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FINITE GROUP ACTIONS ON THE MODULI SPACE 
OF SELF-DUAL CONNECTIONS. I 
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ABSTRACT, Let M be a smooth simply connected closed 4-manifold with posi-
tive definite intersection form, Suppose a finite group G acts smoothly on AI , 
Let 7C: E -+ M be the instanton number one quaternion line bundle over lv! 
with a smooth G-action such that 7C is an equivariant map, We first show that 
there exists a Baire set in the G-invariant metrics on M such that the moduli 
space ,4(.G of G-invariant irreducible self-dual connections is a manifold, By 
utilizing the G-transversality theory of T. Petrie, we then identify cohomology 
obstructions to globally perturbing the full space ,4(. of irreducible self-dual 
connections to a G-manifold when G = Z2 and the fixed point set of the Z2 
action on M is a nonempty collection of isolated points and Riemann surfaces, 

1. INTRODUCTION 

Let G be a finite group, and let M be a simply connected closed smooth 
4manifold with a positive definite intersection intersection form and with a 
smooth action of G on it. Let TC: E ~ M be a quaternion line bundle with 
instanton number one and with a G-action on E through a bundle isomorphism 
such that TC is a G-map. The moduli space L of self-dual connections on E 
is a G-space but may not be a manifold. 

To make L a manifold, Donaldson [9] used a compact perturbation of a 
Fredholm map, and Freed and Uhlenbeck [14] found generic metrics on M. 
We cannot use these methods directly to make LaG-manifold, because Don-
aldson's perturbation is not G-equivariant and Uhlenbeck's method need not 
yield a G-invariant metric. 

We can regard this G-action on the bundle as a subgroup of a generalized 
gauge group [5]. From the G-action on the bundle, we can define naturally a 
G-action on the set 'Iff of all connections, the gauge group (5, nn (g'£) , and 
nn (E) , where g'£ is the associated Lie algebra bundle of E. G then acts on 
'Iff /(5 and the moduli space L. We use two different methods to transform 
this mysterious G-moduli space L into a smooth G-moduli space with some 
singularities. In [7] we will find generic metrics on M such that the moduli 
space L is a G-manifold when G is the group Z/2 n . 
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Let L ~G be the set of the G-invariant gauge equivalence classes of irre-
ducible self-dual connections. In this paper we first show that 

Theorem 4.6. There exists a Baire set in the G-invariant metrics which is ob-
tained by averaging, such that L ~G is a smooth manifold in the moduli L ~ 

of irreducible self-dual connections. 

To see the local G-structure of L at each self-dual G-invariant connection 
'V E L G , we will use the Atiyah-Singer G-index theorem [1, 3] for the G-
invariant elliptic complex: 

where J \7 is the formal adjoint of 'V . 
We now assume G = Z2 == (h). Suppose that the G-fixed point set F == 

{Pi} 7~ 1 U {T"} 7~ 1 on M, where Pi is an isolated fixed point and TA, is a 
Riemann surface with genus Ai. 

Theorem 3.10. If a connection 'V is an irreducible (reducible) G-invariant in 
L, h('V) = g('V) , and (hg)2 = + 1 for some gauge transformation g, then we 
get 

dim H~+ - dim H~+ = *(10 + 3A)( +1), 

dimH~_ - dimH~_ = *(10 - 3A), 

where A = n1 + I:;l~l X(T<') - sign(h : M), sign = signature, and H;,- means 
the ± 1 eigenspace of hg . 

Theorem 3.10 I • If 'V is a self-dual irreducible connection, h('V) = g('V) , and 
(hg)2 = -I for some gauge transformation g, then we have 

dimH~+ -dimH~+ = *(lO+A), 

dimH~_ -dimH~_ = *(IO-A), 

where H~ is the ± 1 eigenspace of h g . 

Theorem 3.10" . Let 'V be a selfdual reducible connection and g('V) = h('V) 
for some gauge transformation g ~ r \7. Then we get 

dim H~+ - dim H~+ = *(14 + A), 

dimH~_ - dimH~_ = *(10 - A), 

where H~ is the ± 1 eigenspace of gl h g g2 ' for some gl ' g2 E r \7 . 

By considering the ends of the moduli space [19, 30], together with Theorems 
3.10 and 3.10 I , we obtain the following theorem. 
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FINITE GROUP ACTIONS OF SELF-DUAL CONNECTIONS 235 

Theorem 5.6. The value A = n I + L~~ 1 (TA,) - sign( h : M) = 2. 

We can also get this value for A from the Lefschetz fixed point theorem. 
Using this index calculation, we want to perturb the map If/: '15 /18 ~ 

'15 x(l\ ~i(~£) given by If/("il) = (\7, R") to one transverse to the zero section. 
This Fredholm G-map If/ is locally equivalent to the sum of a G-equivariant 
linear map and a nonlinear G-equivariant map with finite dimensional range. 

By combining Theorems 3.10 and 3.10" , we then get 

Theorem 5.7. Suppose that \7 is G-invariant, reducible, and self-dual in L. 
Then there is a G-equivariant perturbation around \7 in fJ such that the per-
turbed moduli space has a neighborhood at \7 which is an open cone on Cp2 . 

Theorems 3.10 and 3.10 I then yield 

Theorem 5.10. If \7 is G-invariant and irreducible in L, then there is a G-
invariant smooth compact perturbation around \7 such that the perturbed new 
moduli space has a smooth 5-dimensional neighborhood at \7. 

We then apply a G-transversality technique of Petrie [22] to investigate G-
transversality on a neighborhood of the fixed point set L C • Consider a fiber 
bundle F ~ V ~ X where X = L C . Let Xo = {End of L u neighborhood 
of reducible connections in L C } n X, and F = Hom~(H~_, H~_) = the 
surjective G-homomorphisms. 

Theorem 6.6. (i) To perturb If/ G-transversafly throughout a neighborhood of 
",ftc we use the obstruction classes 8 3 (1f/) E H 3(X, Xo; Z). 

(ii) If 8 3 (If/) = 0, then the G-section If/ has a smooth compact G-perturbation 
R_ + a of the self-dual Yang-Mills equations which is transversal to the zero 
section throughout a small neighborhood of .~G . 

Let N(J{G) be a neighborhood of L C such that If/ is transverse to the zero 
C G section throughout NC.ft ). For each \7 E .. ,If\N(o~ ), we can choose a local 

coordinate chart 8".£ in 1i'? /18 such that h(8".£) n 8".£ = 121. Let 
G K = .~\{N( .. ft ) u End of.~ 

u neighborhood of reducible self-dual connections} . 

The compactness of K and the local splitting of If/ give us a G-map If/l: 'df /18 x 
D I1 (1/) ~ ~ x 0\'7'£) via If/l(X, 111) = If/(x) + a(x, w), where a is defined 
G-equivariantly for each w in an 1/-ball DI1 (1/) C RI1 for some n. 

Theorem 7.6. For almost all WE D I1 (1/) the restriction map If/( ) + a( ,w) is 
transversal to the zero section throughout a neighborhood of K . 

Thus if the obstruction cohomology classes 6 3 (If/) = 0, then we have a 
smooth G-manifold .~ of dimension 5 with A-singular points each of which 

) ) 

has a cone neighborhood on cr , where Ie = rank H-(M; Z) . 
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2. FINITE GROUP ACTIONS ON CONNECTIONS 

Recall that Hpn is the set of I-dimensional quaternion subspaces in the 
(n + 1 )-dimensional quat ern ion space H n+ I , and E = {(l , v) E Hpn x H n+ I : 

vEl}. The projection P: E -+ Hpn given by P(l, v) = I is a natural 
quaternion line bundle. The associated unit sphere bundle of E -+ Hpn is 
just the Hopf bundle S4n+3 -+ Hpn which is 4n-dimensional classifying of 

I 4 7 4· SU(2)-bundles. In case n = 1, HP = S and the Hopf bundle S -+ S IS 

4-dimensional classifying of SU(2)-bundies with C2(E)[S4] = -1. We have 
the following well-known fact: 

Theorem 2.1. Let M be a compact oriented 4-mani/old. Then there are natural 
1-1 correspondences {equivalence classes of SU(2)-bundles on M} +-> [M4 , S4] 

4 +->H(M;Z)=Z. 

Let E -+ M4 be a quaternion line bundle with instanton number one. The 
instanton number of this line bundle E is defined by -C2(E)[M]. If a finite 
cyclic group Z/nZ acts on M, we have an induced bundle h* E -+ M where h 
is a generator of Z/ nZ. Since the bundles E and h * E are bundle isomorphic 
on M we have a Z/nZ-action on this bundle E -+ M by composing any bundle 
isomorphism E to h * E and the induced isomorphism. Similarly if an abelian 
group acts on M, the group acts on the given bundle via pull backs. 

