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FINITE GROUPS WHOSE INTERSECTION GRAPHS

ARE PLANAR

Selçuk Kayacan and Ergün Yaraneri

Abstract. The intersection graph of a group G is an undirected graph
without loops and multiple edges defined as follows: the vertex set is the
set of all proper non-trivial subgroups of G, and there is an edge between
two distinct vertices H and K if and only ifH∩K 6= 1 where 1 denotes the
trivial subgroup of G. In this paper we characterize all finite groups whose
intersection graphs are planar. Our methods are elementary. Among the
graphs similar to the intersection graphs, we may count the subgroup
lattice and the subgroup graph of a group, each of whose planarity was

already considered before in [2, 10, 11, 12].

1. Introduction and preliminaries

A graph is called planar if it can be drawn on the plane in such a way that
its edges intersect only at their endpoints. There are interesting graphs con-
structed from algebraic objects such as the subgroup lattice and the subgroup
graph of a group. Planarity of the subgroup lattice and the subgroup graph of
a group were studied by Bohanon and Reid in [2] and by Schmidt in [10, 11]
and by Starr and Turner III in [12], and planarity of the intersection graph of
a module over any ring was studied in [13].

Here we study planarity of the intersection graph of a finite group. Let G be
a group. By the intersection graph of G we mean an undirected graph without
loops and multiple edges defined as follows: the vertex set is the set of all
proper non-trivial subgroups of G, and there is an edge between two distinct
vertices H and K if and only if H∩K 6= 1 where 1 denotes the trivial subgroup
of G.

We call a group planar if its intersection graph is planar. For any natural
numbers m and n, we use Cn to denote a cyclic group of order n, and we write
m
∣∣n to mean that m divides n. Our main result is:
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Theorem. A finite group is planar if and only if it is isomorphic to the one

of the following groups:

(1) Cpqr, Cp2q, Cpq, Cpi , where p, q, r are distinct primes and 0 ≤ i ≤ 5.
(2) C4 × C2, Cp × Cp, C2 × C2 × Cp (p 6= 2), where p is a prime.

(3) The dihedral group D8 of order 8, the quaternion group Q8 of order 8.
(4) The semidirect products Cq ⋊ Cp2 with p2

∣∣q − 1, (Cp × Cp) ⋊ Cq with

q
∣∣p+1, where p, q are distinct primes. Presentations and the subgroup

structures of these groups are given in Lemma 4.6.

(5) The semidirect product (Cp × Cp) ⋊ Cq2 with q2
∣∣p + 1, where p, q are

distinct primes. A presentation and the subgroup structure of this group

are given in Lemma 4.7.

(6) The semidirect product Cr⋊Cpq with pq
∣∣r−1, where p, q, r are distinct

primes. A presentation and the subgroup structure of this group are

given in Lemma 4.8.

(7) The semidirect product Cp ⋊ Cq with q
∣∣p− 1, where p > q are distinct

primes. A presentation and the subgroup structure of this group are

given in Lemma 4.10.

Notice that in this setting graphs with empty vertex set are allowed. In
the theorem above, up to isomorphism, the first item lists the finite cyclic
planar groups, the second item lists the finite non-cyclic abelian planar groups,
the third item lists the finite non-abelian nilpotent planar groups, and the
remaining items list the finite non-nilpotent solvable planar groups. There are
no finite non-solvable planar groups.

It may be interesting to study connections between the subgroup lattice
and the intersection graph of a group. It is clear that the subgroup lattice
determines the intersection graph, but not conversely. Moreover, comparing
our main result with the main results of [2, 11] we see that there are groups
whose subgroup lattices are planar but the intersection graphs are not planar,
and vice versa.

Our methods are elementary. For the planarity of graphs we use the Kura-
towski’s theorem stating that a finite graph is planar if and only if it does not
contain a subdivision of either the complete graph K5 or the complete bipartite
graph K3,3. The complete graph Kn is a simple undirected graph with n ver-
tices in which every pair of distinct vertices is connected by a unique edge. The
complete bipartite graph Km,n is a simple undirected graph with m+n vertices
and with two disjoint sets Vm and Vn containing exactly m and n vertices such
that every vertex of Vn is connected to every vertex of Vm. To study algebraic
properties of the intersection graphs we use elementary group theory such as
Sylow’s theorem (see [5, p. 7]) and its generalization to solvable groups, namely
Hall’s theorem (see [5, p. 231]). We will not use any advanced result, such as
results related to the classification of minimal simple groups and the odd order
theorem. Below we summarize most of the results we use. For instance, we use
the product formula in the third part many times without stating it explicitly.



FINITE GROUPS WHOSE INTERSECTION GRAPHS ARE PLANAR 83

All the unexplained notations are standard and may be found in, for instance,
[9].

Remark 1.1. (1) (see [9, p. 76]) Let G be a group of order pn where p is a
prime. For any natural number k with k < n, the number of subgroups
of G of order pk is ≡ 1 (mod p).

(2) (see [9, p. 81]) Let P be a Sylow p-subgroup of a finite group G. Then,
NG(H) = H for any subgroup H with NG(P ) ≤ H ≤ G.

