
wi � w and lc(I, wi) = lc(I, w). Using Noetherianity of A, for every i we now choose finitely many non-zero
elements gi1, . . . , gini

of I (ni ∈ N), each with leading monomial wi, whose leading coefficients generate the
ideal lc(I, wi) of A. We claim that

B := {gij : 1 ≤ i ≤ m, 1 ≤ j ≤ ni}
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is a Gröbner basis for I. To see this, let 0 6= f ∈ I, and put w := lm(f). Then there is some i with wi � w
and lc(I, wi) = lc(I, w). This shows that f is reducible by {gi1, . . . , gi,ni

}, and hence by B. By Lemma 3.10,
B is a Gröbner basis for I. �

From Proposition 3.11 and the implication (1) ⇒ (3) in Lemma 3.10 we obtain Theorem 3.1.

3.3. A partial converse of Theorem 3.1. Consider now the quasi-ordering |G of X� defined by

v|Gw :⇐⇒ ∃σ ∈ G : σv|w,

which extends every symmetric cancellation ordering corresponding to a term ordering of X�. If M is a set
of monomials from X� and F the final segment of (X�, |G) generated by M , then the invariant ideal 〈M〉R[G]

of R is finitely generated as an R[G]-module if and only if F is generated by a finite subset of M . Hence by
the implication (4) ⇒ (1) in Proposition 2.1 we get:

Lemma 3.13. If R is Noetherian as an R[G]-module, then |G is a well-quasi-ordering. �

This will be used in Section 5 below.

3.4. Connection to a concept due to Michler. Let ≤ be a term ordering of X�. For each σ ∈ G
we define a term ordering ≤σ on X� by

v ≤σ w ⇐⇒ σv ≤ σw.

We denote the leading monomial of f ∈ R with respect to ≤σ by lmσ(f). Clearly we have

(3.1) σ lm(f) = lmσ−1(σf) for all σ ∈ G and f ∈ R.

Let I be an invariant ideal of R. Generalizing terminology introduced in [10], let us call a set B of non-zero
elements of I a universal G-Gröbner basis for I (with respect to ≤) if B contains, for every σ ∈ G, a Gröbner
basis (in the usual sense of the word) for the ideal I with respect to the term ordering ≤σ. If the set X
of indeterminates is finite, then every invariant ideal of R has a finite universal G-Gröbner basis. By the
remark following Lemma 3.10, every universal G-Gröbner basis for an invariant ideal I of R is a Gröbner
basis for I. We finish this section by observing:

Lemma 3.14. Suppose that A is field. If B is a Gröbner basis for the invariant ideal I of R, then

GB = {σg : σ ∈ G, g ∈ B}

is a universal G-Gröbner basis for I.

Proof. Let σ ∈ G and f ∈ I, f 6= 0. Then σf ∈ I, hence there exists τ ∈ G and g ∈ B such that
w ≤ lm(g) ⇒ w ≤τ lm(g) for all w ∈ X�, and τ lm(g)| lm(σf). The first condition implies in particular that
τ lm(g) = lm(τg), hence σ−1τ lm(g) = lmσ(σ−1τg) and σ−1 lm(σf) = lmσ(f) by (3.1). Put h := σ−1τg ∈
GB. Then lmσ(h)| lmσ(f) by the second condition. This shows that GB contains a Gröbner basis for I with
respect to ≤σ, as required. �

Example 3.15. Suppose that G = Sn, the group of permutations of {1, 2, . . . , n}, acting on X =
{x1, . . . , xn} via σxi = xσ(i). The invariant ideal I = 〈x1, . . . , xn〉R has Gröbner basis {x1} with respect to
the lexicographic ordering; a corresponding (minimal) universal Sn-Gröbner basis for I is {x1, . . . , xn}.

