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Abstract: The intersection power graph of a finite group G is the graph whose vertex set is G, and two

distinct vertices x and y are adjacent if either one of x and y is the identity element ofG, or⟨ ⟩ ∩ ⟨ ⟩x y is non-

trivial. In this paper, we completely classify all finite groups whose intersection power graphs are toroidal

and projective-planar.
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1 Introduction

A simple graph is an undirected graph without loops and multiple edges. A graph is called finite if its vertex

set is finite. All graphs considered in this paper are finite and simple. Let Γ be a graph. Denote by ( )V Γ and

( )E Γ the vertex set and the edge set of Γ, respectively. An embedding of a graph into a surface is a drawing

of the graph on the surface in such a way that its edges may intersect only at their endpoints. A graph is

called planar if it can be embedded in the plane. A non-planar graph can be embedded in some surface

obtained from the sphere by attaching some handles or crosscaps. We denote by �k a sphere with ≥k 0

handles and by�k a sphere with k crosscaps. Note that� �=0 0 is the sphere, while�1 and�1 are a torus and

a projective plane, respectively. The smallest non-negative integer k such that a graph Γ can be embedded

on �k is called the orientable genus or genus of Γ and is denoted by ( )γ Γ . The non-orientable genus of Γ,

denoted by ( )γ Γ , is instead the smallest integer k such that Γ can be embedded on �k. A graph Γ is called

toroidal if ( ) =γ Γ 1 and Γ is called projective-planar if ( ) =γ Γ 1. Note that Γ is planar if and only if ( ) =γ Γ 0,

if and only if, ( ) =γ Γ 0. We follow the book [1] for undefined notation and terminology.

Graphs associated with groups and other algebraic structures have been actively investigated in the

literature, because they have valuable applications [2] and are related to automata theory [3,4]. For exam-

ple, the Cayley graph of a group, which has a long history. The undirected power graph of a group G,

denoted ( )� G , is a simple graph whose vertex set is G and two distinct vertices are adjacent if one is

a power of the other. Kelarev and Quinn [5] first introduced the concept of power graph of a group, as a

directed graph. The concept of the undirected power graph of a group was introduced first by Chakrabarty

et al. [6]. In the past two decades, the study of power graphs of groups has been growing. See, for example,

[7–15] and the survey paper [16] with many results and open questions on power graphs.

In 2018, Bera [17] defined the intersection power graph ( )� GI of a groupG, where the vertex set of ( )� GI

is G, and distinct vertices x and y are adjacent if either one of x and y is the identity element of G or

∣ ∣⟨ ⟩ ∩ ⟨ ⟩ >x y 1. In [17], the author studied some properties of ( )� GI and determined the full automorphism
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group of the intersection power graph of a cyclic group. A book is a collection of half-planes having the

same line as their boundary. A planar embedding of a graph into a book is called the book embedding. The

smallest possible number of half-planes for any book embedding of a graph is called the book thickness of

the graph. In [18], the authors determined the finite groups whose intersection power graphs have book

thickness at most two.

All groups considered in this paper are finite. Let G be a group. The set of orders of elements of G is

denoted by ( )π Ge . �n denotes the cyclic group of order n. Also, we use Ψ to denote the set of all groups G

such that the following two conditions hold:

(i) { } ( ) { }⊆ ⊆π G4 1, 2, 3, 4e ;

(ii) G has exactly two cyclic subgroups of order 4 intersecting at a subgroup of order 2.

Note that � �× ∈ Ψ2 4 . Also, we identify the relevant groups using their unique identifiers in the

SmallGroups library [19], which is distributed with GAP [20]. The mth group of order n in the SmallGroups

library is identified as SmallGroup ( )n m, .

One can easily see that, for any group G, ( )� G is a spanning subgraph of ( )� GI . In [21], the authors

classified all finite groups whose power graphs have (non)orientable genus one. In [22], the authors classi-

fied all abelian groups whose intersection power graphs have (non)orientable genus one. In this paper,

we completely classify all groups whose intersection power graphs have (non)orientable genus one. Our

main results are the following theorems, where D n2 denotes the dihedral group of order n2 .

Theorem 1.1. Let G be a group. Then ( )� GI is toroidal if and only if

� � �{ ( ) ( )}∈ ∪G D D D SmallGroup SmallGroupΨ , , , , , , 20, 3 , 21, 1 .5 6 7 10 12 14

Theorem 1.2. Let G be a group. Then ( )� GI is projective-planar if and only if

� �{ ( )}∈ ∪G D D SmallGroupΨ , , , , 20, 3 .5 6 10 12

2 Preliminaries

In this section, we briefly recall some notations, terminologies, and basic results and prove a lemma, which

we need in the sequel.

G always denotes a group and its identity element is e. Let ∈g G. The order of g , denoted ( )o g , is the

cardinality of the cyclic subgroup ⟨ ⟩g generated by g . The exponent of G, denoted by exp( )G , is defined as

the least common multiple of the orders of all elements of the group. Let ∈a b G, . Then [ ] = − −a b a b ab, 1 1

is called the commutator of a and b. Note that [ ] =a b e, if and only if a and b commute.