(3) (see [9, p. 30]) |XY ||X ∩ Y | = |X ||Y | for any two subgroups X and Y
of a finite group.

(4) (see [5, p. 131]) (Burnside pmqn Theorem) Any group of order pmqn is
solvable where p, q are prime numbers and m,n are natural numbers.

(5) (see [9, p. 196]) (Burnside Normal Complement Theorem) Let G be a
finite group and P be a Sylow p-subgroup of G. If P is contained in the
center of its normalizer NG(P ) in G, then there is a normal subgroup
Q of G such that P ∩Q = 1 and G = PQ.

(6) (see [9, p. 197]) (Hölder’s Theorem) Any finite group of square free
order is solvable.

We would like to thank to anonymous referee who pointed out that, inde-
pendently and using different methods, H. Ahmedi and B. Taeri have obtained
the same results (“Planarity of the intersection graph of subgroups of a finite
group”, to appear).

2. Abelian groups

Modules over any ring whose intersection graphs are planar were already
characterized in [13], from which the following result follows. Notice that if
H ≤ G and G is planar, then H is also planar. By using this simple remark
and the fundamental theorem of finite abelian groups (see [9, p. 128]), we may
easily justify the following result, whose easy proof is omitted.

Proposition 2.1. A finite abelian group G is planar if and only if it is iso-

morphic to one of the following groups:

Cpi (0 ≤ i ≤ 5), Cp2 × Cq, Cp × Cq, C4 × C2,

Cp × Cp, Cp × Cq × Cr, C2 × C2 × Cp (p 6= 2)

where p, q and r are distinct primes.

3. Nilpotent groups

In this section we determine nilpotent groups which are planar. We first
deal with p-groups.

Lemma 3.1. Let p be a prime number and G be a non-cyclic group of order

p4. Then G is not planar.
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Proof. As a finite group having exactly one maximal subgroup must be cyclic,
it follows from Remark 1.1 that there are at least three maximal subgroups of
G, say X1, X2 and X3. Since G is a p-group of order p4, each Xi is of order
p3 and the product of any two of them is G. Employing the product formula,
Y = X1 ∩ X2 is of order p2 and it intersects X3 non-trivially. Let Z be a
non-trivial subgroup of X3 ∩ Y of order p (note that the order of X3 ∩ Y is
either p or p2). Now, X1, X2, X3, Y and Z form a K5 in the intersection graph
of G, so that G is not planar. �

Lemma 3.2. Let p be an odd prime and G be a non-cyclic group of order p3.
Then G is not planar.

Proof. Since p > 2, arguing as in the proof of Lemma 3.1, we first conclude
that there are at least four maximal subgroups of G, say X1, X2, X3 and X4, of
order p2. Assume that Y = X1 ∩X2 ∩X3 ∩X4 is non-trivial, then this group
together with X1, X2, X3 and X4 form a K5 in the intersection graph. Now
let us assume that Y is trivial. In this case Φ(G) = 1 where Φ(G) denotes the
Frattini subgroup of G. Since G is a p-group, G/Φ(G) is elementary abelian.
Thus, if Φ(G) = 1 and |G| = p3, then G ∼= G/Φ(G) ∼= Cp × Cp × Cp which is
not planar, because Cp × Cp × Cp is not listed in Proposition 2.1. �

Up to isomorphism, there are exactly 5 distinct groups of order 8 and only
two of them, namely D8 (dihedral group of order 8) and Q8 (quaternion group),
are non-abelian. Both groups, whose intersection graphs are given in Figure 1,
are planar.

(a) D8 (b) Q8

Figure 1. Non-abelian planar nilpotent groups.

It is clear that if H is a proper subgroup of G and the intersection graph of
H contains K4, then G cannot be planar, because there would be a K5 in the
graph. With this simple remark we have:

Proposition 3.3. A finite non-abelian nilpotent group is planar if and only if

it is isomorphic to D8 or Q8.

Proof. Suppose that G is a finite non-abelian nilpotent group which is planar.
Since a nilpotent group is the direct product of its Sylow subgroups, there must
be a non-abelian Sylow subgroup S of G. Let |S| = pα for some prime p and
natural number α. Since S is non-abelian, α ≥ 3. As S must be planar, it
follows from Lemma 3.1 and Lemma 3.2 that α = 3 and p = 2, which means
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S must be isomorphic to D8 or Q8. In both cases the intersection graph of S
contains K4. Therefore S cannot be a proper subgroup of G, and so G = S. �

4. Solvable groups

As a subgroup of a planar group is planar, the following lemma is an easy
consequence of Propositions 2.1 and 3.3.

Lemma 4.1. Let G be a finite planar group of order n = pα1

1 pα2

2 · · · pαk

k where

k > 2 and pi are distinct prime numbers. Then αj < 5 for any j. Moreover, if

αj = 3 or αj = 4 for some j, then any Sylow pj-subgroup of G is cyclic.