Let G be a finite group. Choose Riemannian metrics on the vector bundle 
E -+ M with respect to which G acts by isometries. Let 

rl(E) = 1(AkT* M ® E) 

be the k-forms on M with values in E. A Riemannian connection on E IS a 
linear map \7: nO (E) -+ n I (E) satisfying \7 (fa) = df ® a + f\7 (a) and 

d(a l , ( 2) = (\7al , ( 2) + (aI' \7(2) 

for any f E COO(M) and any a, aI' a2 E nO(E). We extend a Rieman-
nian connection \7 on E to the generalized de Rham sequence nO(E) ~ 

I d" 2 I V' n (E)------.n (E)-+··· for any 8®aEn (E)d (8®a)=d8®a-8A\7a. 

The curvature of a connection \7 is the 2-form RV' = dV' 0 \7 E n 2(Hom(E , E)) 
with values in Hom(E, E). We have the Bianchi identity dV'RV' = o. The 
associated Lie algebra bundle JlE of E is given by JlE = P x SV (2) Y' ;III(2) , 
where P is the associated principal bundle of E and Y' ;III(2) is the Lie alge-
bra of SU (2). We have the induced metric on An T* M ® JlE from the metrics 
on M and JlE . The pointwise inner product gives an L 2 -norm in nn (JlE ) by 
setting (rP I' rP2) = fM(rP I , rP 2 ) dvol for any rP I' rP2 E nn(JlE ). The formal ad-
joint t5V': nn+I(JlE ) -+ nn(JlE ) of dV' is defined by (dV'rPI' rP2 ) = (rP I ' t5V'rP2) 

for all rPI E nn(JlE ) and rP2 E nn+I(JlE ). For each nonnegative integer I we 
define n7 (JlE ) to be the space of sections whose derivatives of order ~ fare 
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FINITE GROUP ACTIONS OF SELF-DUAL CONNECTIONS 237 

square integrable. Thus 0.7 (,'flE) is the Hilbert space completion of o.n (~E) 
with respect to the inner product 

I 

11(4), 4>2)1I~ = ~ /)'/4>1' '/4>2)dvol. 

Throughout this work we will implicitly use various Sobolev spaces without 
mention. 

Let ~ be the space of all SU(2)-connections on E. Since the difference 
of any two connections is in 0. I (~E)' ~ is an affine space having 0. I (~E) as 
the vector space of translations. On an oriented Riemannian 4-manifold M 
there is the Hodge star operator *: An T* M ---+ A 4-n T* M given by o:A * fJ = 
(0:, fJ)dvol E A4T*M. On the middle dimension A2T*M, *2 = I and so 
A2 * A2 * A2 * A2 * h ( ) . f T M = + T M EB _ T M, where ± T Mare t e ± I -elgenspaces 0 *. 

If we change the metric by multiplying by a positive number 5, the inner 
product on the tangent space is multiplied by 5 and on 2-forms by 5-2 • How-
ever, the volume form is multiplied by 52 . Thus * is conformally invariant on 
A 2 T* M. The adjoint operator 0 V' = - * dV' * on the 4-manifold. A connection 
"9 is (anti) self-dual if *RV' = RV' (_RV', respectively). 

Let P ---+ M be the associated principal bundle of E. Let P x SU (2) SU(2) ---+ 

M be the associated Lie group bundle where SU(2) acts by adjoint on fiber 
SU(2). The set of all sections Q; = r(P xSU(2) SU(2)) is .::alled the group of 
gauge transformations. There is a natural action of the gauge group Q; on the 
space ~ of connections, namely g("9) = go "9 0 g -I for all g E Q; and all 
"9 E ~. Let ,9; = ~ / Q; and ,£ = yf / Q;, where yf is the set of self-dual 
connections. 

Equivariant self-dual connections were first studied by Fintushel and Stern 
in [12]. Let a finite group G act on the bundle E ~ M through bundle 
isomorphisms such that 7r is a G-map. The compatible action induces an action 
on ~. On o.O(E) , h(a) = hoaoh- I for any hE G and any a E o.O(E) , where 
h -I is a diffeomorphism of M and h is a bundle map. For a connection "9, 
h("9)"a = h("9,,(h- I a)) , where a E o.O(E) and v is a vector field. There is an 
action of G on each o.k (,'9/,.) defined by (h4»."." = (h4»h~lil' ) ... h~I(I' ). Since 

I" • \ I * "-
G acts on M by isometries, G-action commutes with the *-operation. Also, 
G acts on the set .W of self-dual connections and G-action descends on the 
moduli space ,£ . The finite group G acts on ~, !l1 = ~ /Q; and L = yf /Q; . 

3. THE INDEX OF THE FUNDAMENTAL ELLIPTIC COMPLEX 

Let V be an n-dimensional vector space with inner product ( , ) by defining 
a homomorphism A2(V) -+ Hom(V, V) by (u II v)W = (u, w)v - (v, w)u 
for all u, v, W E V. We have ((u II v)w I ' w 2 ) + (WI' (u II v)w2 ) = O. We 
can identify A 2 (V) with the Lie algebra so( n) of the special orthogonal group 
SO(n) . 
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In dimension 4, the decomposition A2 = A: + A~ corresponds to the de-
composition of the Lie algebra so(4) = so(3) EB so(3). So, we can consider 
A~ as 3-dimensional Lie algebras. On the Lie group level the homomorphism 
n: Spin(4) = Spin(3) x Spin(3) ---+ SO(4) defined by n(g, h)x = gxh- 1 has 
kernel {(-I, -1), (1, I)}. As a manifold Spin(3) = SU(2) = Sp(I) = S3, 
and n is the 2-fold universal covering map. Thus for any oriented Riemannian 
4-manifold M, we may have, at least locally, the two-complex spinor bundles 
V+ (even) and V_ (odd). Denote the total spin bundle V = V+ EB V_. The 
complex endomorphism bundle of V is isomorphic to t' ~ complexified Clifford 
algebra bundle of the cotangent bundle T* M. In particular, 

A~(T* M) ~ Homc(V+, V_), A~,(T* M) ~ Homc(V_, V+), 
A2 * 0 2 * )0 (3.1) c+ (T M) ~ Homc(V+, V+) , Ac(T M) ~ Homc(V_, V_ , 

A~(T* M) ~ A~ ~ A~(T* M) ~ C. 

Here 0 denotes the traceless endomorphisms, and A~ denotes the complex-
ification of A· . 

Let E ---+ M be a quaternion line bundle with k = lover a compact oriented 
simply connected smooth 4-manifold M. For a self-dual connection V' E s( 
there is the fundamental elliptic complex 

(3.2) 
o dog 1 dog 2 o ---+ 0 4 (~E) -----t 0 3 (~E) -----=---. 0_ 2 (~E) ---+ 0, 

where O:(~E) is the Sobolev completion of O·(~E) with a Sobolev k-norm 
114>11~ = !\1{114>11 2 + ... + IIV'k 4>112} d vol. 

It is a basic fact that the Sobolev completion of the space of cross sections 
of a smooth finite-dimensional vector bundle is a Hilbert manifold [19]. The 
operators d'V and d~ in (3.2) are continuous. The gauge group action ® on 
the space of connections ~ extends to a differentiable action ~4 on ~. If we 
do not complete (3.2) with Sobolev norm, then we cannot guarantee the elliptic 
operators to be invertible. Moreover the index of (3.2) is independent of the 
kth Sobolev norm. This fundamental complex was first defined and studied by 
Atiyah, Hitchin, and Singer [1]. 

(3.3) The sequence (3.2) is an elliptic complex with finite dimensional coho-
mologies. 

We choose metrics on E and M which are G-invariant. Assume that the 
connection V' is G-invariant self-dual. Replace the fundamental elliptic com-
plex (3.2) by a single elliptic operator: 

(3.4) 'V 'V l«? 0 2 J + d_ : 0 (C/}J ---+ 0 (~E) EB O_(~E)' 

We complexify (3.4) to write this in terms of the Dirac operator associated 
to the metric: 
(3.4 I ) 
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FINITE GROUP ACTIONS OF SELF-DUAL CONNECTIONS 239 

1(A I 0 V+ 0 V_ 0'?c) 

where the connection V' on V+ 0 V_ 0'?" is induced by the Riemannian 
connection on V+ 0 V_ and the given self-dual connection on '?C ,and C is the 
Clifford multiplication by T* M on V+ _ The two elliptic operators (3-4)' and 
(3_5) have the same index because they have the same symbol and factor through 
the same connections, that is, they can be written in the form D ¢ = I: ei • V' e, ¢ . 