Recall that D n2 is the dihedral group of order n2 , and a presentation of D n2 is given by

= ⟨ = = = ⟩−D a b a b e bab a, : , .n
n

2
2 1

Observe that D n2 is abelian if and only if { }∈n 1, 2 . Moreover, we have

{ } ( )= ⟨ ⟩ ∪ … = ≤ ≤−D a b ab a b a b o a b i n, , , , , 2 for any 1 .n
n i

2
2 1 (1)

Note that � × ∈D Ψ2 8 .

For ≥n 2, Johnson [23, pp. 44–45] defined the generalized quaternion group, which is denoted by Q n4

and has the presentation

= ⟨ = = = ⟩− −Q x y x y x e y xy x, : , , .n
n n

4
2 2 1 1

It is known thatQ n4 has order n4 and its unique involution is xn. Moreover, ( ) =o x y 4i for any ≤ ≤i n1 2 , and

{ }= ⟨ ⟩ ∪ ≤ ≤Q x x y i n: 1 2n
i

4 . If =n 2, then Q8 is the quaternion group of order 8. Note that ∉Q Ψ8 .

Recall now the following elementary results.
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Lemma 2.1. [24, Theorem 5.4.10(ii)] Let p be a prime. Then a p-group having a unique subgroup of order p is

either cyclic or generalized quaternion.

Lemma 2.2. [25, Lemma 3.1] There is no group that has precisely two cyclic subgroups of order 6.

A graph is called complete if every two distinct vertices of this graph are adjacent. The complete graph

of order n is denoted by Kn. A complete bipartite graph Γ is a graph whose vertex set can be partitioned into

two non-empty partite sets V1 and V2 such that for every two distinct vertices ∈u Vi and ∈v Vj where

{ }∈i j, 1, 2 , u and v are adjacent if and only if ≠i j. If ∣ ∣ =V m1 and ∣ ∣ =V n2 , then the complete bipartite

graph Γ is denoted by Km n, .

Theorem 2.3. [1] Let ≥n 3 and ≥m 2 be two integers. Then

(a) ( ) ⎡⎢ ( )( )⎤⎥= − −γ K n n3 4n
1

12
.

(b) For ≠n 7, ( ) ⎡⎢ ( )( )⎤⎥= − −γ K n n3 4n
1

6
. Moreover, ( ) =γ K 37 .

(c) ( ) ⎡⎢ ( )( )⎤⎥= − −γ K m n2 2m n,
1

4
.

(d) ( ) ⎡⎢ ( )( )⎤⎥= − −γ K m n2 2m n,
1

2
.

The following corollary is an immediate consequence of Theorem 2.3.

Corollary 2.4.

(i) ( ) =γ K 1n if and only if { }∈n 5, 6, 7 .

(ii) ( ) =γ K 1n if and only if { }∈n 5, 6 .

(iii) ( ) =γ K 24,6 and ( ) =γ K 44,6 .

A block of a graph Γ is a subgraph B of Γ maximal with respect to the property that removing any single

vertex of B does not disconnect B. It is easy to see that the intersection of two distinct blocks has at most one

vertex (see (1) of [26]). Given a graph Γ, as stated in [26], there exists a unique finite collection� of blocks B

of Γ such that

= ⋃
∈�
BΓ .

B

Figure 1: � �( )×�I 5 5 .
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The collection� is called the block decomposition of Γ. For more information on the block decomposition of

a graph, the readers are referred to [26] and [27].

We use the following example to illustrate the block decomposition of a graph.

Example 2.5. Let � �= ×G 5 5. Then ( )� GI is a union of six complete graphs of order 5 that share the

identity element of G, as displayed in Figure 1. Thus, the block decomposition of ( )� GI is { }…B B B, , ,1 2 6 ,

where ≅B Ki 5 for each ≤ ≤i1 6.

The following result tells us how to compute the (non)orientable genus of a graph using its blocks.

Theorem 2.6. [26, Theorem 1], [28, Corollary 3] Let Γ be a connected graph with block decomposition

{ }…B B, , n1 . Then

(I)

( ) ( )∑=
=

γ γ BΓ .
i

n

i

1

(II) If ( ) ( )= +γ B γ B2 1i i for each i, then

( ) ( )∑= − +
=

γ n γ BΓ 1 .
i

n

i

1

Otherwise,

( ) ( )∑= −
=

γ n μ BΓ 2 ,
i

n

i

1

where ( ) { ( ) ( )}= − −μ B γ B γ Bmax 2 2 , 2i i i .

The following result is an easy observation and will be frequently used in the sequel sometimes without

explicit reference.

Observation 2.7.

(i) Let Γ be a graph. Then Γ is planar if and only if for any subgraph Ω of Γ, Ω is planar.

(ii) If Ω is a subgraph of a graph Γ, then ( ) ( )≤γ γΩ Γ and ( ) ( )≤γ γΩ Γ .

(iii) If H is a subgroup ofG, then ( )� HI is an induced subgraph of ( )� GI . In particular, ( ( )) ( ( ))≤� �γ H γ GI I

and ( ( )) ( ( ))≤� �γ H γ GI I .

(iv) Every generator of �n is adjacent to every other vertex in �( )�I n . Moreover, �n has ( )φ n generators,

where φ is Euler’s totient function.

Lemma 2.8. [17, Theorem 3.1] ( )� GI is complete if and only if G is either a cyclic p-group or a generalized

quaternion 2-group.

Lemma 2.9. [12, Theorem 2] ( )� G is planar if and only if ( ) { }⊆π G 1, 2, 3, 4e .