4. Invariant Chains of Ideals

In this section we describe a relationship between certain chains of increasing ideals in finite-dimensional
polynomials rings and invariant ideals of infinite-dimensional polynomial rings. We begin with an abstract
setting that is suitable for placing the motivating problem (described in the next section) in a proper context.
Throughout this section, m and n range over the set of positive integers. For each n, let Rn be a commutative
ring, and assume that Rn is a subring of Rn+1, for each n. Suppose that the symmetric group on n letters
Sn gives an action (not necessarily faithful) on Rn such that f 7→ σf : Rn → Rn is a ring homomorphism,
for each σ ∈ Sn. Furthermore, suppose that the natural embedding of Sn into Sm for n ≤ m is compatible
with the embedding of rings Rn ⊆ Rm; that is, if σ ∈ Sn and σ̂ is the corresponding element in Sm, then
σ̂Rn = σ. Note that there exists a unique action of S∞ on the ring R :=

⋃
n≥1Rn which extends the action

of each Sn on Rn. An ideal of R is invariant if σf ∈ I for all σ ∈ S∞, f ∈ I.
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We will need a method for lifting ideals of smaller rings into larger ones, and one such technique is as
follows.

Definition 4.1. For m ≥ n, the m-symmetrization Lm(B) of a set B of elements of Rn is the Sm-
invariant ideal of Rm given by

Lm(B) = 〈g : g ∈ B〉Rm[Sm]

In order for us to apply this definition sensibly, we must make sure that the m-symmetrization of an
ideal can be defined in terms of generators.

Lemma 4.2. If B is a set of generators for the ideal IB = 〈B〉Rn
of Rn, then Lm(IB) = Lm(B).

Proof. Suppose that B generates the ideal IB ⊆ Rn. Clearly, Lm(B) ⊆ Lm(IB). Therefore, it is
enough to show the inclusion Lm(IB) ⊆ Lm(B). Suppose that h ∈ Lm(IB) so that h =

∑s
j=1 fj · σjhj for

elements fj ∈ Rm, hj ∈ IB and σj ∈ Sm. Next express each hj =
∑rj

i=1 pijgij for pij ∈ Rn and gij ∈ B.
Substitution into the expression above for h gives us

h =

s∑

j=1

rj∑

i=1

fj · σjpij · σjgij .

This is easily seen to be an element of Lm(B), completing the proof. �

Example 4.3. Let S = Q[t1, t2], Rn = Q[x1, . . . , xn], and consider the natural action of Sn on Rn. Let
Q be the kernel of the homomorphism induced by the map φ : R3 → S given by φ(x1) = t21, φ(x2) = t22, and
φ(x3) = t1t2. Then, Q = 〈x1x2 − x2

3〉, and L4(Q) ⊆ R4 is generated by the following 12 polynomials:

x1x2 − x2
3, x1x2 − x2

4, x1x3 − x2
2, x1x3 − x2

4,

x1x4 − x2
3, x1x4 − x2

2, x2x3 − x2
1, x2x3 − x2

4,

x2x4 − x2
1, x2x4 − x2

3, x3x4 − x2
1, x3x4 − x2

2.

We would also like a way to project a set of elements in Rm down to a smaller ring Rn (n ≤ m).

Definition 4.4. Let B ⊆ Rm and n ≤ m. The n-projection Pn(B) of B is the Sn-invariant ideal of Rn

given by
Pn(B) = 〈g : g ∈ B〉Rm[Sm] ∩Rn.

We now consider increasing chains I◦ of ideals In ⊆ Rn:

I1 ⊆ I2 ⊆ · · · ⊆ In ⊆ · · · ,

simply called chains below. Of course, such chains will usually fail to stabilize since they are ideals in larger
and larger rings. However, it is possible for these ideals to stabilize “up to the action of the symmetric
group,” a concept we make clear below. For the purposes of this work, we will only consider a special
class of chains; namely, a symmetrization invariant chain (resp. projection invariant chain) is one for which
Lm(In) ⊆ Im (resp. Pn(Im) ⊆ In) for all n ≤ m. If I◦ is both a symmetrization and a projection invariant
chain, then it will be simply called an invariant chain. We will encounter some concrete invariant chains in
the next section. The stabilization definition alluded to above is as follows.

Definition 4.5. A symmetrization invariant chain of ideals I◦ as above stabilizes modulo the symmetric

group (or simply stabilizes) if there exists a positive integer N such that

Lm(In) = Im for all m ≥ n > N .