Proof. There is only one planar group of order p5, namely Cp5 , and only one
planar group of order p4, namely Cp4 , and four planar groups of order p3,
namely Cp3 , C4 × C2, D8 and Q8 (see Propositions 2.1 and 3.3). But, each of
Cp5 , C4 × C2, D8 and Q8 contains K4 in its intersection graph. �

A finite solvable group is a group with a composition series whose factor
groups are of prime order. This means that if G is a planar solvable group of
order pα1

1 pα2

2 · · · pαk

k where pi are distinct prime numbers, then α1 +α2 + · · ·+
αk < 6; otherwise, there must be a chain of five proper non-trivial subgroups
forming a K5 in the intersection graph. Hence, for a finite solvable group G
there are finitely many cases that must be examined, and these cases are given
in Table 1, whose first row consist of p-groups and they are already classified.

Table 1

|G| = p5 |G| = p4 |G| = p3 |G| = p2

|G| = p4q |G| = p3q |G| = p2q |G| = pq
|G| = p3q2 |G| = p2q2 |G| = pqr
|G| = p3qr |G| = p2qr
|G| = p2q2r |G| = pqrt
|G| = p2qrt
|G| = pqrtu

Note that the groups in Lemmas 4.2-4.3 and 4.6-4.8 are all solvable by the
virtue of Burnside’s and Hölder’s theorems (see Remark 1.1).

We say that non-trivial subgroupsH1, H2, . . . , Hn of a group G are mutually
intersecting if Hi ∩Hj 6= 1 for any i and j.

We first eliminate groups of order p3q and of order p4q as non-planar groups.

Lemma 4.2. If G is a group of order p3q or p4q where p and q are distinct

prime numbers, then G is not planar.

Proof. We prove the assertion for groups of order p3q. Similar arguments apply
for groups of order p4q. Let P be a Sylow p-subgroup of G and let Q be a Sylow
q-subgroup of G. By Lemma 4.1 we see that P is cyclic, otherwise G is not
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planar. Take a chain A1 < A2 < P where |A1| = p and |A2| = p2. We have
three cases to analyze: in the first case P is normal in G; in the second case Q
is normal in G; and in the third case both P and Q are not normal in G.

Case I : Assume that P is normal in G. As any subgroup of a normal cyclic
subgroup is also a normal subgroup, each Ai is normal in G, implying that
the products AiQ are subgroups of G. It is now clear that the five subgroups
A1, A2, P , A1Q, A2Q are mutually distinct and each of them contains A1.
Consequently, the graph of G contains K5, and so G is not planar.

Case II : Assume that Q is normal in G. In this case the products AiQ are
subgroups of G. So, as in the first case, A1, A2, P , A1Q and A2Q form a K5

in the graph of G, and so G is not planar.
Case III : Assume that both of P and Q are not normal in G. Let N be a

minimal normal subgroup of G. Since G is solvable, N is an elementary abelian
r-group for some prime r (that is, a direct product of cyclic groups Cr). As Q
is not normal, r = p. Therefore, N is an elementary abelian p-group inside the
cyclic p-group P. This shows that N ∼= Cp. Now take a subgroup T such that
N < T < P where |T | = p2. As each Sylow p-subgroup of G contains N , we
see that each Sylow p-subgroup of G intersects T . Consequently, all the Sylow
p-subgroups together with the subgroups N and T are mutually intersecting
and mutually distinct. As P is not normal, there are at least p + 1 Sylow
p-subgroups. Therefore, in the above we have at least p + 3 mutually distinct
and mutually intersecting subgroups. As p+ 3 ≥ 5, G cannot be planar. �

Lemma 4.3. Let G be a group of order p3q2 where p and q are distinct prime

numbers. Then G is not planar.

Proof. Since G is solvable, there must be a (normal) subgroup H of order
either p2q2 or p3q. By Lemma 4.2 we eliminate the latter case. Then H has a
subgroup K of order either p2q or pq2. Let X be a subgroup of K of order p,
and let P be a Sylow p-subgroup of G containing X. As |X | = p and |P | = p3,
we may choose a subgroup Y of G such that X < Y < P with |Y | = p2. Then,
H,K,X, Y, P form a K5 in the intersection graph of G. �

Let G be a finite group and let N be a non-trivial normal subgroup of G. If
G/N has at least five proper subgroups, then by the correspondence theorem G
has at least five proper subgroups all containing N and these subgroups form
a K5 in the intersection graph of G. The groups having exactly m subgroups
where m ≤ 6 are classified in [8].

Proposition 4.4 (see [8]). A non-abelian group has at least 6 subgroups.

It follows easily from the previous result that the center Z(G) of any non-
nilpotent planar group G is trivial. Another immediate consequence of the
classification in [8] is the following.
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Lemma 4.5. Let G be a finite planar group and let N be a non-trivial normal

subgroup of G. Then G/N is abelian. Moreover, letting ns be the number of

proper non-trivial subgroups of G/N, the following occur:

(1) ns = 0 ⇒ G/N ∼= Cp

(2) ns = 1 ⇒ G/N ∼= Cp2

(3) ns = 2 ⇒ G/N ∼= Cp3 or G/N ∼= Cpq

(4) ns = 3 ⇒ G/N ∼= Cp4 or G/N ∼= C2 × C2

for some distinct prime numbers p and q.