Lemma 2.10. ( )� GI is planar if and only if G satisfies the following two conditions:

(I) ( ) { }⊆π G 1, 2, 3, 4e ;

(II) If G has two distinct cyclic subgroups ⟨ ⟩x and ⟨ ⟩y of order 4, then ∣ ∣⟨ ⟩ ∩ ⟨ ⟩ =x y 1.

Proof. IfG satisfies (I) and (II), then it is easy to see that ( ) ( )=� �G GI , and so ( )� GI is planar by Lemma 2.9.

Conversely, suppose that ( )� GI is planar. Then ( )� G also is planar. It follows from Lemma 2.9 that (I) holds.

Now suppose, by contradiction, that G has two distinct cyclic subgroups of order 4, say, ⟨ ⟩x and ⟨ ⟩y , such

that ∣ ∣⟨ ⟩ ∩ ⟨ ⟩ =x y 2. Then the subgraph induced by ⟨ ⟩ ∪ ⟨ ⟩x y is isomorphic to K6, against the fact that K6 is

non-planar. □
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Lemma 2.10 implies that �( ( )) =�γ 0I n if and only if { }∈n 1, 2, 3, 4 , if and only if �( ( )) =�γ 0I n . In the

following, we classify all cyclic groups whose intersection power graphs have (non)orientable genus one.

Lemma 2.11.

(i) �( ( )) =�γ 1I n if and only if { }∈n 5, 6, 7 .

(ii) �( ( )) =�γ 1I n if and only if { }∈n 5, 6 .

Proof. (i) Clearly, we have that �( ) ≅� KI 5 5 and �( ) ≅� KI 7 7 by Lemma 2.8. Thus, � �( ( )) ( ( ))= =� �γ γ 1I I5 7

by Corollary 2.4. Moreover, it is easy to see that � �( ) ( )=� �I 6 6 , as displayed in Figure 2, where � = ⟨ ⟩g6 .

Thus, it follows from [21, Theorem 3.2] that �( ( )) =�γ 16 , and so �( ( )) =�γ 1I 6 .

Conversely, suppose that �( ( )) =�γ 1I n . It follows from Lemma 2.10 that ≥n 5. Suppose, by contra-

diction that ≥n 10. Then ( ) ≥φ n 4, and so �n has at least four generators. Since every generator of �n is

adjacent to every other vertex in �( )�I n , we have that �( )�I n has a subgraph isomorphic to K4,6. Since

( ) =γ K 24,6 by Corollary 2.4, we also have �( ( )) ≥�γ 2I n , a contradiction. We conclude that ≤n 9. Moreover,

since �( ( )) =�γ 2I 8 and �( ( )) =�γ 3I 9 by Lemma 2.8 and Theorem 2.3, we deduce ≤n 7, as desired.

(ii) By Lemma 2.8 and Corollary 2.4, we have �( ( )) ( )= =�γ γ K 1I 5 5 . Moreover, since �( ) ( ( ))≤ ≤�γ K γ I5 6

( )γ K6 and ( ) =γ K 16 , we have �( ( )) =�γ 1I 6 . Conversely, suppose that �( ( )) =�γ 1I n . It follows from Lemma

2.10 that ≥n 5. Similar to the proof of (i), if ≥n 10, then �( )�I n has a subgraph isomorphic to K4,6, which is

impossible as ( ) =γ K 44,6 by Corollary 2.4. Hence, ≤n 9. Moreover, since �( ( )) =�γ 3I 7 , �( ( )) =�γ 4I 8 and

�( ( )) =�γ 5I 9 by Lemma 2.8 and Theorem 2.3, we deduce ≤n 6, as desired. □

Lemma 2.12. Let ∈G Ψ. Then ( ( )) =�γ G 1I and ( ( )) =�γ G 1I .

Proof. By definition,G has exactly one pair of cyclic subgroups⟨ ⟩x and⟨ ⟩y of order 4 such that ∣ ∣⟨ ⟩ ∩ ⟨ ⟩ =x y 2.

Then the subgraph induced by ⟨ ⟩ ∪ ⟨ ⟩x y is isomorphic to K6. Moreover, by the definition of an intersection

power graph, we have that ( )� GI is a union of some complete graphs of order at most 4 and a complete graph

of order 6 that share the identity element of G, as displayed in Figure 3. It follows that ( )� GI has a block

Figure 2: �( )�I 6 .

Figure 3: ( )� GI with ∈G Ψ.

854  Huani Li et al.



decomposition� such that every block ∈ �B is isomorphic to K2, K3, K4, or K6. Since ( )� GI has precisely one

block isomorphic to K6, we have that ( ( )) =�γ G 1I and ( ( )) =�γ G 1I by Theorem 2.6. □

3 Preliminary results

In this section, we prove some lemmas needed to give the proofs of our main theorems.

Lemma 3.1. Let G be a group with ( ) { }⊆π G 1, 2, 3, 4e . The following statements are equivalent:

(a) ( ( )) =�γ G 1I ;

(b) ( ( )) =�γ G 1I ;

(c) ∈G Ψ.