Since we start with the G-invariant self-dual connection V', the induced 
Dirac operator D is also G-invariant. To compute the G-index and g-index, 
for some g E G, we will use the Atiyah-Singer G-index theorem. 

Theorem 3.6 (Atiyah-Singer G-index theorem [24]). Let G be a compact Lie 
group acting on the compact smooth manifold M, and let D be a G-invariant 
elliptic operator on M. Then the g-index of D is related to the fixed point set 
M g by the formula 

Ch (j'* a(D))td(Tg 0 C) 
Ind (D) = (_l)m g [TM g ] 

g Chg(A_ 1 Ng 0 C) , 

where m = dim Mg. j: M g -+ M is the inclusion map. and N g is the normal 
bundle of M g in M. 

Here m will vary from one component to another. 
The analytic index, IndG(D) = Ker D - Coker D E R( G) is a virtual repre-

sentation of G. For the identity element e E G , 

Inde(D) = tracee: IndG(D) -+ IndG(D) 

= Ch(V_ 0'?c)ch(V+ - V_)td(TM0C)e(TM)-I[M] 
A = ch(V_)·ch('?c)·A (M)·[M] 

= PI ('?c)[M] + 3ch(V_)AA(M)[M] 

= - 8C2(E)[M] + 3(-bo + b l - b;) 
= 8k - i(x - r), 

where k = -C2(E)[M] , bi = the ith Betti number of M, b:; = rank of 
H~ (M; C), X = the Euler characteristic of M, and r = the signature of 
M. Under our assumption, k = l. Since M is simply-connected and the 
intersection form is positive definite, we have X - r = 2 . 

(3.7) [l]. Let the connection V' be G-invariant self-dual and let D be the 
induced Dirac operator. Then Inde(D) = 5, where e is the identity element in 
G. 
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Let G act smoothly on M4 and preserve the orientation of M, where the 
normal bundle of the fixed point set has even dimensional fibers. Then the fixed 
point set MG is a disjoint union of even dimensional submanifolds. 

Suppose that a G-action on the bundle E -+ M has a fixed point set F = 
{P);; 1 U {T"} ~~ 1 on M where T).' is a Riemannian surface with genus Ai. 

We now specialize to the case that G = Z2 and h generates G. Let P E F 
be an isolated fixed point. Consider the elliptic operator 

To compute Indh (<5\7 + d~) we will use the Atiyah-Singer G-index theorem 
for the Dirac operator (3.5) which has the same index as <5\7 + d~ . 

Fintushel and Stern [12] compute the index of a related elliptic operator. 
They considered an SO(3)-bundle, and the induced bundles and operators 
which are all G-invariant. We consider an SU(2)-bundle with G-action and 
G-invariant elliptic operators. However we consider the whole induced bundle 
with G-action. 

If P E F is an isolated fixed point, then 

Let ·~c be the complexified bundle of the associated Lie algebra bundle JJE 

of the SU(2)-bundle E. The restricted bundle t·'!fc -+ F over the fixed point 
set F = MG C M is an SU(2)-bundle, where i: F -+ M is the inclusion. 

Since B SU(2) is 3-connected, the induced bundles on F are trivial because 
F has at most two dimensions. The possible actions of h on i* E -+ Fare 
( 1 0) (-1 0) (1 0 ) (-1 0 ) b ·d· Z . C2 o 1 ' 0 1 ' 0 -1 ,or 0 -1 Y consl enng 2-representatlOn on . 
However (-01?) and (b ~I) do not preserve the SU(2)-structure on i* E . 
The remainders (b nand (-01 ~I) act on SU(2) as the usual multiplication 
of SU(2) , and on the associated Lie algebra bundle JJE as the adjoint action. 

Let 

where 

So the G-action is trivial on ·?it -+ F and also on the complexified Lie algebra 
bundle over F. Thus we have 

Chh(·?iC ) = Ch(~.) = 3 + C1 (·?ic ) + ... = 3, 

td(TMh ® C) = 1 + ~CI(TMh ® C) + ... = 1, 
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and 

Hence (Indh D)lp = -~, where (h) = Z2' The contribution to Indh(D) on a 
fixed point component TA" which is a Riemann surface with genus Ai' is 

Chh(V+ - V_) Chh(V_) TA, 
e(Th) Chh(A_ I Nh (9 C) [ ] 

(exl/2 _ e -XI /2)e -XI /2 (eXI /2+rri/2 _ e -x,/2-rri/2)e -x,/2-rri/2 

XI (1 - e(X2+rri))(1 _ e(X2+rri)) 

x (exi + e(e2+rri))[TA,] 

= ~(XI[TA']_ X2[T;"]) , 

where XI and X2 represent the Euler classes of the tangent bundle and the 
normal bundle of TA, respectively. Thus 

Theorem 3.8 [3]. Let X be a compact oriented manifold of dimension 4k, and 
let h be an orientation preserving involution with fixed point set Xh . Let (XiI)2 
denote the oriented cobordism class of the self-intersection of Xh in X. Then 

In our case the manifold M has dimension 4 with fixed point set F = 
{P);~ I U {TA,};~ I' The isolate fixed points have self-intersection O. For the 
Riemann surface T)" the self-intersection of Tic, in M is the sum of the 
signed isolated transverse intersection points. Thus sign((T),,)2) = the self-
intersection of Tic, = (X2UT)'] , where (X2)i is the Euler class of the normal 
bundle of Tic, in M. 
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n-., n, 

= tSign((T}·'/) = t(X2 )i[T}·'], 
i=l i=l 
n[ n2 

Indh(D) = L Indh(D)l p + L Indh(D)ITi, , 
i=l i=l 

3 { n2 
} -"2 n 1 + ~ X(T}·') - sign(h : M) . 

Theorem 3.9. Let V' be a G-invariant self-dual connection. Let D be the induced 
Dirac operator by the fundamental elliptic complex (3.4). Let F = {Pi}7~1 U 

{TA, } 7~ I be the fixed point set on M. Then we have 

Indj(D) = 5, 

Indh(D) = -~ {nl + t,X(T}·') - sign(h: M)} . 
If V' is a G-invariant self-dual connection, we have the G-invariant elliptic 

complex r5\l + d",!: n\~E) ---> nOCifE) EEl n~('?E). By ellipticity this complex 
has finite dimensional Ker and Coker. The analytic G-index of this complex 

= Ker( r5 \l + d ~ ) - Coker( r5 \l + d ~ ) 

I ° 2 = H\l - (H\l EEl H\l) E R(G), 
where these cohomologies are the cohomologies of (3.2). 

The cohomology H~ = 0 if the connection V' is irreducible, otherwise it has 
dimension one and trivial G-action, since G acts on these cohomology groups. 

(dimH~+ +dimH~_) - (dimH~+ +dimH;+ +dimH;_) = 5, 

(dimH~+ - dimH~_) - (dimH~+ + dimH;+ - dimH;_) = -~ - A, 

where A = n1 + z=7~J X(TA,) - sign(h : M) and ± stands for ±1 eigenspace of 
the generator h E G . 

Theorem 3.10. If a connection V' is irreducible (reducible) in L, h(V') = g(V') , 
and (hg)2 = +1 for some gauge transformation g, then 

dim H~+ - dim H;+ = ~(10 - 3A), 

dimH~_ -dimH;_ = ~(10+3A), 

where H~± is the ± 1 eigenspace of hg . 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



FINITE GROUP ACTIONS OF SELF-DUAL CONNECTIONS 243 

Note that each element of the fixed point set LG in the moduli space L 
is a G-invariant self-dual connections up to the gauge equivalence because G-
invariant in L may not be G-invariant in ?f}. 

Suppose that \7 is a self-dual irreducible connection such that h(\7) = g(\7) 
for some gauge transformation g (# ±1) where (h) = G. Then (hg)\7 = \7 
and (hg)2\7 = \7. We have (hg)2 = ±1 E (!). If (hg)2 = I, then we have the 
same result as in Theorem (3.9). If (hg)2 = -J, then I has order 4 on the 
total space E and I has order 2 on the base manifold M, where I = hg . 
Again we have an I-invariant fundamental elliptical complex 

As before we have an induced elliptic operator 

and its index 

The only difference between this formula and the previous formula is that the 
h-Chern character Chh(§c) is replaced by the I-Chern character ChrC?c)' 
The various associated SU(2)-bundles, especially §c' over the fixed point set 
F = Mf = Mh = {PI}~~I U {TA.'}~~I on M are trivial. On E, I acts as a 
multiplication of 

( 
2TlI/4 0) 

eo, ' e -2TlI/4 

with order 4. On the associated Lie algebra bundle §E' I acts adjointly, i.e., 

(
Ie e , 
0, 

O)(it' -Ie -e -a, 
) ( 

-ie a e, 
-it 0, 

0) ( it, ie = -2ie e -e a, 
e2ie a) 
-it . 