We use the above result to reduce the number of possible cases for the order
of a finite planar solvable group. Let G be a finite planar solvable group, and let
N be a minimal normal subgroup of G. Then N must be a planar elementary
abelian s-group where s is a prime number. It follows from Proposition 2.1
that N is isomorphic to Cs or Cs ×Cs. Moreover, G/N must be isomorphic to
one of the groups described in Lemma 4.5. Therefore, the solvable groups of
order p3qr, p2q2r, pqrt, p2qrt and pqrtu given in Table 1 cannot be planar.

Lemma 4.6. Let G be a non-nilpotent group of order p2q where p and q are

distinct prime numbers. Then, G is planar if and only if it is isomorphic to

one of the following groups:

(1)

Cq ⋊α Cp2 = 〈a, b | aq = bp
2

= 1, bab−1 = aα〉

where p2 divides q − 1 and α is any integer not divisible by q whose

order in the unit group Z∗
q of Zq is p2. (Moreover, such a group has

exactly q subgroups of order p2 which are all cyclic and mutually non-

intersecting, and has exactly 1 subgroup of order q, and has exactly 1
subgroup of order pq, and has exactly q subgroups of order p).

(2)

(Cp×Cp)⋊βCq = 〈a, b, c | ap = bp = cq = 1, ab = ba, cac−1 = b, cbc−1 = a−1bβ〉

where q divides p + 1 and β is any integer such that the matrix θ =[
0 −1
1 β

]
has order q in the group GL(2,Zp) and such that θ has no

eigenvalue in Zp. (Moreover, such a group has exactly 1 subgroup of

order p2 which is elementary abelian, and has exactly p2 subgroups of

order q, and has exactly p+1 subgroups of order p, and has no subgroup

of order pq.)

Proof. Let G be a non-nilpotent group of order p2q. Let P be a Sylow p-
subgroup of G and Q be a Sylow q-subgroup of G. We separate the proof into
two parts. In the first case we assume that P is not normal in G and in the
second case we assume that P is normal in G.

Case I : Assume that P is not normal: As P is a maximal subgroup and
as it has order p2, we see that the center of NG(P ) is P, from which we con-
clude by using the Burnside Normal Complement Theorem (see Remark 1.1)
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that Q is normal in G. Moreover, the Sylow theorems imply that G has q Sy-
low p-subgroups P1, . . . , Pq and q ≡ 1 (mod p). As |P | = p2, there are two
possibilities: P ∼= Cp × Cp or P ∼= Cp2 .

Case I (a): Assume that P ∼= Cp × Cp : As G = PQ and Q is normal in
G, we see that G/Q ∼= P. Now P has p+1 subgroups of order p, and hence by
the correspondence theorem G has p + 1 subgroups R1, R2, . . . , Rp+1 of order
pq (all of which contain Q). As |Pi||Rj | = p2pq > |G|, we see that Pi ∩Rj 6= 1.
Since both of q and p+ 1 are greater than or equal to 3, we see that P1, P2, P3

and R1, R2, R3 form a K3,3 in the intersection graph of G. Hence, G is not
planar in this case.

Case I (b): Assume that P ∼= Cp2 :
Case I (b)(i): Assume that Pi ∩ Pj 6= 1 for some distinct i and j : Let

X = Pi ∩ Pj . Then NG(X) contains both of Pi and Pj , implying that X is a
normal subgroup of G of order p. Therefore, X is in every Sylow p-subgroups
of G. Hence, P1, P2, . . . , Pq and X and QX form a Kq+2 in the intersection
graph of G. Note that as q ≡ 1 (mod p), q + 2 ≥ 5. So, G is not planar in this
case.

Case I (b)(ii): Assume the contrary of the previous case: That is, we
assume that the intersection of any two distinct Sylow p-subgroups is trivial.
As G/Q ∼= P and P is cyclic, G/Q has a unique subgroup of order p. From the
correspondence theorem G has a unique subgroup of order pq. So, in this case,
it is clear that G is planar, and its intersection graph is given in Figure 2. To
write a presentation of G let a be a generator of Q and b be a generator of P.
Then bab−1 = aα for some integer α. For any natural number k, it is easy to

see that bkab−k = aα
k

. This shows that αp2

≡ 1 (mod q). Moreover, αp 6≡ 1
(mod q), otherwise the intersection of any two Sylow p-subgroups of G is not
trivial. Conversely, it is clear that any group with the given presentation has
the stated subgroup structure.

Case II : Assume that P is normal in G. As G is not nilpotent, Q cannot
be normal in G. We have two possibilities either there is a subgroup of G of
order pq or there is no such subgroup.