Proof.We first prove that (a) and (c) are equivalent. It follows from Lemma 2.12 that (c) implies (a). Suppose

now that ( ( )) =�γ G 1I . IfG has no cyclic subgroup of order 4 or has precisely one cyclic subgroup of order 4,

then Lemma 2.10 implies that ( )� GI is planar, a contradiction. Thus, { } ( ) { }⊆ ⊆π G4 1, 2, 3, 4e and there exist

at least two cyclic subgroups ⟨ ⟩x and ⟨ ⟩y of order 4 such that ∣ ∣⟨ ⟩ ∩ ⟨ ⟩ =x y 2, we want to show that they are

unique. If there exists ( )∈ ⧹ ⟨ ⟩ ∪ ⟨ ⟩z G x y such that ( ) =o z 4 and ∣ ∣⟨ ⟩ ∩ ⟨ ⟩ =x z 2, then the subgraph induced by

⟨ ⟩ ∪ ⟨ ⟩ ∪ ⟨ ⟩x y z is isomorphic to K8, which has genus 2 by Theorem 2.3, a contradiction. We conclude that if

there exists an element ( )∈ ⧹⟨ ⟩ ∪ ⟨ ⟩z G x y of order 4, then ∣ ∣ ∣ ∣⟨ ⟩ ∩ ⟨ ⟩ = ⟨ ⟩ ∩ ⟨ ⟩ =z x z y 1. Suppose, by contra-

diction, that there exist two distinct cyclic subgroups ⟨ ′⟩x and ⟨ ′⟩y of order 4 such that ∣ ∣⟨ ′⟩ ∩ ⟨ ′⟩ =x y 2 and

( )′ ′ ∈ ⧹⟨ ⟩ ∪ ⟨ ⟩x y G x y, . By the previous argument we know that ∣ ∣ ∣ ∣⟨ ′⟩ ∩ ⟨ ⟩ = ⟨ ′⟩ ∩ ⟨ ⟩ =x x x y 1. Thus, the sub-

graph Ω induced by ⟨ ⟩ ∪ ⟨ ⟩ ∪ ⟨ ′⟩ ∪ ⟨ ′⟩x y x y is a union of two complete graphs of order 6 that share the

identity vertex, as displayed in Figure 4. Thus, Ω has two blocks isomorphic to K6, and so ( ) =γ Ω 2 by

Theorems 2.3 and 2.6. It follows that ( ( )) ( )≥ =�γ G γ Ω 2I , contrary to ( ( )) =�γ G 1I . We conclude that G has

exactly one pair of cyclic subgroups of order 4 such that their intersection has size 2, and so ∈G Ψ.

Note next that ( ) =γ K 48 and ( ) =γ Ω 2 by Theorems 2.3 and 2.6. Then similar to the above proof, we get

that ( ( )) =�γ G 1I if and only if ∈G Ψ. □

Lemma 3.2. Let G be a group with { } ( ) { }⊆ ⊆π G5 1, 2, 3, 4, 5e . Then the following facts are equivalent:

(a) ( ( )) =�γ G 1I ;

(b) G is isomorphic to one of the groups

� ( ) ≅ ⟨ = = = ⟩−D SmallGroup g w g w e wgw g, , 20, 3 , : , ;5 10
5 4 1 2 (2)

(c) ( ( )) =�γ G 1I .

Figure 4: The subgraph Ω.
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Proof. We first prove that ifG is isomorphic to one group in (2), then ( ( )) =�γ G 1I . By Lemma 2.11, we have

�( ( )) =�γ 1I 5 . Moreover, by (1), it is easy to see that ( )� DI 10 has exactly one block isomorphic to K5, and

every other block is isomorphic to K2. It follows that ( ( )) =�γ D 1I 10 by Theorems 2.3 and 2.6. Now let

( )=G SmallGroup 20, 3 . Using GAP [20], we deduce that G has a unique subgroup of order 5 and has five

distinct cyclic subgroups of order 4 such that the intersection of each two of them has size 1. It follows that

( )� GI is a union of a complete graph of order 5 and four complete graphs of order 4 that share the identity

vertex. Consequently, every block of ( )� GI is isomorphic to K4 or K5. Since ( )� GI has precisely one block

isomorphic to K5, we infer that ( ( )) =�γ G 1I by Theorems 2.3 and 2.6, as desired.

We next prove that if ( ( )) =�γ G 1I , thenG is isomorphic to one group in (2). Suppose, by contradiction,

thatG has two distinct subgroups of order 5. Then the subgraph Δ induced by the two distinct subgroups of

order 5 is a union of two complete graphs of order 5 that share the identity vertex. Thus, Δ has two distinct

blocks isomorphic to K5, and so ( ) =γ Δ 2 by Theorems 2.3 and 2.6. This implies a contradiction as

( ( )) ( )≥ =�γ G γ Δ 2I . As a consequence, G has precisely one subgroup ⟨ ⟩g of order 5, and so ⟨ ⟩g is normal

in G. If G has an element x of order 3, then ⟨ ⟩ = ⟨ ⟩⟨ ⟩g x g x, has order 15 and hence is cyclic, against the fact

that G has no element of order 15. Thus, ( ) { }⊆π G 1, 2, 4, 5e . If ( ) { }=π G 1, 5e , since G has precisely one

subgroup ⟨ ⟩g of order 5, we have �= ⟨ ⟩ ≅G g 5 by Lemma 2.1. Therefore, in the following we may assume

that G has some involutions.

Case 1. G has no elements of order 4.

