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Abstract: For a finite noncyclic group G, let Cyc(G) be the set of elements a of G such that 〈a, b〉 is cyclic

for each b of G. The noncyclic graph of G is a graph with the vertex set G \ Cyc(G), having an edge between

two distinct vertices x and y if 〈x, y〉 is not cyclic. In this paper, we classify all finite noncyclic groups whose

noncyclic graphs are K1,n-free, where K1,n is a star and 3 ≤ n ≤ 6.
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1 Introduction

All groups considered in this paper are finite. Let G be a noncyclic group. The cyclicizer Cyc(G) of G is the set

{a ∈ G : 〈a, b〉 is cyclic for each b ∈ G},

which is a normal cyclic subgroup of G (see [1]). Graphs associatedwith groups and other algebraic structures

have been actively investigated, since they have valuable applications (cf. [2–5]) and are related to automata

theory (cf. [5, 6]).

The noncyclic graph ΓG of G is the graph whose vertex set is G \ Cyc(G), and two distinct vertices are

adjacent if they do not generate a cyclic subgroup. In 2007, Abdollahi and Hassanabadi [7] introduced the

concept of a noncyclic graph and established some basic graph theoretical properties of noncyclic graphs.

In [8], Abdollahi and Hassanabadi investigated the clique number of a noncyclic graph. Recently, Costa et.

al [9] studied the Eulerian properties of noncyclic graphs of finite groups. Aalipour et. al [10] studied the

relationship between the complement graph of a noncyclic graph and twowell-studied graphs−power graphs

[11–17] and commuting graphs [18]. Finite groups whose noncyclic graphs have genus one were classified by

Selvakumar and Subajini [19] and, independently, by Ma [20]. Moreover, the full automorphism group of a

noncyclic graph was determined in [21].

A graph is said to be Γ-free if it has no induced subgraphs isomorphic to Γ. Forbidden graph charac-

terization appears in many contexts; for instance, forbidden subgraph problem (Turán-type problem), or

extremal graph theory where lower and upper bounds can be obtained for various numerical invariants of

the corresponding graphs. Some graphs obtained from groups with small forbidden induced subgraphs have

been studied in the literature. For example, Doostabadi et al. [22] studied the finite groups with K1,3-free

power graphs. Akhlaghi and Tong-Viet [23] studied the finite groups with K4-free prime graphs, where K4 is

the complete graph of order 4. Kayacan [24] classified the finite groups with K3,3-free intersection graphs of
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subgroups,where K3,3 is the complete bipartite graphwith eachpartition of size3. In [25], Das andNongsiang

classified K3-free commuting graphs of finite non-abelian groups.

In this paper, we study noncyclic graphs of finite groups. In Sect. 2, we classify all finite groups G with

a unique involution and πe(G) = {2, 3, 4, 6}, where πe(G) is the set of natural numbers consisting of orders

of non-identity elements of G. In Sect. 3, we classify all finite noncyclic groups whose noncyclic graphs are

K1,n-free, where 3 ≤ n ≤ 6.

2 A result on finite groups

An element of order 2 in a group is called an involution. The exponent of G is the least common multiple of

the orders of the elements of G. We denote the cyclic group of order n and the quaternion group of order 8 by

Zn and Q8, respectively. Also Z
m
n is used for the m-fold direct product of the cyclic group Zn with itself.

In this section we prove the following a result about finite groups, which will be used to classify finite

groups with K1,5-free noncyclic graphs.

Theorem 2.1. Let G be a finite group having a unique involution and that πe(G) = {2, 3, 4, 6}. Then, either

G ∼= SL(2, 3) or G ∼= Z
n
3 ⋊ Z4, where Z4 acts on Z

n
3 by inversion.

Let G be a finite group and p a prime number dividing |G|. Denote by Sylp(G) and Op(G) the set of all Sylow

p-subgroups of G and the largest normal p-subgroup of G, respectively. Note that Op(G) =
⋂

P∈Sylp(G)
P. Let

np = |Sylp(G)| and P ∈ Sylp(G). Recall that np = |G : NG(P)| ≡ 1 (mod p) and np is a divisor of |G : P|.

Lemma 2.2. Let G be a finite group and suppose that np = p + 1 for some prime number p. Then for any two

distinct Pi , Pj ∈ Sylp(G), Pi ∩ Pj = Op(G).

Proof. Let m = np and L = Sylp(G) = {P1, P2, . . . , Pm}. Now in order to prove the required result, it suffices

to prove the equality P1 ∩ P2 = Op(G).