Case II (a): Assume that there is a subgroup of G of order pq :
Case II (a)(i): Assume that there is a normal subgroup of G of order pq,

say Y . Then Sylow q-subgroups of Y and G are the same, implying that Y and
hence G has p Sylow q-subgroups Q1, Q2, . . . , Qp, and p ≡ 1 (mod q). Note
that the normalizers NG(Q1), NG(Q2), . . . , NG(Qp) must be mutually distinct,
because each NG(Qi) has a unique Sylow q-subgroup which is Qi. Moreover,
they all have order pq. As the normalizer of a Sylow subgroup is self normalizing
(see the second part of Remark 1.1), each NG(Qi) is not normal in G. There-
fore, we see that the p+ 2 subgroups P , Y , NG(Q1), NG(Q2), . . . , NG(Qp) are
mutually distinct and intersecting, forming a Kp+2 in the intersection graph of
G. Since p+ 2 ≥ 5 (because p ≡ 1 (mod q)), G is not planar.
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Case II (a)(ii): Assume that there is a non-normal subgroup of G of order
pq, say Z. Its index p cannot be the smallest prime dividing the order of G.
Hence, p > q. Let U be a Sylow p-subgroup of Z. Then U must be normal
in Z. Note that U is contained in P (because P is normal in G) and that
U is normal in P (because P is abelian). Therefore, U is normal in G. It
follows from Proposition 4.4 and the explanation given before it that if the
quotient group G/U is not abelian, then G is not planar. On the other hand, if
G/U is abelian, then the correspondence theorem implies that G has a normal
subgroup of order pq. We know from the previous subcase that in this case G
is not planar.

Case II (b): Assume that there is no subgroup of G of order pq : In this
case it is clear that G is planar. Moreover, P cannot be cyclic. Otherwise, its
unique subgroup T of order p will be a normal subgroup of G, implying that
the quotient group G/T will have a subgroup of order q, and hence G will have
a subgroup of order pq. Therefore, P ∼= Cp × Cp. As G has no subgroup of
order pq, the normalizer of a Sylow q-subgroup of G must have index p2. The
subgroup Q acts by conjugation on the set of all subgroups of G of order p. As
G has no subgroup of order pq, this action has no fixed point, implying that q
divides p+ 1.

To write a presentation of G, let a be an element of P of order p and let
c be a generator of Q. As G has no subgroup of order pq, the elements a and
cac−1 must generate P. Letting b := cac−1, it is enough to determine cbc−1 in
terms of a and b. Now cbc−1 = aγbβ for some integers γ and β. Conjugation by
c induces an invertible linear operator f on the vector space P over the field

Zp and the matrix of f with respect to the basis {a, b} of P is θ =
[
0 γ
1 β

]
.

Note that G has no subgroup of order pq if and only if f has no eigenvalue in
Zp : Indeed, if 1 6= s ∈ P is an eigenvector of f corresponding to an eigenvalue
λ ∈ Zp, then f(s) = sλ, implying that 〈c〉〈s〉 is a subgroup of G (because
〈c〉〈s〉 = 〈s〉〈c〉) of order pq. Conversely, if G has a subgroup of order pq, then
conjugating it by an element of G we see that there is a subgroup H of G of
order pq which contains Q. Therefore, H = 〈t〉〈c〉 for some 1 6= t ∈ P. As H
is a subgroup, ct = tmcn for some integers m and n. Then t−mf(t) = cn−1 ∈
P ∩Q = 1, implying that f(t) = tm.

As the order of c is prime q, the order of θ in GL(2,Zp) must be q. Consid-
ering the determinants we see from the equation θq = I that the possibilities
for the order of −γ in Z∗

p is 1 or q. Suppose for a moment that the order of
−γ is q. Then q divides p − 1, implying that q = 2 (because we already know
that q divides p + 1). But then θ2 = I implies that θ = [ 0 1

1 0 ] , which has an
eigenvalue in Zp. Therefore, the order of −γ must be 1, implying that γ ≡ −1
(mod p).

Conversely, it is clear that any group with the given presentation has the
stated subgroup structure. The intersection graph of such a group is given in
Figure 2. �
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The prime q in the second part of the previous lemma cannot be 2. Indeed,
it is easy to see that θ2 6= I where θ is the matrix in Lemma 4.6. Therefore,
there is no planar group of order 2p2 where p is an odd prime.

Groups of order p2q were classified by Hölder (see [6], [3, p. 76], [4], or [1]).
The previous lemma may also be justified by analyzing the cases described in
these references.

(a) Cq ⋊α Cp2 (b) (Cp × Cp)⋊β Cq

Figure 2. Non-nilpotent planar groups of order p2q.

Lemma 4.7. Let G be a non-nilpotent group of order p2q2 where p > q are

distinct prime numbers. Then, G is planar if and only if it is isomorphic to

(Cp×Cp)⋊βCq2 =〈a, b, c | ap = bp = cq
2

= 1, ab = ba, cac−1 = b, cbc−1 = a−1bβ〉

where q2 divides p + 1 and β is any integer such that the matrix θ =
[
0 −1
1 β

]

has order q2 in the group GL(2,Zp) and such that θq has no eigenvalue in Zp.
(Moreover, such a group has exactly 1 subgroup of order p2q, and has no sub-

group of order pq2, and has exactly 1 subgroup of order p2 which is elementary

abelian, and has exactly p2 subgroups of order q2 which are all cyclic and mu-

tually non-intersecting, and has no subgroup of order pq, and has exactly p+1
subgroups of order p, and has exactly p2 subgroups of order q.)