Then ( ) { }=π G 1, 2, 5e . Let a be an involution ofG. Since every group of order 10 is isomorphic to D10 or

�10, we have ⟨ ⟩ ≅a g D, 10 by Lemma 2.11. Suppose, by contradiction, that ≠ ⟨ ⟩G a g, . Then there exists an

involution ∈ ⧹⟨ ⟩b G a g, . Using again Lemma 2.11 we have ⟨ ⟩ ≅b g D, 10. If [ ] =a b e, , since = = −aga bgb g 1,

we have ( ) ( ) ( )= = =−gab gb aga b g bg b g2 1 2 and so ( ) = =gab g gab ab5 4 , which implies (( ) ) =o gab 52 and

(( ) ) =o gab 25 , it follows that ( ) =o gab 10, a contradiction. We conclude that [ ] ≠a b e, . Recall that two

distinct involutions generate a dihedral group. Since ( ) { }=π G 1, 2, 5e , we deduce that ⟨ ⟩ ≅a b D, 10. Conse-

quently, ∈ ⟨ ⟩g a b, , and so ⟨ ⟩ ⊆ ⟨ ⟩a g a b, , . Since ⟨ ⟩ ≅a g D, 10, we then have ⟨ ⟩ = ⟨ ⟩a b a g, , , which implies

∈ ⟨ ⟩b a g, , a contradiction. We conclude that = ⟨ ⟩ ≅G a g D, 10, as desired.

Case 2. G has an element w of order 4.

Then ( ) { }=π G 1, 2, 4, 5e . Let =a w2. By Lemma 2.11, we necessarily have⟨ ⟩ ≅a g D, 10. We first claim that

every involution of G belongs to ⟨ ⟩a g, . Suppose, by contradiction, that G has an involution ∈ ⧹⟨ ⟩b G a g, .

Then, as in the proof of Case 1, we deduce that [ ] ≠a b e, . It follows that ⟨ ⟩ ≅a b D, 8 or D10. If ⟨ ⟩ ≅a b D, 8,

since ( ) =o ab 4 and = = −aga bgb g 1, we have

( ) ( ) ( )
( ) ( ( ) )
( ) ( ( ) )
( ) ( )
( ) ( )
( )( )( )
( )( )( )
( )( )( )
( )( )
( )

=
=
=
=
=
=
=
=
=
=
=

−

−

−

gab gab gabgab

gab ga bgb bab

gab g ag a abab

gab g ab

g ab g ab

g aba bg b babab

g ab ag a ababab

g a bg b bababab

g ag a abababab

g abababab

g

4 2

2

2 1

2 2 2

2 2 2 2

2 2

2 2

2 2

2 2

4

4

and so ( ) =gab ab5 , which implies (( ) ) =o gab 54 and (( ) ) =o gab 45 , it follows that ( ) =o gab 20, a contra-

diction. Hence, ⟨ ⟩ ≅a b D, 10. Therefore, we have ∈ ⟨ ⟩ = ⟨ ⟩b a b a g, , , a contradiction.
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Let P be a Sylow 2-subgroup of G with ∈w P. Since G has a unique subgroup of order 5 by Lemma 2.1,

we have that⟨ ⟩g is the unique Sylow 5-subgroup ofG. Since ( ) { }=π G 1, 2, 4, 5e , we have = ⟨ ⟩G P g . Note that

G has precisely five involutions a ga g a g a g a, , , ,2 3 4 by the above claim. If P has an involution u with ≠u a,

then =u g ai for some ≤ ≤i1 4, and so = ∈−g aa g Pi i1 , a contradiction as ( ) =o g 5i . We conclude that P has

a unique involution. Note that ( ) { }=π G 1, 2, 4, 5e . By Lemma 2.1, we know that P is isomorphic to either�4

or Q8. If ≅P Q8, then the subgraph induced by P would be isomorphic to K8 by Lemma 2.8, which is

impossible as ( ) =γ K 28 . Therefore, �≅P 4, and so � �≅ ⋉G 4 5. By GAP [20], there are five groups of order

20 up to isomorphism, and every group H of order 20 has an element of order 10 if ( )≇H SmallGroup 20, 3 .

Thus, ( )≅ ≅ ⟨ = = = ⟩−G g w g w e wgw gSmallGroup 20, 3 , : ,5 4 1 2 , as desired. Thus, (a) and (b) are equivalent.

Note next that ( ) =γ K 48 and ( ) =γ Δ 2 by Theorems 2.3 and 2.6. Then similar to the above proof, we get

that (b) and (c) are equivalent. □

Lemma 3.3. LetG be a group with { } ( ) { }⊆ ⊆π G7 1, 2, 3, 4, 7e . Then ( ( )) =�γ G 1I if and only ifG is isomorphic

to one of the following groups:

� ( ) ≅ ⟨ = = = ⟩−D SmallGroup g w g w e w gw g, , 21, 1 , : , .7 14
7 3 1 4

Proof. By Lemma 2.11, �( ( )) =�γ 1I 7 . Moreover, by (1), it is easy to see that ( )� DI 14 has exactly one block

isomorphic to K7, and every other block is isomorphic to K2. As a consequence, ( ( )) =�γ D 1I 14 by Theorem

2.6. Now let ( )=G SmallGroup 21, 1 . By GAP [20], we check thatG has a unique subgroup of order 7, and has

seven distinct subgroups of order 3. Thus, every block of ( )� GI is isomorphic to K7 or K3. Note that ( )� GI has

precisely one block isomorphic to K7. It follows that ( ( )) =�γ G 1I by Theorem 2.6, as desired.

