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Introduction. Let C* be an n-dimensional complex Euclidean space.
A Dbiholomorphic transformation ¢:C* —C* of C* onto C* is called a
polynomial automorphism if g and the inverse g* are given by n poly-
nomials in % variables. We shall denote by Aut(C") the group of all
polynomial automorphisms in C". Let X be a projective algebraic com-
pactification of C*, let ¢: C* — X be an inclusion and put A = X — ¢(C").
Then A is a closed subvariety of X. For simplicity, we shall denote
this compactification by (C*, ¢, X; A). Let us denote by Aut (X) the group
of all birational and biregular automorphisms of X, and define a subgroup
Aut (X; A) of Aut (X) by Aut (X; A) = {§ € Aut (X); §(A) = A}. Then we
have the following theorem.

THEOREM 1. Let G be a finite subgroup of Aut (C*). Then there
exist a mon-singular projective algebraic compactification (C*, ¢, X; A)
and a finite subgroup G of Aut (X; A) such that ¢ o Goc =G, namely
{trofot; G =G on C.

Applying Theorem 1 and Morrow’s classification of the minimal nor-
mal compactifications of C* [13], we shall give an elementary proof of
the following theorem which was obtained by Gizatullin-Danilov [4],
Miyanishi [12] and Kambayashi [10], independently (see also [3]).

THEOREM 2 ([4], [12], [10]). Let G be a finite subgroup of Aut (C?.
Then G 1is conjugate in Aut (C?) with a finite subgroup of GL(2, C),
namely, there exists a polynomial automorphism « ¢ Aut (C* such that
aoGoa™ is a finite subgroup of GL(2, C).

REMARK 1. For n = 2, Theorem 1 is a special case of the theorem
of Gizatullin-Danilov [4, §6]. For n =8, it seems to be effective in
answering the following general question (see § 3).

QUESTION. Let G be a finite subgroup of Aut (C*). Then is G conju-
gate in Aut (C") with a finite subgroup of GL (n, C)?

1. Proof of Theorem 1. Let G be a finite subgroup of Aut(C")
(n = 2). Let C"/G be the quotient space of C* by the group G, and
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w: C* — C*/G@ the projection. Since G is a finite group of polynomial
automorphisms in C", by Cartan [2], C*/G is a normal affine algebraic
variety of dimension n# and the projection 7 is a proper finite regular
mapping. Let Y be the normalization of the algebraic closure of C*/G
in some complex projective spece P¥, where N > 0 is a sufficiently large
integer. Then Y is a normal projective algebraic variety of dimension
n. Let z: C"/G — Y be the natural inclusion and put B, = Y — 7(C"/G).
The triple R = (C", @, C"/G) is a branched algebraic covering over C"/G.
Let B, be the algebraic closure in ¥ of the branch locus in C"/G and
put B= B,U B,. Then B is a closed subvariety of Y. Then the triple
R = (C" — n7(B), &, C"/G — B) is an unbranched covering over Y — B
(= C*/G — B). By Stein [16, Satz 1], there exists a topologically branched
finite covering R, = (X,, @, Y) over Y with the following properties:

(i) the branch locus is contained in the set B,

(ii) X, contains C" as an open subset, and

(iii) m,|C* = m.

Further, such a covering R, is uniquely determined up to topological
isomorphisms. Since 7, is a proper finite mapping and Y is compact, X,
is also compact. Sinee Y is a normal complex space, by the well-known
theorem of Grauert-Remmert [6], we can introduce a normal complex
structure on X, and the projection =, is holomorphic with respect to this
complex structure. Since Y is projective algebraic and =, is proper finite
holomorphic, by Grauert-Remmert [5] (see also Remmert-Stein [15, Satz
8]), so is X,. Thus, 7, is a proper finite regular mapping. Let ¢:C"* —
X, be the natural inclusion and put 4, = X, — ¢,(C"). Then A4, is a closed
subvariety of X,.