To put it another way, accounting for the natural action of the symmetric group, the ideals In are the
same for large enough n. Let us remark that if for a symmetrization invariant chain I◦, there is some integer
N such that Lm(IN ) = Im for all m > N , then I◦ stabilizes. This follows from the inclusions

Im = Lm(IN ) ⊆ Lm(In) ⊆ Im, n > N.

Any chain I◦ naturally gives rise to an ideal I(I◦) of R =
⋃

n≥1Rn by way of

I(I◦) :=
⋃

n≥1

In.
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Conversely, if I is an ideal of R, then

In = Jn(I) := I ∩Rn

defines the components of a chain J (I) := I◦. Clearly, for any ideal I ⊆ R, we have I ◦ J (I) = I, but, as
is easily seen, it is not true in general that J ◦ I(I◦) = I◦. However, for invariant chains, this relationship
does hold, as the following straightforward lemma describes.

Lemma 4.6. There is a one-to-one, inclusion-preserving correspondence between invariant chains I◦ and

invariant ideals I of R given by the maps I and J . �

For the remainder of this section we consider the case where, for a commutative Noetherian ring A, we
have Rn = A[x1, . . . , xn] for each n, endowed with the natural action of Sn on the indeterminates x1, . . . , xn.
Then R = A[X�] where X = {x1, x2, . . .}. We use the results of the previous section to demonstrate the
following.

Theorem 4.7. Every symmetrization invariant chain stabilizes modulo the symmetric group.

Proof. Given a symmetrization invariant chain, construct the invariant ideal I = I(I◦) of R. One
would now like to apply Theorem 1.1, however, more care is needed to prove stabilization. Let ≤ be a well-
ordering of X of order type ω, and let B be a finite Gröbner basis for I with respect to the corresponding
term ordering ≤lex of X�. (Theorem 2.20 and Proposition 3.11.) Choose a positive integer N such that
B ⊆ IN ; we claim that Im = Lm(IN ) for all m ≥ N . Let f ∈ Im, f 6= 0. By the equivalence of (1) and (3)

in Lemma 3.10 we have f
∗

−→
B

0. Hence by Lemma 3.8 there are g1, . . . , gn ∈ B, h1, . . . , hn ∈ R, as well as

σ1, . . . , σn ∈ S∞, such that

f = h1σ1g1 + · · · + hnσngn and lm(f) = max
i

lm(hiσigi).

By Remark 3.9 we may assume that in fact σi ∈ Sm for each i. Moreover lm(hi) ≤lex lm(f), hence
| lm(hi)| ≤ | lm(f)| ≤ m, for each i. Therefore hi ∈ Rm for each i. This shows that f ∈ Lm(B) ⊆ Lm(IN ) as
desired. �

5. A Chemistry Motivation

We can now discuss the details of the basic problem that is of interest to us. It was brought to our
attention by Bernd Sturmfels, who, in turn, learned about it from Andreas Dress.

Fix a natural number k ≥ 1. Given a set S we denote by 〈S〉k the set of all ordered k-element subsets
of S, that is, 〈S〉k is the set of all k-tuples u = (u1, . . . , uk) ∈ Sk with pairwise distinct u1, . . . , uk. We also
just write 〈n〉k instead of 〈{1, . . . , n}〉k. Let K be a field, and for n ≥ k consider the polynomial ring

Rn = K
[
{xu}u∈〈n〉k

]
.

We let Sn act on 〈n〉k by

σ(u1, . . . , uk) =
(
σ(u1), . . . , σ(uk)

)
.

This induces an action (σ, xu) 7→ σxu = xσu of Sn on the indeterminates xu, which we extend to an action
of Sn on Rn in the natural way. We also put R =

⋃
n≥k Rn. Note that

R = K
[
{xu}u∈〈Ω〉k

]
,

where Ω = {1, 2, 3, . . .} is the set of positive integers, and that the actions of Sn on Rn combine uniquely
to an action of S∞ on R. Let now f(y1, . . . , yk) ∈ K[y1, . . . , yk], let t1, t2, . . . be an infinite sequence of
pairwise distinct indeterminates over K, and for n ≥ k consider the K-algebra homomorphism

φn : Rn → K[t1, . . . , tn], x(u1,...,uk) 7→ f(tu1 , . . . , tuk
).