Conversely, suppose that ( ( )) =�γ G 1I . Suppose, by contradiction, thatG has two distinct subgroups of

order 7. Then the subgraph Ω induced by the two distinct subgroups of order 7 is a union of two complete

graphs of order 7 that share the identity vertex. Thus, Ω has two distinct blocks isomorphic to K7, and so

( ( )) ( )≥ =�γ G γ Ω 2I by Theorems 2.3 and 2.6, a contradiction. As a consequence, G has precisely one

subgroup ⟨ ⟩g of order 7, and so ⟨ ⟩g is normal in G. If there exists an element ∈x G such that ( ) =o x 4,

then the subgroup ⟨ ⟩x g, has order 28, which is impossible since every group of order 28 has an element of

order 14 by GAP [20]. Consequently, we have ( ) { }⊆π G 1, 2, 3, 7e .

Assume that ( ) { }=π G 1, 7e . Since G has precisely one subgroup ⟨ ⟩g of order 7, by Lemma 2.1, we have

that �= ⟨ ⟩ ≅G g 7, as desired. In the following, we assume that { } ( )⊂ π G1, 7 e .

Case 1. G has an involution a.

Then ⟨ ⟩g a, has order 14. Since G has no elements of order 14, we have

⟨ ⟩ = ⟨ = = = ⟩ ≅−g a g a g a e aga g D, , : , .7 2 1
14

Suppose, by contradiction, that there exists an involution ∈b G such that ∉ ⟨ ⟩b g a, . As before ⟨ ⟩ ≅g b D, 14

and = −bgb g 1. If [ ] =a b e, , then ( )= = =−gabgab ga bgb a gag a g1 2, and so ( ) =gab ab7 , which implies

( ) =o gab 14, which is impossible. We conclude that [ ] ≠a b e, . It follows that ⟨ ⟩ ≅a b D, 6 or D14 by ( )⊆π Ge

{ }1, 2, 3, 7 . If ⟨ ⟩ ≅a b D, 14, then ∈ ⟨ ⟩g a a b, , , and so ⟨ ⟩ = ⟨ ⟩a b g a, , , contrary to ∉ ⟨ ⟩b g a, . As a conse-

quence, we have ⟨ ⟩ ≅a b D, 6, and so ( ) =ab e3 . Therefore, we have

( ) ( ) ( )( ( ) ) ( )( ( ) ) ( ) ( ) ( )= = = = = =−gab gab gab gab ga bgb bab gab g ag a abab gab g ab g ab g3 2 1 2 2 3 3 3

and so ( ) =gab ab7 , which implies (( ) ) =o gab 73 and (( ) ) =o gab 37 , it follows that ( ) =o gab 21, a contra-

diction. We conclude that every involution of G belongs to ⟨ ⟩g a, . It follows that G has precisely seven

involutions …a ga g a g a, , , ,2 6 . Suppose now, by contradiction, that there exists an element c of order 3. Then

⟨ ⟩ = ⟨ ⟩⟨ ⟩g c g c, has order 21. By GAP [20], there are two groups of order 21 up to isomorphism, that is,�21 and

( )SmallGroup 21, 1 . Since G has no elements of order 21, we have ⟨ ⟩ = ⟨ = = = ⟩ ≅−g c g c g c e c gc g, , : ,7 3 1 4

( )SmallGroup 21, 1 . Note that −cac 1 is an involution. We may assume that =−cac g at1 for some ≤ ≤t0 6.

Note that = −aga g 1 and =−cgc g1 2. We have
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( ) ( )
( )

( )
( )( )
( )( )
( )( )( )
( )( )( )
( )

=
=
=
=
=
=
=
=

− −

−

−

c g a ca ag a

ca g

g ac g

g a cg

g a g c

g ag a ac

g g ac

g a c.

t t

t

t t

t t

t t

t t

t t

t

2

2

2

It follows that −g act is an element of order 6, a contradiction. Thus, in this case, ( ) { }=π G 1, 2, 7e . Since every

involution of G belongs to ⟨ ⟩g a, , and G has precisely one subgroup ⟨ ⟩g of order 7, we have that =G
⟨ ⟩ ≅g a D, 14, as desired.

Case 2. G has no involutions.

Then ( ) { }=π G 1, 3, 7e . Let ∈w G with ( ) =o w 3. Note that a group of order 21 is isomorphic to either�21

or ( )SmallGroup 21, 1 . Hence, by Lemma 2.11, we have that

( )⟨ ⟩ ≅ ≅ ⟨ = = = ⟩−g w g w g w e w gw g, SmallGroup 21, 1 , : , .7 3 1 4

Now let P be a Sylow 3-subgroup ofG. Since ( ) { }=π G 1, 3, 7e , we have = ⟨ ⟩G P g . Suppose, by contradiction,

that ∣ ∣ >P 3. Then every non-trivial element of P has order 3. Note that the fact that a non-trivial p-group

has non-trivial center. We have that there exist ∈u v P, such that ( ) ( )= =o u o v 3, ⟨ ⟩ ≠ ⟨ ⟩u v , and [ ] =u v e, .