So if we write .YJE = R EB C, then I acts trivially on Ii and I acts with 
weight 2 on C. Using the splitting principle, Ch r(§c) = eX] +ex2 eTli +ex3e -Tli = 

1 - 1 - 1 = -1 . Since td(T Mh 0 C) = 1, . 

and 

Chh(V+ - V_) Chh(V_) P __ ~ 
Ch (A N h 0 C) [l - 2 

h -I 
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where X 2 (TA,) is the self-intersection number of T)'I . Thus we have 

n] n2 

Indr(D) = I)Indr(D)]Pi + l:[Ind((D)]Til 
i=1 i=1 
nj n 2 

= l: ~ + l: ~(X(T,l,) - X 2(T,l-i)) 
i=1 i=1 

= ~ {111 + t,X(T,lI) - sign(h: M)} . 

Similarly we can calculate Ind( (D) and Indr3 (D) . 

Theorem 3.9'. Let Y' be a self-dual irreducible connection, let h(Y') = g(Y') for 
some gauge transformation g, (hg)2 = -/, and let D be the induced elliptic 
operator by the fundamental elliptic complex (3.4). Let F = {Pi}~~1 U {T"'}~21 
be the G-fixed point set on M and let f = hg. Then we have 

Ind.f(D) = 5, 

Ind!, (D) = ~ {'71 + t,X(T i") - sign(h: M)} , 

Indr'(D) = 5, 

IndrJ(D) = ~ {'71 + t,X(T"') - sign(h: M)} . 
For simplicity let A == '71 + L~21 X(T1,) - sign(h : M). 
Now consider the analytic index for the fundamental f-invariant elliptic 

complex: IndH(D) = H~ - H~ E R(H), where H = (f). Irreducibly, H = (f)-
d .. HI ffi3 hlHI H2 ffi3 h2H2 h h I.)n ecomposltlOn 'V = "l7 n=o n 'V'n' 'V = "l7 n=o n 'V'n' were acts as ~l 

on H~'n and h~ E Z . Then 
I I I I 2 2 2 2 Ind(o(D) = (ho + hi + h2 + h3) - (ho + hi + h2 + h3) = 5, 

Ind(! (D) = (h~ + ih; - h~ - ih~) - (h~ + ih~ - h; - ih~) = ~A, 
I I I I 2 2 2 2 Ind((D) = (ho-h l +h2-h3)-(ho-hl +h2 -h3)=5, 

Ind(3(D) = (h~ - ih; + ih~) - (h~ - ih~ - h; + ih~) = ~A. 

From these we obtain 

Theorem 3.10'. Under the hypothesis of Theorem 3.9', we have 

I 2 I 2 Remark. From the above calculations, hi - hi = 0 and h3 - h3 = O. 
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Next suppose that 'V is a self-dual reducible connection such that h('V) = 
g('V) for some gauge transformation g rt- 1 Y' ' where 1 Y' is the isotropy sub-
group of 'V which is SO(2). Then (hg)'V = 'V and (hg)2('V) = 'V. So 

2 (hg) ElY" 
Consider the extended gauge group 18' = {g: E -t EI g is a bundle isomor-

phism which covers id or h on M}. Then we have exact sequences 

o -t 18 -t 18' -t Z2 = {id, h} 

and 
o -t 1 Y' -t rY' -t Z2 -t 0, 

where l~ is the isotropy subgroup of 'V in the extended gauge group 18' . Then 
l~ is either 1 Y' X Z2 or 02 :::::: 1 Y' EB a 1 Y' where a = ((} ~). The extended 
gauge transformation hg E l~ lies on h. 

If l~ :::::: 1 Y' X Z2' then hg = gl h for some gl ElY" hgh = gl' Since 
(hg)2'V = 'V, (glg)'V = 'V and so g('V) = 'V. 

This contradicts g rt- 1 Y" Thus l~ i- 1 Y' X Z2' So if l~ :::::: 1 Y' X Z2 ' then 
we have gEl Y' . 

I If 1 Y' :::::: 02 :::::: 1 Y' EB al Y' ' then hg = gl a g2 for some gl' gz ElY' ' where 
a = g~'hgg;' covers h, and 'V is a a-invariant. From this expression, it is 
not clear that a has order 2, but by construction a is of the form (Ol ?). So 
a acts on the Lie algebra bundle :Y£ as 

(~1 ~) (~~ _ait ) (-01 ~) = (~ =~). 
Thus we obtain Ch(J(D) = -1 . 

By similar calculations for irreducible connections, we have 

Theorem 3.9" . Let 'V be a se/fdual reducible connection, let h('V) = g('V) for 
some gauge transformation g rt- 1 Y' ' let D be the induced elliptic operator by 
the fundamental elliptic complex (3.4), and let F = {P);~I U {T;"};~I be the 
G-fixed point set on M. Then hg ElY' EB al Y' where a:::::: (01 ~) • Moreover if 
a=g~lhgg;1 for some gl,g2 ElY',then 

Ind[(D) = 5, Ind(J(D) = 1A. 
Theorem 3.10". Under the assumption of Theorem 3.9", we have 

dim H~ + - dim H~ + = * (14 + A) , 

dimH~_ - dimH~_ = *(10 - A). 

We will show in Theorem 5.6 that A = nl + L;~I X(TA,) - sign(h : M) = 2. 
We can calculate the dimension of the fixed point components of LG of the 

moduli space L by Theorems 3.10, 3.10', and 3.10". 
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G Corollary 3.11. Suppose \7 E Jt , h E G, and g E (!) . 

(i) If \7 is irreducible and h(\7) = \7, then the dimension of the \7-
component is 1. 

(ii) If \7 is irreducible, h(\7) = g(\7), and (hg)2 = -1, then the dimension 
of the \7 -component is 3. 

(iii) If \7 is reducible, then \7 is a singular cone point of a I-dimensional 
ji..'<ed point component and a 3-dimensional fixed point component. 

4. PERTURBATION OF JtG 

Let C k = C k (G L( T M)) be the set of C k -automorphisms of the tangent 
bundle, that is, the group of gauge transformations for the bundle of frames. 
Then Ck is a Banach manifold [14]. If g is a fixed metric on M, then every 
metric on M is realized by a pull-back metric q/(g) of g for some ¢ E C k . 

Since the symmetric group Sym(n) = GL(n)jO(n) , many different elements 
in C k may produce the same metric on M. However this does not affect 
genericity arguments. 

Let P_: Q2 --> Q~ be the projection onto the anti-self-dual 2-forms with 
respect to the metric g. Then ¢ * P _ ¢ -I * is the projection onto anti-self-dual 
2-forms with respect to the metric ¢*(g), that is, the following diagram com-
mutes: 

l(A2T* M) 
p 

l(A~T* M)K ------+ g 

1 -I· ~,~ 10) * 

7 * 
pi 

2 * l(A-T M)(,O*(KJ -------+ l(A_ T M)q/(g) 

where P_ is the projection onto the anti-self-dual 2-forms with respect to the 
metric ¢*(g). 

Let k be large enough and define <1>: ~= 1 X C k --> Q~ (&fE ) /-2 by <1>(\7, ¢) 
=p_(¢-I*R'V),where ~=I is the set of irreducible connections on E with 
(1- 1 )-Sobolev norm. <1>(\7, ¢) = 0 if and only if R'V is self-dual with respect 

* k f to ¢ (g). Thus C is chosen as our parameter space so that we can detect sel -
duality by mapping into a fixed space Q~ (.~E) /-2 with respect to the metric g. 

Lemma 4.1. The map <1>: ~=I x C k --> Q~ (~IJ/-2 is a G-map. 

Proof. For any h E G and any (\7, ¢) E ?;? ~ X C k we have 

<1>(h(\7) , h(¢)) = P_[(h(¢))-I* Rh('V)] = P_[(h(¢))-'* hR'V h- I] 

= P_h[(¢)-I* R'V] = hP_[¢-'* R'V] = h<l>(\7, ¢). 

The fourth equality holds because the metric g is G-invariant. Thus we have 
a G-invariant map <1>. 
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Corollary 4.2. A connection \7 is self-dual with respect to q/ (g) if and only if 
h(\7) is self-dual with respect to (hcp)*(g). 
Theorem 4.3 [14]. The map cp is smooth and has zero as a regular value. 

Since zero is a regular value of <1>, <1>-1 (0) is an infinite-dimensional Banach 
manifold of self-dual connections parametrized by the set C k of all metrics. 
Since the gauge transformation group ®/ acts on M trivially, ®/ acts on 
<1>(-1)(0) . 