Let R = P1 ∩ P2 and let R act on L by conjugation. Note that for all i, we have that (R ∩ NG(Pi))Pi =

Pi(R∩NG(Pi))and (R∩NG(Pi))Pi is a p-subgroupofNG(Pi), soR∩NG(Pi) ⊆ Pi. It follows thatRPi = R∩NG(Pi) =

R∩Pi,whereRPi is the stabilizer of Pi inR. Also, sinceR = P1∩P2,wededuce that |OrbitR(P1)| = |OrbitR(P2)| =

1, where OrbitR(Pi) is the R-orbit containing Pi. Note that every R-orbit has length 1 or p. Since |L| = p + 1,

we have that every R-orbit has length 1. This implies that R = RPi for all i. It follows that for each i ≥ 3,

P1 ∩ P2 = P1 ∩ P2 ∩ Pi, that is, P1 ∩ P2 ⊆ Pi. Thus, P1 ∩ P2 ⊆
⋂m

i=3 Pi and so P1 ∩ P2 =
⋂

P∈Sylp(G)
P = Op(G),

as desired.

Note that for any prime number p, a p-group with a unique subgroup of order p is either a cyclic group or a

generalized quaternion group (see [26, Theorem 5.4.10 (ii)]).

Proof of Theorem 2.1. Suppose that |G| = 2t · 3n for some t ≥ 1, n ≥ 1. Let Q and P be a Sylow 2-subgroup

and a Sylow 3-subgroup of G, respectively. Since G has a unique involution and 8 ∈ ̸ πe(G), we know that

Q ∈ {Q8,Z4}. Since G has no elements of order 9, we deduce that P has exponent 3. Denote by x the unique

involution of G. Then x ∈ Z(G), the center of G.

Case 1. Q = Q8.

Let 〈a〉, 〈b〉, and 〈c〉 be the three cyclic subgroups of Q of order 4, and that ab = c. Then a2 = b2 = c2 = x.

Since in this case |G| = 8 · 3n, we have that n3 is a divisor of 8. This implies that n3 = 1 or 4.

Suppose that O3(G) ≠ 1. Then let a, b, c act on O3(G) by conjugation. Neither of them can fix any

non-identity elements of O3(G), since G has no elements of order 12. Thus, a, b, c act as fixed-point-

free automorphisms of O3(G). Since a2 = b2 = c2 ∈ Z(G), we have that a, b, c act as fixed-point-free

automorphisms of order 2. Now by Burnside’s result (see [26, Theorem 1.4, page 336] or [27]), we know that
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O3(G) is abelian and for each non-trivial element g ∈ O3(G), we have that g
a = g−1 = gb = gc. It then follows

that gc = gab = g, and hence |abg| = 12, a contradiction. Therefore, we conclude O3(G) = 1.

Now we know that n3 = 4. By Lemma 2.2 we have that for any two distinct Pi , Pj ∈ Syl3(G), Pi ∩ Pj = 1.

It follows that the number of elements of order 3 is 4(3n − 1). Also, since every element of order 3 and x can

generate a cyclic subgroup of order 6, the number of elements of order 6 is 4(3n − 1). Now all that remains is

to count the number of elements of order 4.

Let w be an element of order 4 in G. Then, there is a Q1 ∈ Syl2(G) so that w ∈ Q1. Note that Q1
∼= Q8. It

follows that Q1 ⊆ NG(〈w〉). If there exists an element y of order 3 such that 〈w〉y = 〈w〉, then 〈w〉 is normal

in 〈w〉〈y〉 and |〈w〉〈y〉| = 12, and so by the N/C lemma we have CG(〈w〉) = NG(〈w〉), which implies that

〈w〉〈y〉 ∼= Z12, a contradiction. It follows that Q1 = NG(〈w〉). Thus, every element of order 4 is contained in a

unique Sylow 2-subgroup of G. It means that the number of elements of order 4 is 6n2.

Suppose that NG(Q) = Q. Then n2 = 3n. Counting all the elements of G gives that

8 · 3n = 6 · 3n + 8(3n − 1) + 2.

This implies that 3n = 1, contrary to the order of G. Thus, we have Q ⊂ NG(Q).

Suppose that |P ∩ NG(Q)| ≥ 9. Then there exist w1, w2 ∈ P ∩ NG(Q) so that 〈w1, w2〉 is an abelian group

of order 9. Now both w1 and w2 act on Q by conjugation. We conclude that both w1 and w2 act as 3-cycles on

{〈a〉, 〈b〉, 〈c〉} because otherwise 12 ∈ πe(G). But then there is an element u of order 3 that fixes some cyclic

subgroup 〈v〉 of order 4, where u = w1w
i
2 for some integer i. It follows that there exists an element of order

12 in 〈u〉〈v〉, a contradiction. Thus, we get |P ∩ NG(Q)| ≤ 3.