The ideal
Qn = ker φn

ofRn determined by such a map is the prime ideal of algebraic relations between the quantities f(tu1 , . . . , tuk
).

Such ideals arise in chemistry [9, 15, 16]; of specific interest there is when f is a Vandermonde polynomial∏
i<j(yi − yj). In this case, the ideals Qn correspond to relations among a series of experimental measure-

ments. One would then like to understand the limiting behavior of such relations, and in particular, to see
that they stabilize up to the action of the symmetric group.
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Example 5.1. The permutation σ = (1 2 3) ∈ S3 acts on the elements

(1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 2)

of 〈3〉2 to give

(2, 3), (3, 2), (2, 1), (1, 2), (3, 1), (1, 3),

respectively. Let f(t1, t2) = t21t2. Then the action of σ on the valid relation x2
12x31 − x2

13x21 ∈ Q3 gives us
another relation x2

23x12 − x2
21x32 ∈ Q3.

It is easy to see that by construction, the chain Q◦ of ideals

Qk ⊆ Qk+1 ⊆ · · · ⊆ Qn ⊆ · · ·

(which we call the chain of ideals induced by the polynomial f) is an invariant chain. As in the proof of
Theorem 4.7, we would like to form the ideal Q =

⋃
n≥k Qn of the infinite-dimensional polynomial ring

R =
⋃

n≥k Rn, and then apply a finiteness theorem to conclude that Q◦ stabilizes in the sense mentioned

above (Definition 4.5). For k = 1, Theorem 4.7 indeed does the job. Unfortunately however, this simple-
minded approach fails for k ≥ 2:

Proposition 5.2. For k ≥ 2, the R[S∞]-module R is not Noetherian.

Proof. Let us make the dependence on k explicit and denote R by R(k). Then

x(u1,...,uk,uk+1) 7→ x(u1,...,uk)

defines a surjective K-algebra homomomorphism πk : R(k+1) → R(k) with invariant kernel. Hence if R(k+1)

is Noetherian as an R[S∞]-module, then so is R(k); thus it suffices to prove the proposition in the case
k = 2. Suppose therefore that k = 2. By Lemma 3.13 it is enough to produce an infinite bad sequence for
the quasi-ordering |S∞

of X�, where X = {xi : i ∈ 〈Ω〉2}. For this, consider the sequence of monomials

s3 = x(1,2)x(3,2)x(3,4)

s4 = x(1,2)x(3,2)x(4,3)x(4,5)

s5 = x(1,2)x(3,2)x(4,3)x(5,4)x(6,7)

...

sn = x(1,2)x(3,2)x(4,3) · · ·x(n,n−1)x(n,n+1) (n = 3, 4, . . . )

...

Now for n < m and any σ ∈ S∞, the monomial σsn does not divide sm. To see this, suppose otherwise.
Note that x(1,2), x(3,2) is the only pair of indeterminates which divides sn or sm and has the form x(i,j),
x(l,j) (i, j, l ∈ Ω). Therefore σ(2) = 2, and either σ(1) = 1, σ(3) = 3, or σ(1) = 3, σ(3) = 1. But since 1
does not appear as the second component j of a factor x(i,j) of sm, we have σ(1) = 1, σ(3) = 3. Since x(4,3)

is the only indeterminate dividing sn or sm of the form x(i,3) with i ∈ Ω, we get σ(4) = 4; since x(5,4) is the
only indeterminate dividing sn or sm of the form x(i,4) with i ∈ Ω, we get σ(5) = 5; etc. Ultimately this
yields σ(i) = i for all i = 1, . . . , n. But the only indeterminate dividing sm of the form x(n,j) with j ∈ Ω is
x(n,n−1), hence the factor σx(n,n+1) = x(n,σ(n+1)) of σsn does not divide sm. This shows that s3, s4, . . . is a
bad sequence for the quasi-ordering |S∞

, as claimed. �

Remark 5.3. The construction of the infinite bad sequence s3, s4, . . . in the proof of the previous
proposition was inspired by an example in [7].