Theorem 4.4 [14]. <I>-I(O)/®/ c (~:I/®/ x Ck ) is a manifold. We have the 
following diagram: 

0~ C k 101_ 1 X 

1 1 

For each metric cp E C k , n -I (cp) = L¢":(g) is .he moduli space of irre-
ducible connections with respect to the metric cp*(g). As a set, <1>-1 (O)/®/ = 
U<PECk L¢":(g) . 

Theorem 4.5. The manifold <1>-1 (O)/®/ is a G-space. 
Proof. Since <I> is a G-map, <1>-1 (0) is a G-space. By Corollary 4.2, a connec-
tion \7 is self-dual with respect to cp*(g) if and only if h(\7) is self-dual with 
respect to the metric (h· cp)*( g) . 

For any gauge transformation g E ® [ , h E G, \7 E L¢":(g) we have 

h[g(\7)] = h[gY' g-I] = hgY' g-Ih-I 

= (hgh -I )(h Y' h -I )(hg -I h -I) = h(g) . [h(\7)]. 

Since G acts on ®[ by conjugation, h(g) E ®[. Hence the map L¢":(g) ~ 

~;¢ng) given by [\7] ---+ [h(\7)] is well defined and the G-action on 
<I>-I(O)/®[ is well defined. 

Since the projection map n: ~: 1/ ® [ X Ck ---+ Ck is a G-map, the restriction 
'if: <1>-1 (O)/®[ ---+ Ck is also a G-map. In [14] it is shown that the map 'if is 
Fredholm and 'if-I (cp) = ,~)":(g) , which has dimension 5. 

The map 'if: <1>-1 (O)/®[ ---+ C k is a G-Fredholm map. The restriction map 
n: (<1>-1 (O)/®/i ---+ (C")G is a G-trivial Fredholm map by Theorem 3.10. By 
the Sard-Smale Theorem for a Fredholm map between paracompact Banach 
manifolds we have the following. 
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Theorem 4.6. There exists a Baire set of (Ck ) G such that (n) -I (¢) + (Lq,:(g)) G 

is a smooth manifold in the moduli space L;'(g) of the irreducible self-dual 
connections for the metric ¢ * (g) on M. 

We now fix a G-invariant metric on M and fix a G-invariant metric on the 
total space E of the bundle such that the fixed point set L ~G , in the moduli 
space L ~ of the irreducible connections, is a manifold. Note that the above 
Baire set of (Ck)G is an open dense set for each k. 

5. PERTURBATION IN A NEIGHBORHOOD OF LG 
In §4, we showed that for an arbitrary finite group G there is a G-invariant 

generic metric on M such that the fixed point set L ~G in the moduli space 
L ~ of irreducible connections is a manifold. We will fix this G-invariant 
metric and set G = 2 2 . In this section we will study local G-structures at the 
fixed points in LG. Then we will locally do G-equivariant perturbations at 
the fixed points. Also we will use the results in §4 to find necessary conditions 
under which we can perturb globally in the neighborhood of LG . 

Recall the local structure of the moduli space L = sf I<B c 9J. Suppose 
that the fundamental elliptic complex 

° d V 1 d~ 2 (*) 0 -+ n 4(g'E) ~ n3('~E) ---+ n_2(g'E) -+ 0 
JV 

has the indicated Sobolev norms, where V' E L . A connection V' is reducible 
iff dimR(KerdV') = 1 at nO(g'E) iff the isotropy group of V' IS r V' = {g E 
<BIgV' g-I = V'} = u(l). 

Considering the orthogonal decomposition, 
1 V' V' TV'C{? = n 3(g'E) = (Imd ) ffi (KerJ ). 

For each V' E 9J we have a neighborhood of the form 

{ 8V',e = {V' + AIJV' A = 0, IIAI13 < 3} if V' is irreducible, 
(5.1 ) 

8V'.elu(1) if V' is reducible. 
In particular the space 9J ~ of irreducible connections is open in 9J and 

is a smooth Hilbert manifold. In the reducible self-dual case E splits as E = 
I ffi 7, where I is a complex line bundle on M and the reducible connection 
V' = \7l ffi V'l. Similarly, nn(g7E) = nnffinn(l2). Recall that the manifold M is 
simply connected and has positive definite intersection form. The cohomology 
groups H~ and H~ of the complex (*) are finite dimensional complex vector 

° spaces, and H V' :::: R . 
For a gauge transformation g E <B, the anti-self-dual part R~(V') = g 0 R~ 0 

g - 1 • This gives a section of the fibration Y == C{? x ~ n~ (g'E) -+ 9J = C{? lIB, 
where IB = <B I {± I} acts on n~ (g'E) by adjoint. Namely, the section \}': 9J = 

C{? lIB -+ IF x~ n~(<BE) is given by \},(\7) + (V', R~). 
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Let V' E L be a self-dual connection on E. Set V = KeroV' c Q~(~E) and 
W = Q~2(~E)' Define a smooth map If/: V -+ W be If/(A) = d:: A + [A, AL . 

Then the differential (dlf/)o = d::: V -+ W. The map If/ is a Fredholm map. 
By setting Va = Kerd:: and Wo = cokerd:: ,we have d::: V = VoEB ~ -+ W = 

WoEB WI and the restriction map d::: VI -+ WI is a Hilbert space isomorphism. 
Define a map F: V-+ V by F=id+(d::)-loPlo(If/-(dV')o),where PI: W-+ 
WI is the projection. Then (dF)o = id and F has a local inverse G around O. 
Let U be a small neighborhood of 0 on which G is defined. Define <1>: U -+ Wo 
by ¢ = Po( If/ - d If/o)G. Then <1>(0) = 0, d<l> = 0 and <I> is commutative with 
U ( I )-action, and we have a local commutative diagram: 

We have local coordinates of the moduli space L: 

(5.2) { 
L n BV' ,f. ~ <1>-1 (0) if V' is irreducible, 

L n (BV',r./U(I)) ~ <I>-I(O)/U(l) 

if V' is reducible. 

Let a connection V' be a self-dual G-invariant connection considering the fun-
damental elliptic complex 

Lemma 5.3. (i) The covariant derivative d V' : QP (~E) -+ gP+ I (~E) is also G-
invariant. 

(ii) The adjoint operator t5 V' is G-invariant. 
(iii) The map If/: V -+ W given by If/(A) = d:: A + [A, AL is G-invariant. 

(iv) The map F: V -+ V given by F = id+(d::)-lpI(1f/ - dlf/o) is G-
invariant. 

(v) <I> = po[lf/- dlf/olG is G-invariant, where the function G is a local inverse 
of F. 
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i<j 

( 
p 

j -I 
= h '" ( - 1) \1 h V ¢h - I" h - I A h - I . ~ *} '" 1'0·" .. 1', ..... Up 

j=O 

'V' = h[(d ¢)h- I " .rl" ] 
... 0 .. fI 

= [h(d'V' ¢)]",. , 
o p 

where \1"h. a = (\1ha)." = (h\1a),. = h[\1h,:-l"a]. Thus d'V' (h¢) = h(d'V' ¢). 

(ii) For a E QO(g'£), hE G, and A E QI(g'£) since G acts isometrically on 
E and M 

(a, b'V' (hA)) = (d'V' a, hA) = (h- I d'V' a, A) 

= (d'V'h-1a, A) = (h-1a, b'V' A) = (a, hb'V' A). 

For the last three assertions it is sufficient to show that [A, A] is G-invariant: 

(h[A, A])",.". = (h(AA - AA)h-')",/I' 
-I -I -I -I = hAh,:-I,.h hAh,:-I.",h - hAh,:-ll/.h hAh,:-I"h 

= [h(A), h(AH" ,II" 

Suppose that a connection \1 is G-invariant, reducible, and self-dual. In 
the fundamental elliptic complex the cohomology groups are HO = R 1 , H~:::: 

C k+3 , and H~ :::: C k . They have G-actions. Also the isotropy group r'V' :::: 
U (1) of \1 in the gauge transformation group Q) acts on the cohomology groups 
H~ and H~ by scalar multiplication. Of course H~ is a trivial representation 
of G. On the cohomologies H~ and H~ the G-action and r'V'-action are 
commutative because their representations are linear. 

(5.4) On H~ and H~ the G-action and r'V' = U(l )-action commute. 
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Theorem 5.5 [9]. There is an open set L of the moduli space L of se(f-dual 
1'0 

connections which is a smooth 5-manifold diffeomorphic to M x (0, AD) for small 
AD > 0 and where complement K = .1t\LA is compact and I.f/(\l) == (\l , R~) 

o 
is transversal to L;. . 

o 

From Theorem 5.5, the end of the moduli space L is naturally diffeomor-
phic to M x (0, )'0) for small AD > 0, and only contains irreducible self-dual 
connections. Recall the fixed set F on M is F = {Pi} ~~ I U {T;" } ~21 where T}" 
is a Riemann surface with genus Ai' The end of the moduli space L may 
contain 

F x (0, AD) = {Pj x (0, AO)};~I U {T;" x (0, AO)};~I 
as the fixed point components. By Theorem 3.10 some fixed point component in 
L has dimension * (1 0 - 3A) , and by Theorem 3.10' another fixed component 
in L has dimension *(10 + A), where A = n l + 2:~21 (TA,) - sign(h : M). 