Proof. Assume that G is planar. Let P be a Sylow p-subgroup of G and Q be
a Sylow q-subgroup of G. We have the following subgroup structure for G :

(I) G has no normal subgroup of prime order: This follows from Lemma 4.5.
(II) P is normal in G and Q is not normal in G : It is clear that the in-

tersection of any two distinct Sylow p-subgroups P1 and P2 of G is a normal
subgroup of G of order p. The normality of P1 ∩ P2 may be seen easily by
considering the normalizer of P1 ∩ P2. Therefore, it follows from (I) that P is
normal in G. As G is not nilpotent, Q is not normal in G.

(III) P ∼= Cp × Cp: Using Lemma 4.5 and (I) and (II) we see that P is a
minimal normal subgroup of G.

(IV) Q ∼= Cq2 : It follows from Lemma 4.5 that G/P ∼= Cq2 or G/P ∼=
C2 × C2. In the case G/P ∼= C2 × C2, there are 3 subgroups of G/P of order
2. Hence, there are 3 subgroups X1, X2, X3 of G of order 2p2 all of which
contain P. Letting Y be any subgroup of P of order p, we see that the groups
X1, X2, X3, P, Y form a K5 in the intersection graph of G so that G is not
planar.
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(V) G has exactly one subgroup of order p2q: As P is normal in G, any
subgroup of G of order divisible by p2 contains P. So, the number of subgroups
of G of order p2q is equal to the number of subgroups of Q ∼= G/P of order q.
The result follows because Q is cyclic by (IV).

(VI) G has no subgroup of order pq2 and has no subgroup of order pq: There
is a unique subgroup of G of order p2q by (V). This subgroup, say H, must be
planar and P is the unique Sylow p-subgroup of H. As P is elementary abelian,
H must be isomorphic to the second group found in Lemma 4.6. In particular,
H has no normal subgroup of order p and has no subgroup of order pq. Now,
suppose for a moment that there is a subgroup U of G of order pq2 or pq. Note
that U is not in H. As P is an abelian normal subgroup of G, we see that
PNG(U) ≤ NG(P ∩ U). Considering the order of the subgroup PNG(U) and
the uniqueness of H, we see that H ≤ PNG(U). Therefore, P ∩ U is a normal
subgroup of H of order p, which is impossible.

(VII) G has exactly p2 subgroups of order q2, all of which are cyclic: As Q
is not normal, this follows from (IV), (VI), and the Sylow theorems.

(VIII) The intersection of any two distinct subgroups of order q2 is trivial:
Otherwise the intersection is a subgroup of G of order q such that the order of
the normalizer of the intersection is pq2 or p2q2. It follows from (VI) and (I)
that each of the two cases is impossible.

(IX) G has exactly p2 subgroups of order q: This follows from (VII) and
(VIII).

(X) q2 divides p + 1: Q acts by conjugation on the set of all subgroups of
G of order p. Since by (VI) there is no subgroup of G of order pq2 or pq, the
stabilizer of any subgroup of G of order p must be the trivial subgroup of Q.
Therefore, each orbit has cardinality q2.

Conversely, it is clear that any group satisfying the above properties (I)-(X)
is planar, and its intersection graph is given in Figure 3. On the left the vertices
represent the subgroup of order p2 and the p+ 1 subgroups of order p, and on
the rightmost two columns the vertices represent subgroups of order q and of
order q2.

Finally, we may argue as in the proof of the second part of Lemma 4.6 to
see that such a group has the given presentation. Indeed, let a be an element
of P of order p and let c be a generator of Q. As G has no subgroup of order
pq2, the elements a and b := cac−1 form a basis for the vector space P over Zp.
Now cbc−1 = aγbβ for some integers γ and β. The matrix of the conjugation

on P by c is θ =
[
0 γ
1 β

]
. The order of θ in GL(2,Zp) must be q2 because c has

order q2 and G has no subgroup of order pq. The order of (−γ) in Z∗
p is 1 or

q or q2. We see easily that the order is not q2 (otherwise q2 divides 2) and is
not q (otherwise, q = 2 and γ2 = 1 in Zp, and θ4 = I implies that β = 0 in Zp,
and so θ2 is diagonal, implying that G has a subgroup of order pq). Therefore,
γ ≡ −1 (mod p). Moreover, as G has no subgroup of order pq we have to
assume that θq (implying that θ) has no eigenvalue in Zp. �
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The prime q in the previous lemma cannot be 2. Indeed, θ4 = I implies that
θ2 is diagonal, and so G has a subgroup of order pq, where θ is the matrix in
Lemma 4.7. Therefore, there is no planar group of order 4p2 where p is an odd
prime.

Groups of order p2q2 were determined by Le Vavasseur in [7]. The previous
result may also be proved by analyzing the cases given there.

Lemma 4.8. Let G be a non-nilpotent group of order pqr where p < q < r are

distinct prime numbers. Then, G is planar if and only if it is isomorphic to

Cr ⋊α Cpq = 〈a, b | ar = bpq = 1, bab−1 = aα〉

where pq divides r − 1 and α is any integer not divisible by r whose order in

the unit group Z∗
r of Zr is pq. (Moreover, such a group has exactly 1 subgroup

of order pr, and has exactly 1 subgroup of order qr, and has exactly r subgroups

of order pq, which are all cyclic and mutually non-intersecting, and has exactly

1 subgroup of order r, and has exactly r subgroups of order p, and has exactly

r subgroups of order q).