Note by themodular law thatNG(Q) = G∩NG(Q) = Q(P∩NG(Q)). SinceQ ⊂ NG(Q), we have that P∩NG(Q)

is a subgroup of order 3 and |NG(Q)| = 24. This forces that n2 = 3n−1. Now as above we get that

8 · 3n = 6 · 3n−1 + 8(3n − 1) + 2,

which implies n = 1 and so |G| = 24. Note that in this case Q is normal in G. It is easy to see that G ∼= SL(2, 3).

Case 2. Q = Z4.

Let Q = 〈y〉. Since 〈x〉P ⊆ NG(P), we deduce |G : NG(P)| ≠ 4. Note that n3 is a divisor of 4. Then n3 = 1 and

so P is normal in G. Now as above y acts as a fixed-point-free automorphism of order 2 on P by conjugation.

By Burnside’s result, P is abelian and so P ∼= Z
n
3 for some n, and for all w ∈ P we have wy = w−1. It follows

that G ∼= Z
n
3 ⋊ Z4, as desired.

3 Main results

In this section we classify all finite groups with K1,n-free noncyclic graphs, where 3 ≤ n ≤ 6.

In the remainder of this paper, we always use G to denote a finite noncyclic group with the identity

element e. Euler’s totient function is denoted by ϕ. A proper cyclic subgroup 〈x〉 is said to be maximal in

G if 〈x〉 ⊆ 〈y〉 implies that 〈x〉 = 〈y〉, where y is an element of G. We first begin with the following two lemmas

which will be used frequently in the sequel.

Lemma 3.1. Suppose that 〈g〉 is a maximal cyclic subgroup of G. Then ΓG has an induced subgraph isomorphic

to K1,ϕ(|g|).

Proof. Let n = ϕ(|g|) and let {g1, g2, . . . , gn}be all generators of 〈g〉. Note thatG is noncyclic. Pick an element

a in G \ 〈g〉. Since 〈g〉 is maximal cyclic, we deduce that 〈a, gi〉 is not cyclic for each i ∈ {1, 2, . . . , n}. This

implies that {g1, g2, . . . , gn , a} induces a subgraph isomorphic to K1,n.

For a graph Γ, we denote the sets of the vertices and the edges of Γ by V(Γ) and E(Γ), respectively. An

independent set of Γ is is a subset of the vertices such that no two vertices in the subset represent an edge
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of Γ. The independence number of a graph Γ is the cardinality of the largest independent set and is denoted

by α(Γ). The following result follows from [7, Proposition 4.6].

Lemma 3.2. α(ΓG) = max{|g| : g ∈ G} − |Cyc(G)|.

ΓG is complete if andonly ifG is an elementary abelian2-group (see [7, Proposition 3.1]). So, as ΓG is connected

(see [7, Proposition 3.2]), we first note that ΓG is K1,2-free if and only if G is an elementary abelian 2-group.

A claw is another name for the complete bipartite graph K1,3. We first classify the finite groups whose

noncyclic graphs are claw-free.

Theorem 3.3. ΓG is claw-free if and only if G is isomorphic to one of the following groups:

(a) Q8;

(b) Zn
2, n ≥ 2;

(c) A noncyclic 3-group of exponent 3;

(d) A noncyclic group G with πe(G) = {2, 3}.

Proof. Since ΓQ8
∼= K2,2,2, we have that ΓQ8

is claw-free. Also, by Lemma 3.2 we see that the independence

number of the noncyclic graph of every group in (b)–(d) is at most 2, and so each of the noncyclic graphs is

claw-free.

Now we suppose that ΓG is claw-free. It follows from Lemma 3.1 that for every maximal cyclic subgroup

〈g〉 of G, ϕ(|g|) ≤ 2. This implies that every cyclic subgroup of G has at most two generators. Thus, πe(G) ⊆

{2, 3, 4, 6}.

Suppose that G has an element a of order 6. Note that G is noncyclic. Pick an element x in G \ 〈a〉. If

|x| = 2, since 〈x, a3〉 is noncyclic, we have that {x, a, a3, a5} induces a subgraph isomorphic to K1,3, which

is impossible. If the order of x is 3 or 4, since 〈x, a2〉 is noncyclic, it follows that {x, a, a2, a5} induces a

subgraph isomorphic to K1,3, which is also impossible. We conclude |x| = 6. Namely, every element of G \

〈a〉 has order 6. However, in this case we have that both x2 and x3 belong to 〈a〉. It follows that x ∈ 〈a〉, a

contradiction.