Theorem 5.6. Suppose that a cyclic group G = (h) acts on a closed, simply 
connected 4-manifold M with positive definite intersection form. Let the fixed 
set MG = {Pi} ~~ I U {T;"} ~21 where the Pi'S are isolated points and the T}" 's 
are Riemann surfaces with genus Ai respectively. Let A = n l + 2:;/21 X(TA,) -

sign(h : M). Then A = 2 if h preserves the orientation, and A = 0 if h 
reserves the orientation. 
Proof. By the Lefschetz fixed point theorem, the Lefschetz number L(h) = 
X(M h ). Since M is a simply connected closed 4-manifold, HI (M) = H 3(M) = 
O. The number L(h) = 2+sign(h : M) if h preserves the orientation, otherwise 
L( h) = sign( h : M). Thus we have the desired conclusions. 

Theorem 5.7. Suppose that \l is G-invariant, reducible, and self-dual in L. 
Then there is a G-equivariant perturbation around \l in c9J such that the per-
turbed moduli space ,~ has a neighborhood at \l which is an open cone on 
CP2, where the cone point \l is fixed by G. 
Proof. By Lemma 5.3 the differential map I.f/: V == Ker( J V') c n I (J1E ) --> w = 

2 Q? • V' V' I n_ (YE ) gIven by If/(A) = d_ A + [A, AL decomposes as a map (<1>, d_ ): H EB 
VI --> H2 EB WI by a diffeomorphic G-invariant. The restriction map d~ I v is a 

I 

Hilbert space isomorphism and <1>, d~ are G-invariant. By Theorem 3.10 and 
Theorem 5.6 

dimH~+ - dimH~+ = 2, dimH~_ - dimH~_ = 4. 
If h(\l) = g(\l) for some gauge transformation g ¢:. r V' ' then by Theorem 
3.10" 

. I . 2 
dImHV'_ - dImHV'_ = 2. 

The map If/ is a G-equivariant submersion if and only if the map <1> is a G-
equivariant submersion. We can easily perturb <1> into a G-equivariant submer-
sion. For example, in the first case, by Schur's Lemma the map <1> decomposes 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



252 Y. s. CHO 

as 

<1>: H~ = H~+ EB H~_ = Ck,+1 EB Ck2+2 -+ H~ 

= H~+ EB H~_ = Ck, EB Ck2. 

From this decomposition we can choose a map h: H~ -+ H; which is linear 
surjective and G-invariant. We choose a smooth cutoff function p E CO(8V'.e) 
such that p == 1 nearO. Then <I>+p(h-<I»: H~ -+ H; has a C-linearsurjective 
derivative h at zero. By (5.2) the new zero set modulo r V' is a cone on Cp2 . 

Suppose that a reducible self-dual connection \7 is not G-invariant. We 
choose an open neighborhood 8V'.e/U(1) in 9J such that (8V'.e/U(1)) n 
h(8V'.e/U(1)) = 0. We will show that the connection h(\7) is also self-dual re-
ducible. Since h(c5V' A) = c5 h(V') (h(A)) we have a map h: Kerc5V' -+ Ker(c5h(V')), 
where 

h(IfI(A)) = h[d~ A + [A, AL] = d:C'v)(hA) + [hA, hAL. 

Thus we have a commutative diagram: 

Kerc5V' ~ n~(:Y'E) 

Kerc5h(V') ~ n~(:Y'E) 

By the Kuranishi technique, IfI ::::: (¢, d~): H~ EB ~ -+ H; EB WI where the 
restriction ¢: H~ -+ H; is a r V'-map. The action of the isotropy group 
h: r V' -+ rh(V') is a diffeomorphism. After a compact perturbation we have 

(5.8) h: [cone on Cp2 at [\7]] -+ [cone on Cp2 at h(\7)] is a diffeomorphism 
except at the cone point [\7]. 

We set A = ~#{u E H2(M : Z)lu· u = I}. We have A-reducible self-dual 
gauge equivalence classes [\7 1], ••• , [\7A]. There is a compact perturbation 
IfII = IfI + (J such that IfII = IfI outside small cone-neighborhoods of the \7 i 'so 
The differential d IfII is also a Fredholm operator which has the same index as 
dlfl· 

Next we would like to perturb the new moduli space ~ = {\7 E 9J: IfII (\7) = 

O} ,where IfII = IfI + (J: 9J -+ '6' x Qjn~ (:Y'E) , G-equivariantly to a smooth 5-
manifold with A-singularities, where each singularity is a cone neighborhood on 
Cp2. 

We have the smooth part L, uL ~Gu {open cone on Cp2 at each reducible 
AO 

connections} in the moduli space ~ C 9J with A-singularities. We would like 
to perturb a small neighborhood of L ~G first locally and then globally by 
using the Petrie G-transversality argument. 
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Suppose a connection \7 is G-invariant, (self-dual) irreducible and If/I (\7) = 
O. Locally the map If/I: V = KeroV' --+ W = Q~(g'E) is a Fredholm opera-
tor, (d If/I)O: V --+ W has index 5 with splitting V = Ker( d If/I)O EB VI ' W = 

coker(dlf/I)o EB WI' and Ker(dlf/)o = Rk+5, coker(dlf/I)o = Rk . The restriction 
map (dlf/l)ol"l is a Hilbert isomorphism. 

To see the local structure at irreducible connection \7 we would like to use 
the Kuranishi argument for this Fredholm map If/I: V --+ W. Define a differ-
entiable map F = id+(dlf/I)-I 0 PI 0 (If/I - dlf/I): V --+ V where PI: W --+ W 
is the orthogonal projection. Then d F = id. So F is diffeomorphic in a 
neighborhood of F-I(O). Define a map Q: Ker(dlf/I)o --+ coker(dlf/I)o by 
Q = Po 0 If/ 0 F- I around the zero, where Po: W --+ coker(d If/I)O is the or-
thogonal projection. By Lemma 5.3 these maps are all G-equivariant. So the 
map 

(Q, (d If/I )0): Ker( d If/I)O EB VI --+ coker( d If/I)O EB WI 

is smooth G-equivariantand If/I = (Q, (dlf/I)O)of is G-equivariantdecompo-
sition. We would like to perturb the map 

Q: Ker( d If/I)O --+ coker( d If/I)O 

to be a map whose derivative is surjective and G-equivariant. 
For \7 E L ~G, h(\7) = g(\7). If (hg)2 = 1, then by Theorem 3.10, since 

A = 2, 

dimH~+ - dimH~+ = 1, dim H ~ _ - dim H~ _ = 4 . 

If (hg)2 = -1, then by (3.10') we have 

dimH~+ -dimH~+ = 3, dimH~_ -dimH~_ = 2. 

The map If/I is a G-equivariant submersion if and only if the map Q is a G-
equivariant submersion. In general Q is not a submersion. By Shur's Lemma, 
the G-equivariant map Q splits as follows: 

(5.9) 

(i) If (hg/ = 1, then 

Q: H~ = Rk+5 = (Rkl+ I )+ EB (Rk2+4L --+ H~ 

= Rk = Rkl EB Rk2 + -, 

(ii) If (hg)2 = -1, then 

Q: H~ = Rk+5 = (Rkl +3)+ EB (Rkc+2 )_ --+ H~ 

= Rk = Rkl ffi R" + w _. 

From this splitting we can easily choose a map h: R"+5 --+ R" which is a 
G-invariant epimorphism. Choose a smooth cutoff function p E Co(8V'.t) with 

"+5 " p := 1 near O. Then the map (1 - p)Q + ph: R --+ R is G-equivariant and 
its derivative is an epimorphism near O. 
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Theorem 5.10. If a connection 'V is G-invariant, self-dual, and irreducible in L 
then there is a G-invariant smooth compact perturbation around 'V such that the 
perturbed new moduli space has a smooth 5-dimensional neighborhood at 'V. 
Proof. By the above construction and replacing 'JI1 by [( 1- p )Q+ ph, (d 'JI1 )0], 
we have the result. 

We have shown that we can locally perturb each G-invariant self-dual con-
nection into a G-invariant manifold. We now would like to find conditions 
under which we can perturb a neighborhood of the fixed point set LG into a 
G-equivariant smooth neighborhood of LG . To do t1' ,we introduce Petrie's 
G-transversality argument and then apply it to our case. 