Let g be an arbitrary element of G. Since 7,09 (=7og =7n): X, —
A,— Y is continued to the regular mapping 7,: X, — Y of X, into Y, by
Stein [16, Hilfssatz 2], g can be uniquely extended to a continuous map-
ping g,: X, — X,. By the Riemann extension theorem, g, is a holomorphic
(therefore regular) mapping of X, onto X,. Similarly, the inverse g
can be uniquely extended to a regular mapping g;': X, — X, of X, onto
X, and we have g,og;' = id;,. Since g(C") = C", we have g4, = 4,
namely, g, € Aut (X;; A,), and further we have log,0¢, = g on C*. Thus
we have the following:

PROPOSITION 1. Let G be a finite subgroup of Aut(C"). Then there
exist a (not necessarily non-singular) projective algebraic compactification
(C* by X3 Ay) and a finite subgroup G, of Aut (X,: A,) such that ;% oG, o
=G on C~.
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By Hironaka’s equivariant resolution theorem [8, §7], there exists a
non-singular model ¢: X — X, of X, such that any automorphism g, € Aut (X,)
can be uniquely extended to an automorphism §e Aut (X) and satisfies
$po§ = g,° 6.

From this theorem and the facts that the singularities of X, do not
lie on €* and that ¢,(C") = C" for every g,c (@, there exists a finite
subgroup G of Aut(X; A), where A = ¢*(A,), such that g0 G =G, 04,
that is, for any g, G, there exists a unique element § € G such that
pod =g,o0. Putting ¢=¢"0¢: C"— X, the proof of Theorem 1 is
completed.

2. Proof of Theorem 2. Let G be a finite subgroup of Aut (C?.
By Theorem 1, there exist a non-singular projective algebraic compacti-
fication (C? ¢, X; A) and a subgroup G of Aut (X; A) such that ¢ o Go¢ =
G. Weput A = .., A, where each 4, is an irreducible algebraic curve.
We need the following two elementary lemmas.

LEMMA 1. Let M be o two-dimensional complex manifold and ¢ =
{2, <+, 2} a set of finitely many points in M. Let f:M—>M be a
biholomorphic transformation with fle) = e. Let Q,(M) be the quadratic
transformation of M at the set e, and ¢: Q.(M) — M the projection. Put
¢7(e) = E =k, E,, where E, = ¢"(x;) is an exceptional curve of the
Jirst kind. Then there exists a unique biholomorphic transformation
£ QM) — QM) with f(E) = E such that gof= fog.

LEMMA 2. Let M be a two-dimensional complex manifold and E =

E LB, a disjoint union of exceptional curves of the first kind. Let

g: M — M be a biholomorphic transformation with G(E) = E. Let M =

M/E be the contraction of E, +: M — M the projection and put Wl =

e={x, + -+, 2}. Then there exists a unique biholomorphic transformation
g: M — M with gle) = e such that rog = goqp.

The proof of Lemma 1 is contained in that of the Lemma of Hopf
[9] and Lemma 2 follows from the Riemann extension theorem.

Since the singularities of the (reducible) curve A is G-invariant,
blowing up such singularities and using Lemma 1, we may assume that
each A, is non-singular and A,’s cross each other normally if they inter-
sect. Further, we may assume that (C% ¢, X; A) is a minimal normal
compactification (see Morrow [13]). Indeed, taking account of Morrow’s
classification of the minimal normal compactifications of C* (see also
Figure), we see that the irreducible components 4, 1 £ i< k) of A with
the following properties (i) and (ii) are G-invariant.
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(i) A, is an exceptional curve of the first kind, and

(ii) the number of irreducible components of A, different from A,
which intersect A; is at most two.

Blowing down such irreducible components A4; (1 < 1 < k) to points,
and using Lemma 2 at each step, the above assertion is finally proved.
Thus we have the following:

PROPOSITION 2. Let G be a finite subgroup of Aut (C?). Then there
exist @ minimal compacmﬁcatwn (C% ¢, X; A) of C* and a finite subgroup
G of Aut (X; A) such that t*oGot =G on C-.

REMARK 2. We can also prove Proposition 2 without using Hironaka’s
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equivariant resolution theorem. Indeed, by Proposition 1 and the unique-
ness of the minimal resolution of singularities of a two-dimensional com-
plex analytic space (cf. Laufer [11]), we can easily see that there exist
a non-singular pro;ectwe algebraic compactification (C?, oy X,; A,) of C*?
and a finite subgroup G of Aut(X,; 4,) such that ?oGo¢, = G on C-.
Using Lemmas 1 and 2 repeatedly, we have finally Proposition 2.

Now, by Morrow [13], the types of the graph I'(A) of A (= Ui, 4)
are the following, where each vertex of the graph represents a non-
singular rational curve A4,, adjacent to which we write the self-intersec-
tion number (42 of A,. Two vertices are joined by a segment if and
only if the two corresponding rational curves intersect each other (see
Figure).