Note that ( )⟨ ⟩ ≅ ⟨ ⟩ ≅g u g v, , SmallGroup 21, 1 . We have = =− −u gu v gv g1 1 4. It follows that

( ) ( ( ) )( )
( ( ) )( )
( )( )
( )( )
( )( )
( )( )
( )( )
( )

=
=
=
=
=
=
=
=
=
=

−

−

−

−

−

−

u vg u v gu uvg u vg

u v ug uvg u vg

vg uvg u vg

gvuvg u vg

guv g u vg

ug g v u vg

ugv u vg

ug u g

ugg u

ug u ,

2 3 2 2

2 4 2

4 2

2

1 2

4 4 1 2

1 2

1

4 1

5 1

and so (( ) ) ( )= =o u vg o g 72 3 5 . Moreover, we have

( ) ( )( )( )
( )( )
( )( )
( )( )
( )( )

( )
( )

=
=
=
=
=
=
=
=

− −

−

− −

− −

− −

− −

− −

u vg ug u ug u u vg

ug u u vg

ug u v u g

ug u vg u

ug u gv u

ug u g vu

ug g u vu

u v,

2 7 5 1 5 1 2

3 1 2

3 1 1

3 1 4 1

3 1 1

3 1 1

3 4 1 1

2

and so (( ) ) =o u vg 32 7 . It follows that u vg2 has order 21, a contradiction. We conclude that ∣ ∣ =P 3, and thusG

has order 21 so have that ( )= ⟨ ⟩ ≅G g w, SmallGroup 21, 1 , as desired. □

Lemma 3.4. Let G be a group with { } ( ) { }⊆ ⊆π G6 1, 2, 3, 4, 6e . Then the following facts are equivalent:

(a) ( ( )) =�γ G 1I ;

(b) �≅G 6 or D12;

(c) ( ( )) =�γ G 1I .
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Proof. We first prove that (a) and (b) are equivalent. By Lemma 2.11, we have �( ( )) =�γ 1I 6 . Moreover, by

(1), it is easy to see that ( )� DI 12 has exactly one block isomorphic to K6, and every other block is isomorphic

to K2. As a consequence, ( ( )) =�γ D 1I 12 by Theorem 2.6. Thus, we have that (b) implies (a).

Conversely, suppose that ( ( )) =�γ G 1I . Let ∈g G with ( ) =o g 6. We first claim thatG has a unique cyclic

subgroup of order 6. By Lemma 2.2, we have that the number of cyclic subgroups of order 6 is not equal to 2.

Suppose, by contradiction, that G has at least three distinct cyclic subgroups ⟨ ⟩x , ⟨ ⟩y , and ⟨ ⟩z of order 6.

Assume that ⟨ ⟩x , and ⟨ ⟩y satisfy ∣ ∣⟨ ⟩ ∩ ⟨ ⟩ =x y 1 or 2. Let { ( ) }= ∈ ⟨ ⟩ ∪ ⟨ ⟩ ≠U u x y o u: 2 . Then the subgraph Δ

induced by U is a union of two complete graphs of order 5 that share the identity vertex, as displayed in

Figure 5. Thus, Δ has two distinct blocks isomorphic to K5. It follows that ( ( )) ( )≥ ≥�γ G γ Δ 2I by Theorem 2.6,

a contradiction. The same argument holds for⟨ ⟩x and⟨ ⟩z or⟨ ⟩y and⟨ ⟩z .We conclude that∣ ∣⟨ ⟩ ∩ ⟨ ⟩ ∩ ⟨ ⟩ =x y z 3,

which implies that the subgraph induced by ( ) { }⟨ ⟩ ∪ ⟨ ⟩ ∪ ⟨ ⟩ ⧹x y z x y z, ,3 3 3 is isomorphic to K9, a contradiction

as ( ) =γ K 39 . Consequently, G has a unique cyclic subgroup ⟨ ⟩g of order 6 and has exactly two elements of

order 6, that is, g and −g 1. In particular, ⟨ ⟩g is normal inG.

If G has an element a of order 3 such that ∉ ⟨ ⟩a g , then ⟨ ⟩ = ⟨ ⟩⟨ ⟩g a g a, has order 18. But by GAP [20],

there is no group A of order 18 such that ( ) { }⊆π A 1, 2, 3, 4, 6e and A has precisely two elements of order 6.

We conclude that G has exactly two elements of order 3, that is, g2 and g4.

Case 1. G has a unique involution.

If G has no elements of order 4, then by the above discussion, �≅G 6, as desired. Suppose next, by

contradiction, thatG has an element of order 4. IfG has two distinct cyclic subgroups⟨ ⟩b and⟨ ⟩c of order 4,

sinceG has a unique involution, we have ∣ ∣⟨ ⟩ ∩ ⟨ ⟩ =b c 2. Note that ∣ ∣⟨ ⟩ ∩ ⟨ ⟩ ∩ ⟨ ⟩ =b c g 2. Then the subgraph

induced by⟨ ⟩ ∪ ⟨ ⟩ ∪ ⟨ ⟩b c g has a subgraph Λ is a union of a complete graph of order 5 and a complete graph

of order 6 that share the identity vertex, as displayed in Figure 6. Thus, Λ has two distinct blocks isomor-

phic to K5 and K6. Consequently, ( ( )) ( )≥ ≥�γ G γ Λ 2I by Theorem 2.6, a contradiction. We conclude that G

has a unique cyclic subgroup of order 4. Note now thatG has a unique involution, two distinct elements of

order 4, two distinct elements of order 6, and two distinct elements of order 3. Since ( ) { }⊆π G 1, 2, 3, 4, 6e ,

it follows that G has order 8, which is impossible since a group of order 8 has no elements of order 6.