5.1. A criterion for stabilization. Our next goal is to give a condition for the chain Q◦ to stabilize.
Given g ∈ R, we define the variable size of g to be the number of distinct indeterminates xu that appear in
g. For example, g = x5

12 + x45x23 + x45 has variable size 3.

Lemma 5.4. A chain of ideals Q◦ induced by a polynomial f ∈ K[y1, . . . , yk] stabilizes modulo the

symmetric group if and only if there exist integers M and N such that for all n > N , there are generators for

Qn with variable sizes at most M . Moreover, in this case a bound for stabilization is given by max(N, kM).
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Proof. Suppose M and N are integers with the stated property. To see that Q◦ stabilizes, since Q◦ is
an invariant chain, we need only verify that N ′ = max(N, kM) is such that Qm ⊆ Lm(Qn) for m ≥ n > N ′.
For this inclusion, it suffices that each generator in a generating set for the ideal Qm of Rm is in Lm(Qn).
Since m > N , there are generators B for Qm with variable sizes at most M . If g ∈ B, then there are at most
kM different integers appearing as subscripts of indeterminates in g. We can form a permutation σ ∈ Sm

such that σg ∈ RN ′ and thus in Rn. But then σg ∈ Pn(Qm) ⊆ Qn so that g = σ−1σg ∈ Lm(Qn) as desired.
Conversely, suppose that Q◦ stabilizes. Then there exists an N such that Qm = Lm(QN ) for all m > N .

Let B be any finite generating set for QN . Then for all m > N , Qm = Lm(B) is generated by elements of
bounded variable size, by Lemma 4.2. �

Although this condition is a very simple one, it will prove useful. Below we will apply it together with
a preliminary reduction to the case that each indeterminate y1, . . . , yk actually occurs in the polynomial
f , which we explain next. For this we let πk : R(k+1) → R(k) be the surjective K-algebra homomorphism
defined in the proof of Proposition 5.2. We write Q(k) for Q, and considering f ∈ K[y1, . . . , yk] as an element
of K[y1, . . . , yk, yk+1], we also let Q(k+1) be the kernel of the K-algebra homomorphsm

R(k+1) → K[t1, t2, . . .], x(u1,...,uk,uk+1) 7→ f(tu1 , . . . , tuk
, tuk+1

)

(= f(tu1 , . . . , tuk
)).

Note that πk(Q(k+1)) = Q(k), and the ideal kerπk of R(k+1) is generated by the elements

x(u1,...,uk,i) − x(u1,...,uk,j) (i, j ∈ Ω),

in particular kerπk ⊆ Q(k+1). It is easy to see that as an R(k+1)[S∞]-module, kerπk is generated by the
single element x(1,...,k,k+1) − x(1,...,k,k+2). These observations now yield:

Lemma 5.5. Suppose that the invariant ideal Q(k) of R(k) is finitely generated as an R(k)[S∞]-module.

Then the invariant ideal Q(k+1) of R(k+1) is finitely generated as an R(k+1)[S∞]-module. �

We let Sk act on 〈Ω〉k by

τ(u1, . . . , uk) = (uτ(1), . . . , uτ(k)) for τ ∈ Sk, (u1, . . . , uk) ∈ 〈Ω〉k.

This action gives rise to an action of Sk on {xu}u∈〈Ω〉k by τxu = xτu, which we extend to an action of Sk

on R in the natural way. We also let Sk act on K[y1, . . . , yk] by τf(y1, . . . , yk) = f(yτ(1), . . . , yτ(k)). Note
that

τQk ⊆ τQk+1 ⊆ · · · ⊆ τQn ⊆ · · ·

is the chain induced by τf . Using the lemma above we obtain:

Corollary 5.6. Let f ∈ K[y1, . . . , yk]. There are i ∈ {0, . . . , k} and τ ∈ Sk such that τf ∈ K[y1, . . . , yi]
and each of the indeterminates y1, . . . , yi occurs in τf . If the chain of ideals induced by the polynomial τf
stabilizes, then so does the chain of ideals induced by f . �

5.2. Chains induced by monomials. If the given polynomial f is a monomial, then the homomor-
phism φn from above produces a (homogeneous) toric kernel Qn. In particular, there is a finite set of
binomials that generate Qn (see [17]). Although a proof for the general toric case eludes us, we do have the
following.