(CASE 1). The type of I'(A) is (a). In this case, X is a complex
projective plane P? and A = X — ¢(C* is a line L in P®. More precisely,
let (X,),<i<. be homogeneous coordinates in P:. Then A = X — «(C*) = V(X,).

(CASE 2). The type of I'(A) is (). In this case, X is a rational
ruled surface F, with the minimal section s, whose self-intersection
number is (s2) = —n (n = 0). Let s. be a section with () =n and [ a
fiber. Then we have A =F, — ¢(C*) = s, Ul.

(CASE 3). The type of I'(A) is one of (¢) ~ (g). Let A, (resp. 4,, 4,)
be the irreducible component of A with (4% = 0 (resp. (4} = n, (43 =
—mn — 1). Since the self-intersection number is invariant under an auto-
morphism of X, we have §(A,) = A, (¢ =0, 1) for every § of Aut (X; A).
Since A, and A, are §-invariant, so is 4,. Blowing up the intersection
point of A4, and A,, and blowing down the proper transform of A4, to a
point, we have a new minimal normal compactification (C?% ¢, X;; B) of
C?. It is easily seen that the type of the graph I'(B) of B is the same
as that of I'(A) with n replaced by » — 1, provided n = 2. If =1,
the type changes as follow:

()—=®), (@—(@, (@ and (f)—I(9).

Thus repeating this process finitely many times and using Lemmas 1 and
2 at each step, we see finally that every element of Aut (X; A) induces
a unique element of Aut(F,, s. Ul). More precisely, let : X — F, be
the birational mapping obtained by the above process. By the construc-
tion, the restriction |¢(C?) of + to ((C?) = X — A is a one-to-one regular
mapping and the mapping «ro¢: C*— F, gives an inclusion. We put s, Ul =
F, — 4 0¢(C?%. Then there exists a finite subgroup G of Aut (F,, s.Ul
such that (4rog)™o Go (o¢) =G. Thus we have the following:

PROPOSITION 3. Let G be a finite subgroup of Aut (C*. Then the
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Jollowing two cases arise:
(1) There exists a finite subgroup G of Aut (P% L) such that ™o
Got = G, where ¢: C* — P is an inclusion and L = P — (C? s a line.
(2) There exists a finite subgroup G of Aut (F,, 8. Ul) such that
tloGor = G, where 7: C* — F, is an inclusion, s. 18 a section with the
sel f~intersection number (s2) =n (n = 0) and 1 is a fiber of F,.

Now, since toGot=G (resp. toGor =@G), we have ¢oGoc' =
G|C® (resp. oG oz = G|C?, where G|C? (resp. G|C? means the restric-
tion of the group G (resp. G) to ¢(C?) (resp. 7(C?). For simplicity, we
identify ¢(C* and z(C* with C2. On the other hand, Aut (P?) and Aut (F,)
are well-known, and we can write down every element of Aut (P?% L)
or Aut (F,, s, Ul) (see [4]). In fact, choosing suitable coordinates x and
y in C*, we find that for every element § of Aut (P* L) (resp. § of
Aut (F,, 5., Ul)) the restriction §|C* (resp. §|C* has the following form:

{x' =ax + by + A
Yy =cxr+dy+p, where ad —bc+0 and n, peC
( {x' =aqr+ A >
resp. .

Y =dy + vx), where ad % 0 and v(z)e C[x]

Since ¢ (resp. 7) is a regular mapping of C? into P* (resp. F,), ¢ and
7 can be regarded as elements of Aut(C?. Consequently we have the
following:

PROPOSITION 4. Let G be a finite subgroup of Aut (C*. Then there

exists a polynomial automorphism B in C* such that for every g of G,
we have

Boge ™ {xl:dﬂx_l_ by + Ag
Y =cx+dy+p,
or
BegepB™ {x' = 1@ + N
W =my + v, (),

where a,, b, ¢,, d,y 1, My, Ny, NG, 1, €C, a,d, — bye, =0, I;m, # 0 and v, () e
Clz].

Finally, put
= 1G5 <“" b> ( )
=GR (T ) e

[
or

I, 0\
=16l (g ) eeaee.
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We can easily see that
(' =a+ 1/|G| g% N, — b)) /(a,d, — b,e,)
e {y’ =y +1IG 3, (@t — Mey)f(ad, — bye,)
and
2=+ 1/1G|',§ Yo/l
* {y =y + 1|6 5, »,@)m, .