Proof. The Sylow theorems imply that G has a unique Sylow r-subgroup R.
Assume first that G is planar. We have the following subgroup structure for
G:

(I) G has exactly 1 subgroup of order pr and exactly 1 subgroup of order
qr: From Lemma 4.5, we see that G/R ∼= Cpq . Thus G/R has exactly one
subgroup of order p and q. Since any subgroup of G of order divisible by r
contains R, the result follows.

(II) G has exactly r subgroups of order pq, which are all cyclic and mutually
non-intersecting: Let X be a Hall subgroup of G of order pq. By (I) there are
unique subgroups of G of order pr and qr, say Y and Z. If X is normal in G,
then X ∩ Y ∩ Z = 1 so that G is isomorphic to a subgroup of the cyclic group
Cr×Cq×Cp. Therefore, X is not normal in G. As any two Hall subgroups of a
finite solvable group of the same order are conjugate [5, p. 231, Theorem 4.1],
there are exactly r subgroups of G of order pq. Moreover, X must be cyclic
because X ∩ Y and X ∩Z are normal subgroups of X of orders p and q whose
product is X. Finally, let X1 and X2 be two subgroups of G of order pq such
that X1 ∩ X2 6= 1. Then we see that X1 ∩ X2 is a normal subgroup of G of
order p or q. But then X1 ∩X2 must be contained in each of r subgroups of G
of order pq. Therefore, the intersection graph of G contains Kr. As r ≥ 5, in
this case G is not planar.

(III) G has exactly r subgroups of order p and r subgroups of order q: As
any subgroup of G of order p or q is contained in a subgroup of G of order pq,
the result follows from (II).

(IV) pq divides r − 1: It follows from (III) and the Sylow theorems that
r ≡ 1 (mod p) and r ≡ 1 (mod q). The result follows.

Conversely, it is clear that any group satisfying the above properties (I)-(IV)
is planar, and its intersection graph is given in Figure 3. The uppermost middle
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vertex represents the unique subgroup of G of order r, and the leftmost and
the rightmost vertices represent the unique subgroups of G of order pr and qr.

Finally, we may argue as in the proof of the first part of Lemma 4.6 to see
that such a group has the given presentation. �

Groups of order pqr were classified by Hölder (see [6]). One may also analyze
the cases there to prove the previous result.

(a) (Cp ×Cp)⋊β Cq2 (b) Cr ⋊α Cpq

Figure 3. Non-nilpotent planar groups of order p2q2 and of
order pqr.

Lemma 4.9. Let G be a non-nilpotent solvable group of order p2qr where p, q
and r are distinct prime numbers. Then G is not planar.

Proof. Assume for a moment that G is planar. Let P be a Sylow p-subgroup
of G. We have the following subgroup structure for G:

(I) P is normal in G and P ∼= Cp × Cp and G/P ∼= Cqr: As any minimal
normal subgroup of a finite solvable group is elementary abelian group of prime
power order, the result follows from Lemma 4.5.

(II) G has exactly 1 subgroup A of order p2q and has exactly 1 subgroup B
of order p2r. Moreover, both A and B contain P : As P is normal, any subgroup
of G of order divisible by p2 must contain P. The result follows from (I) which
implies that G/P has exactly 1 subgroup of order q and has exactly 1 subgroup
of order r.

(III) The intersection graph of G contains K3,3: It follows from (I) that P
has exactly p+ 1 subgroups of order p. Take any 3 distinct subgroups of P of
order p, say X1, X2, X3. Then, it is clear from (II) that the intersection of any
element of the set {X1, X2, X3} with any element of the set {A,B, P} is not
trivial. Thus, the intersection graph of G contains K3,3.

Finally, we note that (III) contradicts the planarity of G. �

Finally, if G is a group of order pq where p > q are prime numbers, then any
proper non-trivial subgroup of G is of prime order, and so there is no edge in
the intersection graph of G. Therefore, any such group is planar, and we have
the following easy consequence of the Sylow theorems.
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Lemma 4.10. Let G be a group of order pq where p > q are distinct primes.

Then, G is planar. If G is non-nilpotent, then q divides p− 1 and G is isomor-

phic to

Cp ⋊α Cq = 〈a, b | ap = bq = 1, bab−1 = aα〉

where α is any integer not divisible by p whose order in the unit group Z∗
p of Zp

is q. (Moreover, such a group has exactly 1 subgroup of order p and has exactly

p subgroups of order q).

5. Non-solvable groups

In this section we show that any non-solvable finite group is not planar.

Lemma 5.1. If G is a finite non-solvable simple group, then G is not planar.

Proof. Suppose contrarily that G is a finite non-solvable simple group which is
planar. Then we have:

(I) Any Sylow subgroup of G is abelian: Let P be a Sylow p-subgroup of G
for some prime p dividing |G|. As P is planar, it follows from Propositions 2.1
and 3.3 that P is isomorphic to one of the groups Cpα (α ≤ 5), Cp × Cp, D8,
Q8. However, the intersection graph of any of the groups Cp5 , D8, Q8 contains
a K4. Therefore, P must be isomorphic to one of the groups Cpα (α ≤ 4),
Cp × Cp.