Case 2. G has at least two involutions.

We first prove thatG has no elements of order 4. Suppose, by contradiction, thatG has an element h of

order 4. Then ⟨ ⟩ = ⟨ ⟩⟨ ⟩g h g h, has order 24 or 12. By GAP [20], there is no group B of order 24 such that

( ) { }⊆π B 1, 2, 3, 4, 6e and B has precisely two elements of order 6, we have that⟨ ⟩g h, has order 12. It follows

that the intersection of ⟨ ⟩g and ⟨ ⟩h has size 2. This implies that if⟨ ⟩ ⊆k G is of order 4 and different from ⟨ ⟩h ,

then ∣ ∣⟨ ⟩ ∩ ⟨ ⟩ =k h 2. Since the intersection of two distinct cyclic subgroups of order 4 has size 1 by the proof

of Case 1, we have thatG has exactly one cyclic subgroup⟨ ⟩h of order 4. Note thatG has exactly two elements

g g,2 4 of order 3. It follows that both⟨ ⟩h and⟨ ⟩g2 are normal inG, and so { }∈ ⟨ ⟩ ∩ ⟨ ⟩ =− −h g hg h g e1 2 2 2 . Thus,

h and g2 commute, and so ( ) =o hg 122 , a contradiction since ( ) { }⊆π G 1, 2, 3, 4, 6e . We conclude that G has

no elements of order 4.

Thus, ( ) { }=π G 1, 2, 3, 6e . Let u be an involution of G with ∉ ⟨ ⟩u g . Then ⟨ ⟩ = ⟨ ⟩⟨ ⟩g u g u, has order 12.

Note that G has a unique cyclic subgroup of order 6. We deduce that ⟨ ⟩ ≅g u D, 12 by GAP [20]. In order to

Figure 5: The subgraph Δ.
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prove = ⟨ ⟩G g u, , it suffices to show that every involution of G belongs to ⟨ ⟩g u, . Suppose, by contradiction,

that G has an involution ∉ ⟨ ⟩v g u, . Then ⟨ ⟩ ≅g v D, 12, and so = −vgv g 1.

Assume that [ ] =u v e, . Then ( ) ( )= =guv gu vgv u g2 2, and so ( ) = ≠guv g uv e3 3 since ∉ ⟨ ⟩v g u, . Note that

( ) ( )= = =g uv g u vg v u g e3 2 3 3 6 . It follows that (( ) ) =o guv 32 and (( ) ) =o guv 23 , and so guv has order 6. Now it

is easy to see that { }∉guv g g, 5 , hence G has at least three distinct elements of order 6, a contradiction.

Assume next that [ ] ≠u v e, . Note that ⟨ ⟩u v, is a dihedral group. It follows from ( ) { }=π G 1, 2, 3, 6e that

⟨ ⟩ ≅u v D, 6 or D12. If ⟨ ⟩ ≅u v D, 12, then ∈ ⟨ ⟩g u v, , and so ∈ ⟨ ⟩ = ⟨ ⟩v u v g u, , , a contradiction. As a conse-

quence, we have⟨ ⟩ ≅u v D, 6, which implies ( ) =o uv 3. Note thatG has exactly two elements g g,2 4 of order 3.

Thus, we have =uv g i where =i 2 or 4. It follows that = ∈ ⟨ ⟩v ug g u,i , a contradiction. Now we have that (a)

and (b) are equivalent.

Note next that ( ) =γ Δ 2 and ( ) =γ Λ 2 by Theorems 2.3 and 2.6. Then similar to the above proof, we get

that (b) and (c) are equivalent. □

4 Proofs of Theorems 1.1 and 1.2

We are now ready to prove our main theorems.

Proof of Theorem 1.1. The sufficiency follows from Lemmas 3.1, 3.2, 3.3, and 3.4. Suppose next that

( ( )) =�γ G 1I . Then Lemma 2.11 implies ( ) { }⊆π G 1, 2, 3, 4, 5, 6, 7e . If ( ) { }⊆π G 1, 2, 3, 4e , then Lemma 3.1

implies the desired result. Thus, we may assume there that G has an element of order 5, 6, or 7. Suppose

that G has an element a of order 5. If G has an element b of order 6 or 7, then the subgraph induced by

⟨ ⟩ ∪ ⟨ ⟩a b has a subgraph Δ, which is isomorphic to a union of two complete graphs of order 5 that share the

identity element of G. Thus, Δ has precisely two blocks isomorphic to K5, and so ( ) =γ Δ 2 by Theorems 2.3

and 2.6, a contradiction. Thus, { } ( ) { }⊆ ⊆π G5 1, 2, 3, 4, 5e , and Lemma 3.2 implies the desired result.

Similarly, we have the desired result if G contains an element of order 6 or 7 using Lemmas 3.3 and 3.4.

□

The proof of Theorem 1.1 can be modified to prove Theorem 1.2. Thus, we omit the proof of Theorem 1.2

for the sake of brevity.
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Figure 6: The subgraph Λ.
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