Thus 7, and 7, are polynomial automorphisms in C®. For any element h
of G, we have

Vie(BeohoB™)
b\~
— 165 (" ) 8eaeme@ehe g

ar by ay ba AN -1
_I/IGI."EZG<C}; dh>o{<ca dg>o<ch dh>} (Bogoheg)

h bh g bg h bh -
N (B e

Cp, % cheG 6, dﬂ Cp, dh

_ <a,, bh> oy, |
¢ dy
Similarly, we have

I, 0
72°(B°h°3_1)=< >o’)’2.

0 m,

Therefore, for every element g of G, we have

o (Boge ™) e, = (“” b") ¢GLE, C)
¢ d

g g
or

0
"/20(B°9°B'1)°72=<l’ )eGL(Z,C).
0 m,

We have only to let &« =7, o8 0or @ = 7,o8. Thus the proof of Theorem
2 is completed.

3. Example. Let G be a finite subgroup of Aut (C?. By Theorem
1, there exists a non-singular projective algebraic compactification (C? ¢,
X; A) and a finite subgroup G of Aut(X; A) such that (oGoc=G.
Here, if we can choose the complex projective space P° or a non-singular
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quadric hypersurface @ in P* as such a compactification X, there exists
an element o of Aut(C® such that ¢ cGoa™ is a finite subgroup of
GL(3, C). Indeed, if X = P?, then it is obvious. Suppose that X = @ =
Pt Let (X,)<i<s (resp. (Y)).<;<,) be the homogeneous coordinates of P*
(resp. P®). We may assume that

X=VXX + X0+ X5+ X)),
Az=zVX)NX=V(Y;+ Y+ Y)H= P,

In fact, we shall first consider the following standard sequence:
- H(C*, Z)—-> H X, Z)—>H"A,Z)—- H"C, Z)— .
Since HH(C? Z) =0 for 1 =< ¢ < 4, we have
H(X,Z)=HYA,Z) for 15i<54.

By the Lefschetz hyperplane section theorem, we have H¥X, Z)=
H*P', Z)=Z. We can see that the line bundle [4] is ample on X, and
the first Chern class C,([A]) of [A] generates the cohomology ring HX X, Z)
(= Z). By the adjunction formula, we have K = [A]™® (cf. Brenton-
Morrow [1]). Since A is a hyperplane section and H¥A,Z)=Z, A is
an irreducible quadric hypersurface in V(X,) = P? with an isolated singu-
larity. By elementary arguments, we see that the minimal resolution
of A is the rational ruled surface F,. Thus we may assume that A is
isomorphic to the variety V(Y7 + Y; + Y7) = P°, and that X is isomor-
phic to the variety V(X X, + X7 + X? + X}) (see Griffiths-Harris [7]). It
is easy to verify that such a (X, A) is a non-singular compactification
of C°.

Now, we put  =(1:0:0:0)e X. Then z is a singular point of A.
Let p,: Q,(X)— X be the quadratic transformation of X at the point #
with pi(x) = E = P>. We define the projection p,: Q.(X)— P? of Q,(X)
onto P® by

(i) the point with X,= —>9¥y,, Xo=v (LSi<4
i=2

it 9, #0,
(ii) the point with X, =1, X, =0 (1=Z2iZ4)

~-1 — 4
W) if yy=0 and 34:= 0,
i=2

(iii) any of the line of points with X, =1t, =, = sy,

1<i<d if g=3y=0.
1=2
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Thus we have the following diagram

Q.(X)
pl/ \pz
N

Let A be the proper transform of A in @,(X). Then we have p,(pri(4)) =
V(Y) = P* and p,(A) is a conic 7:{Y, = Y} + Y+ Y? = 0} = V(Y,) (see
Mumford [14]).

Let g be an arbitrary element of Aut(X;A). Then g(x) = x, since
the point x is the only singular point of A. Therefore, for the same
reason as in Lemma 1, there exists a unique automorphism § of
Aut (Q,(X); p7*(A)) such that p,o§ = geop,. Further by the Riemann
extension theorem, there exists a unique automorphism § of Aut (P3
V(Y,)) such that p,oF = geop,, We put @ = p,op7>. Then «a is a one-
to-one regular mapping of C* into P* with V(Y,) = P* — a(C® and aqog=
goa, namely, a¢ecgoa™ = §|C® Since §e Aut (P?% V(Y,)), §|C*is a linear
transformation. Therefore G is conjugate in Aut (C*) with a finite sub-
group of GL(3, C).
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