(II) For any non-trivial Sylow subgroup P of G, its normalizer NG(P ) is a
non-abelian proper subgroup of G: As G is simple, the result follows from the
Burnside Normal Complement Theorem (see Remark 1.1).

(III) If P is a Sylow p-subgroup of G for some prime p dividing |G|, then
P is isomorphic to Cp × Cp or Cp. Moreover, if P is isomorphic to Cp × Cp,
then NG(P ) is a non-nilpotent group of order p2q isomorphic to the group
described in the second part of Lemma 4.6: Suppose that P ∼= Cpα where
α ≥ 2. The unique subgroup C of the cyclic group P of order p must be normal
in NG(P ). Moreover, P 6= NG(P ) by (I)-(II). It then follows from Lemma 4.5
that NG(P )/C is isomorphic to Cpr and α = 2 where r is a prime number
different from p. So NG(P ) is a non-abelian planar group of order p2r having
a normal cyclic subgroup of order p2, which is impossible by the virtue of
Lemma 4.6. Consequently, it follows from the proof of (I) that P is isomorphic
to Cp ×Cp or Cp. Suppose now that P is isomorphic to Cp ×Cp. If NG(P )/P
has a proper non-trivial subgroup X/P, then the set {NG(P ), X, P} and the
set consisting of any distinct three subgroups of P of order p form a K3,3 in
the intersection graph of G. Hence, NG(P )/P must have prime order q so that
NG(P ) is a non-abelian planar group of order p2q.

(IV) If |G| is even, then any Sylow 2-subgroup of G is isomorphic to C2×C2:
Indeed, if there is a cyclic Sylow 2-subgroup S, then S ∼= C2 by (III). But then
the N/C Lemma (see [9, p. 156]) implies that NG(S) = CG(S) so that S has a
normal complement by the Burnside Normal Complement Theorem.
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(V) G has no subgroup of order 2s where s is an odd prime: Suppose for
a moment that G has a subgroup Y of order 2s. Let U be a subgroup of Y
of order 2, and let W be a Sylow 2-subgroup of G containing U. From (IV)
we know that U 6= W. Let g be an element of W. Note that gY contains U. If
Y and gY are distinct, then the subgroups U,W,NG(W ), Y, gY form a K5 in
the intersection graph of G. Therefore, Y = gY so that g ∈ NG(Y ). Therefore,
W ≤ NG(Y ), implying thatWY = YW so thatWY is a subgroup of G of order
4s. Note that WY 6= G (because Y is a normal subgroup of WY ), and note
that WY 6= NG(W ) (because otherwise |NG(W )| = 22s, and it follows from
(III) and Lemma 4.6 that NG(W ) has no subgroup of order 2s). Therefore,
the subgroups U,W, Y,WY,NG(W ) form a K5 in the intersection graph of G.
This contradicts the planarity of G.

(VI) If P is a Sylow p-subgroup of G for some prime p dividing |G|, then
P is isomorphic to Cp: Assume contrarily that P is a Sylow p-subgroup of
G not isomorphic to Cp. It follows from (III) that P ∼= Cp × Cp and NG(P )
is a non-abelian group of order p2q for some prime q different from p. Let Q
be a Sylow q-subgroup of NG(P ). It follows from (III) and Lemma 4.6 that
NG(P ) ∩ NG(Q) = Q. Let T be a Sylow q-subgroup of G containing Q. If
T = Q, then (II) implies that Q 6= NG(Q). If T 6= Q, then NG(Q) contains T
by (I) so that Q 6= NG(Q). Hence, NG(Q)/Q is a non-trivial group. For any two
distinct elements aQ and bQ of the quotient group NG(Q)/Q, the subgroups
aNG(P ) and bNG(P ) are distinct subgroups containing Q (because NG(P ) is
self normalizing and NG(P )∩NG(Q) = Q). Therefore, if |NG(Q)/Q| > 3, then
there are three distinct conjugates Z1, Z2, Z3 of NG(P ) containing Q, so that
the subgroups Z1, Z2, Z3, Q,NG(Q) form a K5 in the intersection graph of G.
Therefore, we must have that |NG(Q)/Q| = 2, and so |NG(Q)| = 2q. But then,
(V) implies that q = 2 and so NG(Q) is a Sylow 2-subgroup of G. Now the
subgroupsNG(P ), zNG(P ), Q,NG(Q),M form aK5 in the intersection graph of
G where zQ is any non-identity element of NG(Q)/Q and M is the normalizer
in G of the Sylow 2-subgroup NG(Q) of G.

It follows from (VI) that G has square free order. But such a group is
solvable by Hölder’s theorem (see Remark 1.1). �

Proposition 5.2. A finite non-solvable group is not planar.

Proof. Suppose contrarily that G is a finite non-solvable group which is planar.
Since solvability is closed under group extension, G must have a non-solvable
simple composition factor X. It follows from Lemma 5.1 that X is not isomor-
phic to a subgroup of G. Thus X is isomorphic to H/N for some non-trivial
subgroup H of G and for some non-trivial proper normal subgroup N of H.
But then, as H is planar, Lemma 4.5 implies that X is abelian. �
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