The G-transversality argument gives a solution in terms of an obstruction 
theory and by giving a criterion for the vanishing of the obstructions. 

6. OBSTRUCTIONS FOR G-TRANSVERSALITY 

We would like to introduce two basic ideas. First, the problem of equivariant 
transversality is a global phenomena whereas the nonequivariant situation is 
local. Second, Shur's Lemma applied to the equivariant vector bundles involved 
along with transversality gives a splitting of the problems into two parts. 

The fixed point part was already done by using generic metrics on M. So 
our main interest is the transversality obstruction. 

More precisely, suppose that three smooth G-manifolds N, M and Y 
are given, with Y c MaG-invariant submanifold, and a proper G-map 
f: N -+ M which is transverse to Y with X = f- I (Y) and H <:;:; G. Then 
fH is transverse to yH C MH and the normal bundle v(X, N) of X in 
N has a splitting v(X, N)H EB v(X, N)H with v(X, N)H = v(XH , NH) and 
v(XH , N) = v(X, N)Hlxlf EB v(XH , X). The fact that f is transverse to Y 
throughout XH is expressed by the following two equations: 

( I ) 

(2) 
By Shur's Lemma, equation (1) depends only on fH: N H -+ MH and is con-
cerned with the action of the normalizer of H mod H on N H and MH , which 
by induction can be assumed to act freely. Since there is no H-action the 
problem of fH being transverse to y ll in MH is treated by Thorn transver-
sality and in particular gives XH = (iH) -I (yH) as a submanifold of N. It is 
equation (2) which provides the basis for the transversality obstruction theory. 
Define the G-fiber bundle V. = Horns (.;, '1) of real surjective homomor-

~.11 

ph isms of the G-vector bundle .; over Y onto the G-vector bundle '1 over 
Y. The action of G is defined by conjugation on ~.11' Then ~~11 is a 
G I H fiber bundle over yll if H is normal in G. The fiber over Y E yll is 
V(H)v == Hom~(';v' '1v) , the space of real surjective H-homomorphisms from 
the fiber ';y to '11" Then Petrie shows the following theorem holds. 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



FINITE GROUP ACTIONS OF SELF·DUAL CONNECTIONS 255 

Theorem 6.1 ( G-transversality theorem [22]). Let f: N ---+ M be transverse to 
Y on Zh-l = Ubh N k , and without loss of generality suppose fH rh yH. Let 
Xk = (/)-l(yk), k::::: H, and XH = Uk>H Xk . Then there is a G-invariant 
neighborhood W of Zh_l and a proper G-liomotopy of f rei WUZH to a map 
Q rh Y on Z H iff a sequence of obstructions 

0n(f, K) E Hn(XH /N(H) , XH/N(H) , 7rn _ 1 V(H)) 

vanishes. Here V(H) is a function of the components of XH. The value of 
V (H) at a component P of XH is 

s H V(K)x = HomH(v(H ,N)x' v(Y, M)H ,f(X)) 

for x E P C X H. 

Moreover let iI be the set of irreducible representations of G, 

v(NH , N)x = L axX, v(Y, M)H ,f(x) = L bxX, 
XEH XEH 

where ax and bx are integers, x E P. Dx = HomH(x, X) is a division algebra, 
dimDx == dx ' Then V(H)x = TIXEH GL(ax ' Dx)/ GL(ax - bx ' Dx)' 

Remarks. (i) dim X H = 0 or dim yH - dim MH + dim N H . 
(ii) The cohomology obstruction classes 0. (f, K) should be understood in 

two ways: 

1. as components of X H : if X H = U7 X; , Xj EX;, and X~ = xHnxj , 

then 

n n 

= II 0Jf, H) j E II H' (X; /N(H) , X~/N(H), 7r._ 1 V(H)x) 
j=l j=l 

2. as representations of G: 

(iii) If 

O.(f, H) = II 0. (f) x ' 
XEH 

O*(f)x E H*(XH /N(H) , XH/N(H) , 7r*_1 V(H)x). 

dimXH::; miQ{dx(ax - bx + 1) - I}, 
xEH 
bx ",0 

then the obstruction On (H , f) = 0 for all n. 
Recall that If! is a cross section of fibration 

9" = ~ x® Q~ (:YE ) ---+ 9J = ~ /18 
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which is a smooth vector bundle associated to the principal bundle '?l ~ -+ YJ ~ . 
Let Z be the zero section ~ = {\7 E YJI '1', (\7) = O}. Then Z is the moduli 
space of the perturbed connections, which is also perturbed at the reducible 
self-dual connections. 

Let X = ~G and Xo = {~o U open cone neighborhoods at each self-dual 
connections} u X . Then X\Xo is compact. 

We now apply Theorem 6.1. In our case H = G = Z2' Zh_' = 0, X H = 0, 
X = XH, and, by the construction of .~G , the map '1',: YJ -+ :7 has a 
restriction 'I'~ such that 'l't n ZH throughout X . Let us consider the obstruc-
tion classes 0n('I',) E Hn(X, Xo: 7rn_,(V(H))) where V(H) is a fiber bundle 
over X. The fiber over x E X is V(H)x = Hom~(v(YJH, YJ)xv(Z, F)H,x) 
where x is an irreducible G-invariant self-dual connection. From the local 

f'7?5 \7 k+' k structure at x = \7, T\7ud = Kerc5 = R "EB ~ for some ". By (5.9) the 
map '1',: Rk+5 EB ~ -+ Rk EB W, is split as follows. For any \7 E X\Xo and 
h(\7) - g(\7) , if (hg)2 = +1, then 

= (Q d ). (Rk,+, EB Rk2+4) EB V -+ (Rk, EB Rk2) EB W '1', ,_. + - , + - , ' 

if (hg)2 = -1 , then 

= (Q d\7): (Rk,+3 EB Rk2+2) EB V -+ (Rk, EB Rk,) EB W . '1', ' - + - , + - , 

Here the sign ± means the ± 1 eigenspace of h g. If (h g / = 1 , then 
H k,+4 

vVJJ ,YJ)x = R~ + (~L, 
2 k v(Z, F)x = n_(~E) = R EB W, 

k k, 
= (R+' EB (W,)+) EB (R~ EB (W,L), 

v(Z, F)ll.x = (R~ EB (WIL), 

where (VI and WI)' (VI + and WI +) , and (V_ and v~ _) are G-equivariant 
Hilbert space isomorphisms by d~ . Thus the fiber 

(6.2) 

V(H)x = Hom~(v(YJH, YJ)" v(X, F)H,) 

= Homs(R~+4 EB (VIL, R~ EB (WIL) 

= {;ntractible if dim VI _ = 00 , 

k,+4,k2 if dim VI _ < 00. 

If (hg)2 = -1 , then 

v(/~H, /1)), = R~+2 EB (VIL, v(Z, F)ll.x = R~ EB (WIL. 

(6.3) The fiber V(H), = Homs(R~+2, R~) is the Stiefel manifold Vk,+2.k, 

which consists of all k2-frames in Rk2+2. 
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(6.4) The Stiefel manifold Vn , k is arcwise-connected and 

7r (V k) = 0 if i < n - k , In, 

{ infinite cyclic group 
7r (V )-n-k n, k - Z 

2 

By (6.2), (6.3), and (6.4) we have 

if n - k is even or k = 1 , 
if n - k is odd and k > 1 . 

257 

(6.5) In the bundle V(H) --> X, the fiber has the fundamental groups as follows: 

if (hg)2 = -1 and i = 2, 

if (hg)2 = +1 and i::; 3, 

where h(x) = h(\1) = g(\1). 

Moreover if (hg)2 = 1, then the obstructions cohomology class 0n(lfI l ) E 
Hn(X, Xo: 7r n_ I (V(H))) == 0 for all n. 

However the compact set X c .£;H = A; ~G C .£1 = 5. This is in-
correct because .£; may not be a manifold. By Corollary 3.11 A; ~G is a 
disjoint union of I-dimensional manifold components and 3-dimensional mani-
fold components which correspond by h(\1) = g(\1) , (hg)2 = 1 , or (hg)2 = -1 
respectively. Thus X = Ui xi Ui x; where dim Xi = 1 and dim X; = 3. If 
h(\1) = g(\1) , (hg)2 = -1, then the obstruction cohomolog~1 classes 8 3 )1fI1) E 

3 3 3 3 3 H (Xi' XiO; Z), where X iO = Xi nxo' 

Theorem 6.6. (i) To perturb 1fI: !fJ --> t5 x y; n~ C~E) to be G-transversal through-
out a neighborhood of JIG there are the obstructions 8 3( 1fI1) E H3(X, Xo; Z). 

