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FINITE GROUP ACTIONS AND NONSEPARATING 2-SPHERES1

STEVEN P. PLOTNICK

Abstract. We extend the splitting theorem of Meeks-Yau for finite group actions

on three-manifolds to include manifolds containing nonseparating 2-spheres, and

give applications to branched covers of links.

0. Introduction. The purpose of this note is to point that the splitting theorem for

finite group actions on three-manifolds of Meeks-Yau [4, Theorem 9] can be

extended in an appropriate manner to include manifolds with Sl X S2 summands.

We then give applications to branched covers of links, proving several geometrically

"obvious" result.

The splitting theorem basically says that a finite group action on a compact,

orientable 3-manifold with no S1 X S2 summands splits, modulo permuting homeo-

morphic summands, as the equivariant connected sum of the actions on the

irreducible summands. (As stated in [4], homotopy sphere summands are not

permitted, but this restriction is no longer necessary. See §1.) This is false when

5' X S2 summands are present—even for involutions—as one can see in [1 and 2].

In [2], however, Kim and Tollefson show that all involutions can be built up from

involutions on irreducible 3-manifolds in a simple fashion by finding a suitable

collection of 2-spheres along which an involution can be split into simpler actions.

This is possible to do by cut and paste methods essentially because intersections

arising from an involution are easily visualized. In a similar manner, Gordon and

Litherland [1] were able to prove a Z2-equivariant loop theorem. For actions of more

general groups, these methods get hopelessly complicated. However, minimal surface

methods enables Meeks and Yau to overcome these problems and find invariant

collections of spheres and discs. We show below that the presence of nonseparating

2-spheres offers no real problem, and that the results of Kim and Tollefson can be

generalized to arbitrary groups.

All manifolds will be oriented, and all actions smooth.

I should like to thank the referee for several useful suggestions.

1. Splitting actions. Let G be a finite group. The most direct way to go from

G-actions on irreducible 3-manifolds to G-actions on arbitrary 3-manifolds seems to

be the following: Let A*,,... ,Xn be orientable, irreducible 3-manifolds, and suppose
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G acts on their disjoint union. Denote the stabilizer of A, by G,. In A,, pick a finite

G,-invariant set {x,,,.. .,x, „ } of points, and small balls BUj about the x, ; so that

U"'= ,¿?, is also G,-invariant. Denote the stabilizer of B¡ ¡ by G, ¡. Use the G-action

to translate these points and balls to the other Xk in the orbit of X¡. Do this once for

each orbit.

Now let t: {x, } *r> be an equivariant, fixed point free involution, so that

G, : = GT{i J) and the (linear) actions of G, y on B,d and BT(i/) are equivalent, where

t(xUj) = xT(, jy Remove U.-8,j and glue 35, y to 95T(iy) by an equivariant,

orientation-reversing diffeomorphism. If, for some /, j, there exists g E G with

gx, ■ = t(x,7), we also require that g(T(x,7)) = x¡j and that the glueing can be

chosen to commute with the action of g. (This leads to invariant spheres whose sides

are interchanged by certain group elements.) It is clear that we can do the above so

that the result, say X, carries a G-action.

Notice that if X contains no nonseparating 2-spheres, this description reduces to

that of Meeks and Yau. Keep in mind that some X¡ can be S3. Also, the G-action on

X depends strongly on the choice of glueing maps, as is easily seen from elementary

examples.

Theorem. All finite group actions on compact, orientable 3-manifolds arise via the

above construction.

Proof. Write A = #Y¡ # (#¡"S' X S2), where each Y, is irreducible. According

to [4, p. 480], there exists a collection r= {Su...,Sk} of embedded, disjoint

2-spheres in X which generate tr2( X) as a 7r,( A")-module, and G • T = T. According

to [3], we can also assume that any fake 3-ball in X is split off by one of the S,.

Lemma. Splitting X along T disconnects X into a collection of manifolds where every

2-sphere separates, i.e. T cuts off all handles.

Proof. The Hurewicz map p: it2(X) -» H2(X) has image ©J"Z given by the

nonseparating 2-spheres in #¡"S' X S2. Since T contains a 7r,-basis of tr2(X), p(T)

contains a Z-basis of H2( X).

With this description of A — T, we see that Assertion 2 of [4, p. 480] is still valid.

Thus, splitting X open along T yields a collection of irreducible manifolds minus

open balls, on which G acts. Capping these off yields a collection A",,..., X„ of

irreducible manifolds. The reverse process then determines the involution t and the

glueing data described above.

2. Branched covers of links. Suppose that X is the k-îo\d cyclic branched cover of a

link L in S3.

Proposition. // X contains a nonseparating 2-sphere, then L is geometrically split.

Proof. As we have seen, there exists an invariant family Zk ■ S2 of nonseparating

2-spheres. Splitting A along these yields components A",,...,Xn, with n < k. Since

the action is semifree, each component is actually Z^-invariant. (Otherwise, the

stabilizer G, of a component A, would act freely, and A,/G, would live in the

quotient space, with nontrivial fundamental group.) We claim that the Zk action on
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X¡ must freely permute the boundary spheres. If not, one of them is either invariant

under Zk (rotation with two fixed points) or invariant under Z2 C Zk, acting freely.

In the first case, we can find a simple closed curve in X intersecting this sphere once.

The image of this curve in X/Zk — S3 intersects the image of this sphere once, a

contradiction. The second case leads to a connected sum with RP3 in the orbit

space, again a contradiction. Thus, the boundary spheres are freely permuted, so that

n = 2. The orbit Zk ■ S2 goes down to a sphere which splits the link, proving the

proposition.

Therefore, it suffices to study branched covers with no nonseparating 2-spheres.

Proposition. Suppose X is the k-fold cyclic branched cover of a link L C S3, and X

contains no Sl X S2 summands. If X splits as a connected sum #"X¡, there is a

corresponding splitting of L as #" L¡, with A, the k-fold cyclic branched cover of L¡.

Proof. From Meeks and Yau, we know that the action splits, up to permuting

factors. However, since the action is semifree, any permuting of summands must be

a free permutation, so that the summand in question goes down homeomorphically

to the orbit space, a contradiction. Thus, the action splits, and the result follows.

Corollary (see [2, Corollary 4] for the case of involutions). A nonsplit link in S3

is prime » all cyclic branched covers are prime <=> one cyclic branched cover is prime.

Corollary. #("_1H*-1)^i x ^2 arises as me k.foid CyCnc branched cover of only

the trivial link of n components.

Proof. Induction and the Smith Conjecture.
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