Theorem 5.7. The sequence of kernels induced by a square-free monomial f ∈ K[y1, . . . , yk] stabilizes

modulo the symmetric group. Moreover, a bound for when stabilization occurs is N = 4k.

To prepare for the proof of this result, we discuss in detail the toric encoding associated to our problem
(see [17, Chapter 14] for more details). By Corollary 5.6, we may assume that f = y1 · · · yk. Then g−τg ∈ Q
for all g ∈ R. We say that u = (u1, . . . , uk) ∈ 〈Ω〉k is sorted if u1 < · · · < uk, and unsorted otherwise;
similarly we say that xu is sorted (unsorted) if u is sorted (unsorted, respectively). For example, x135 is a
sorted indeterminate, whereas x315 is not. Consider the set of vectors

An =
{
(i1, . . . , in) ∈ Zn : i1 + · · · + in = k, 0 ≤ i1, . . . , in ≤ 1

}
.

View An as an n-by-
(
n
k

)
matrix entries with 0 and 1, whose with columns are indexed by sorted indeterminates

xu and whose rows are indexed by ti (i = 1, . . . , n). (See Example 5.9 below.) Let sort( · ) denote the operator



Matthias Aschenbrenner and Christopher J. Hillar

which takes any word in {1, . . . , n}∗ and sorts it in increasing order. By [17, Remark 14.1], the toric ideal
IAn

associated to An is generated (as K-vector space) by the binomials xu1 · · ·xur
−xv1 · · ·xvr

, where r ∈ N

and the ui, vj are sorted elements of 〈n〉k such that sort(u1 · · ·ur) = sort(v1 · · ·vr). In particular, we have
IAn

⊆ Qn. Let B be any set of generators for the ideal IAn
.

Lemma 5.8. A generating set for the ideal Qn of Rn is given by

S = B ∪ {xu − xτu : τ ∈ Sk, u is sorted}.

Proof. Elements of Qn are of the form g = xu1
· · ·xur

−xv1
· · ·xvr

, in which the ui and vj are ordered
k-element subsets of {1, . . . , n} such that sort(u1 · · ·ur) = sort(v1 · · ·vr). We induct on the number t of ui

and vj that are not sorted. If t = 0, then g ∈ IAn
, and we are done. Suppose now that t > 0 and assume

without loss of generality that u1 is not sorted. Let τ ∈ Sk be such that τu1 is sorted, and consider the
element h = xτu1xu2

· · ·xur
− xv1

· · ·xvr
of Qn. This binomial involves t− 1 unsorted indeterminates, and

therefore, inductively, can be expressed in terms of S. But then

g = h− (xτu1 − xu1
)xu2

· · ·xur

can as well, completing the proof. �

Example 5.9. Let k = 2 and n = 4. Then

x12 x13 x14 x23 x24 x34

t1 1 1 1 0 0 0
t2 1 0 0 1 1 0
t3 0 1 0 1 0 1
t4 0 0 1 0 1 1

represents the matrix associated to A4. The ideal IA4 is generated by the two binomials x13x24 − x12x34

and x14x23 − x12x34. Hence Q4 is generated by these two elements along with

{x12 − x21, x13 − x31, x14 − x41, x23 − x32, x24 − x42, x34 − x43}.

We are now in a position to prove Theorem 5.7.

Proof of Theorem 5.7. By Lemma 5.4, we need only show that there exist generators for Qn which
have bounded variable sizes. Using [17, Theorem 14.2], it follows that IAn

has a quadratic (binomial)
Gröbner basis for each n (with respect to some term ordering of Rn). By Lemma 5.8, there is a set of
generators for Qn with variable sizes at most 4. This proves the theorem. �

We close with a conjecture that generalizes Theorem 5.7.

Conjecture 5.10. The sequence of kernels induced by a monomial f stabilizes modulo the symmetric

group.
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