(ii) If the obstructions 8 3 (1fI1) = 0, then the G-section IfI has a smooth 
compact G-perturbation R_ + (J of the self-dual Yang-Mills equations which is 
transversal to the zero section throughout a small neighborhood of A;G . 

7. PERTURBATION ON THE FREE PART OF .4t 

In [7], it is shown that there is a G-invariant metric on M such that the 
moduli space .£ is a manifold in a G-neighborhood of the fixed point set 
,,I(G. Suppose that the obstruction cohomology class 8 3 (¢) = 0 and that the 
map ,9) ~ .'}1"' = t5 x Ql n~ C~E) is the Fredholm G-map which is transverse 

to the zero section throughout a G-neighborhood N(.£G) of the fixed point set 
.£G. Let Y = ,4t\{N(.4tG) U End of ,,I(}. Then Y is a compact subset of 
,,I( and .4t\ Y is a smooth 5-dimensional manifold with some singular points. 
For each \1 E Y we can choose a local coordinate 8'V'e = {A E n~(g'E)I<5'V A = 
0, IIAI13 < e} if \1 is irreducible, otherwise 8'V'e/U(I) is a local coordinate 
chart at \1 such that h (8'V'e) n 8\7.f. = 0 where h is the generator of G = Z2 . 
To see the local structure of the map 1fI: ,9) = t5 /C8 --> ,r = t5 x" n~ (.'ifE ) and 
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its interaction with the G-action, let us consider the following diagram: 

, , '1/ 2 Cit? " 
Va + VI = h*(V) J h(8'V'e) , Q_(CfE)h('V) = Wa EEl WI 

(Q2,h 2) 

Since IfI is a G-map, the above diagram commutes. Since IfI is a Fred-
holm map with index 5, IfI becomes locally IfI = (Q, L): va EEl VI ~ Wa EEl WI 
by some G-equivariant diffeomorphism where Q, L are G-maps, dlfllv = 

I 

LI : VI ~ WI is a Hilbert space isomorphism, and QI1 : va = Rk+5 (Ck+3 ) ~ 
11[ Jo 

Wa == Rk(Ck) is also a G-map with dQ = 0 (if \7 is reducible) (cf. [14 , 
Lemma 4.7]). Since h is diffeomorphic, we can locally identify h with its dif-
ferential at the origin \7. Let d 1fI'V = LI and d IfIh('V) = L 2 . Since IfI h = h IfI 
we get L2h = hLI . Since Va is the kernel of LI and L I : VI ~ WI is an 
isomorphism, 

iso 
L2[hVd = h[LI~] = h(WI ), so L 2 : h(VI ) ~ h(WI ). 

Thus we have the canonical splitting IfI = (Q2' L 2): h(va)EElh(~) ~ h(Wa) EEl 
h( WI) at a neighborhood of h(\7) . 

(7.1) For each \7 E Y the generator h E Z2 preserves the local splitting of the 
Fredholm map 1fI: ~ ~ /# . 

With these preliminaries let us perturb IfI on Y c Jr. Suppose that \7 E Y 
is reducible. Then h(\7) is also reducible. We may choose a small neigh-
borhood 8'V e of \7 with 8'V e n h(8'V e) = 0. There is a perturbation 
a: 8'V,e ~ Q~(;§E) such that a'new secti~n IfII = IfI + a: ~ ~ g- is trans-
verse to the zero section throughout 8'V'e' Define a perturbation on h(8'V'e) 
by a(h(A)) = ha(A). We have a G-equivariant section IfII = 1f12 + a: g; ~ g-
which is transverse to the zero section throughout 8'V.f. u h(8'V.J. Since this 
is a compact perturbation, if we mod out the zero set at \7 by U (1) , then this 
reducible connection has a neighborhood which is a cone on CP2. Adding 
such a perturbation at each reducible connection in Y, we have a section 
1f13: ~ ~ /# which is transverse to the zero section near the reducible con-
nections in ~ = {\7 E ~11fI3(\7) = O}. Thus we have 

(7.2) Suppose that \7 E Y is reducible. Then there is a G-equivariant compact 
perturbation of IfI so that .4t'"1 has a cone-neighborhood on Cp2 at \7. 

Let YI = ~ - {N(JrG) U End of Jru [cones on Cp2 at reducible self-dual 
connections]} . 
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Let V' E Yi be irreducible, where Yi is compact. The Fredholm map 1f/3 

locally splits as 1f/3 = (Q, L): 8 11 ,£ C V = VoEB Vi ---+ Q~(~E) = WoEB Wi' where 
L = d 1f/3: ~ ---+ Wi is a Hilbert isomorphism, Vo = Rk+5 , Wo = Rk , and where 
each map is a G-map and each space is a G-space. 

Choose a smooth cutoff function P E Co(8V'.£) and consider the family of 
perturbations aw == P . w: 8V'.£ ---+ R~ c Q~ (~E) for each W E Rk = Wo' 

As above, extend the perturbation by h(awA) = ahw(hA) on h(8V'.£) ~ 

R~(V') C Q~(~E)h(V') for each hW E R~(V') (cf. Lemma 6.1). By considering 
the G-map QV' IR~+5 ---+ R~ we have the following immediate consequence. 

Lemma 7.3. W E R~ is a regular value of QV': R~+5 ---+ R~ if and only if 
h(w) E R~(V') is a regular value of Qh(V'): R~t~) ---+ R~(V'). 

We can cover the compact set Yi with the supports of a finite number of 
such perturbations. We get a family of perturbations If/w = 1f/3 + aw + ahw, + 
... + a + a for each w = (w w ) E Rk, X ... X Rkn == R m 

'Ill hw i' ... , n • 

We n';,ay ass~me that the support of the perturbation lies in a small neigh-
borhood of Yi . Let a smooth mapping tji:!:lJ x B m (IJ) ---+ Y be defined by 
tji(x, w) = If/w(x) , where Bm(lJ) = {w E R m: IIwll < IJ}. 

(7.4) For small IJ > 0, this mapping tji:!:lJ x B m (IJ) ---+ Y is transversal to the 
zero section Z c Y . 

Proof. Suppose that (x, w) E!:lJ x Bm(lJ) with tji(x, w) = O. 
(i) If x ¢. support of Pi for all i, then tji(x, w) = 1f/3(x) = 0, and tji is 

already transversal by our construction. 
(ii) If x E support of Pi for some i, then x E supp Pi C 8V' '£' Write 

tji(x, w) = 1f/3(x) + a(x, Wi) + Pi(X)Wi · Then WI = (Wi"';;;'" Wn ), 

where a(x, WI) = "£Ih aw, (x) is uniformly ci-small. 

This is guaranteed by choosing IJ small after covering with a finite number 
of coordinate charts. Note that d (If/3 + a) x: V = Vo EB ~ ---+ W = Wo EB Wi will 
still be transverse to Wi' Also a l is the map 

Rk+5 Rk, p,xid R Rk, scaiarmuiti Rk, 
X ---> X I, 

which has a surjective differential. Namely the wI-spaces are carried onto wo' 
Hence the total differential is surjective, i.e., If/ rh Z . 

By Sard'stheorem for families, the map If/w = 1f/3+ aw +ah11l +"'+aw +ahw 
I I II n 

is transversal to the zero section for almost all W E B m (IJ) . 

Lemma 7.5. 1f/",:!:lJ ---+ Y is a G-map. 
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Proof· If A tF. SUpp Pi for all i, then h(A) tF. supp Pi for all i and If/u,(hA) = 
1f/3(hA) = hIf/3(A) = h If/w (A) . If A E supp Pi for some i, then A E sUPP Pi C 
8 V •e and h(A) E h(8v .e)' By our construction 8 V ' e n h(8V ' e ) = 0 and 

If/u,(hA) = 1f/3(hA) + aw (hA) + ah11' (hA) + ... + aw (hA) + ahw (hA) 
I I n /I 

= hIf/3(A) + hahw (A) + haw (A) + ... + hahw (A) + haw (A) 
1 Inn 

= h[1f/3(A) + ahw (A) + aw (A) + ... + ahw (A) + a11l (A)] 
I I II n 

=hlf/",(A). 

Theorem 7.6. There is a compact G-equivariant perturbation 1f/4 = 1f/3 + a2 of 
the perturbed se/fdual equation 1f/3 = R_ + a1 so that the new moduli space 
L2 = {\7 E /YJ: 1f/4 (\7) = O} is a smooth 5-dimensional G-manifold with A-
singularities each of which has a neighborhood diffeomorphic to the cone on Cp2 
except the cone point, where A = rank H2 (M; Z) . 

If the obstruction cohomology classes 8 3 (If/) vanish, then we have a smooth 
G-manifold L of dimension 5 with A-singular points each of which has a cone 
neighborhood on Cp2 , where A = rank H2 (M; Z) . 
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