Thus, we conclude that πe(G) ⊆ {2, 3, 4}. Suppose that there exists an element g of order 4 in G. If there

is x ∈ G \ 〈g〉with |x| = 2 or 3, then 〈x, g2〉 is noncyclic, and so {x, g, g2, g3} induces a subgraph isomorphic

to K1,3, a contradiction. Consequently, in this case G has a unique involution and πe(G) = {2, 4}. By [26,

Theorem 5.4.10 (ii)], we see that G is isomorphic to Q8.

We now assume πe(G) ⊆ {2, 3}. If πe(G) = {2}, then G is an elementary abelian 2-group, as desired. If

πe(G) = {3}, then G is a 3-group of exponent 3, as desired.

Theorem 3.4. ΓG is K1,4-free if and only if G is isomorphic to one of the following groups:

(a) A noncyclic group G with πe(G) ⊆ {2, 3, 4};

(b) Z6 × Z
m
2 , m ≥ 1.

Proof. If G is isomorphic to a noncyclic group with πe(G) ⊆ {2, 3, 4}, then α(ΓG) ≤ 3 by Lemma 3.2, and so

ΓG is K1,4-free, as desired. If G ∼= Z6 × Z
m
2 for some m ≥ 1, then |Cyc(G)| = 3 and we can obtain that ΓG is

a complete multipartite graph whose each partite set has size 3, which implies that in this case ΓG is also

K1,4-free.

For the converse, suppose that ΓG is K1,4-free. Note that ϕ(n) is even for any integer n ≥ 3. By Lemma 3.1

we see that each cyclic subgroup of G has atmost two generators. It follows that πe(G) ⊆ {2, 3, 4, 6}. In order

to get the desired result, we now suppose that G has an element g of order 6. Clearly, 〈g〉 is maximal cyclic. If

there exists an element a inG\〈g〉 such that |a| = 3or4, then {a, g, g2, g4, g5} induces a subgraph isomorphic

to K1,4, a contradiction. This means that G has a unique subgroup of order 3 and πe(G) = {2, 3, 6}.

Let P and Q be a Sylow 2-subgroup and a Sylow 3-subgroup, respectively. Then G = P ⋉ Q, P is an

elementary abelian2-group of order great than2 andQ ∼= Z3. Pick an involution u in G. If 〈u, g
2〉 is noncyclic,

then {u, g, g2, g4, g5} induces a subgraph isomorphic to K1,4, a contradiction. Thus, we have that every
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element of P and every element of Q commute. It follows that

G = P × Q ∼= Z6 × Z
m
2 , m ≥ 1,

as required.

Theorem 3.5. ΓG is K1,5-free if and only if G is isomorphic to one of the following groups:

(a) A noncyclic group G with πe(G) ⊆ {2, 3, 4, 5};

(b) Z6 × Z
m
2 , m ≥ 1;

(c) Z2 × Q, where Q is a noncyclic 3-group of exponent 3;

(d) The special linear group SL(2, 3);

(e) Zn
3 ⋊ Z4, where Z4 acts on Z

n
3 by inversion and n ≥ 1.

Proof. If G is isomorphic to a group in (a), then α(ΓG) ≤ 4 by Lemma 3.2, and so ΓG is K1,5-free. Moreover, by

Theorem 3.4, ΓZ6×Z
m
2
is K1,5-free, where m ≥ 1. If G ∼= Z2 × Q for some noncyclic 3-group Q of exponent 3,

then |Cyc(G)| = 2 and we may check that ΓG is a complete multipartite graph whose each partite set has size

4, which implies that in this case ΓG is also K1,5-free. Furthermore, if G is isomorphic to SL(2, 3) or a group in

(e), then it is easy to see that ΓG is a complete multipartite graph whose maximal partite set has size 4. Thus,

ΓG is K1,5-free if G is one group of (d) and (e).

Conversely, suppose that ΓG is K1,5-free. It follows from Lemma 3.1 that πe(G) ⊆ {2, 3, 4, 5, 6, 8, 10, 12}.

Suppose that g ∈ Gwith |g| = 12. If there exists an element awith order5 or8, then {a, g, g2, g5, g7, g11}

induces a subgraph isomorphic to K1,5, a contradiction. This implies that πe(G) ⊆ {2, 3, 4, 6, 12}. If G has an

element b of G \ 〈g〉 with |b| < 12, then {b, g, g5, g7, g11, gt} induces a subgraph isomorphic to K1,5, where

|gt| = |b|. Thus, in this case one has G ∼= Z12, a contradiction. This means that G has no elements of order

12. Similarly, we can get 10 ∈ ̸ πe(G). If G has an element of order 8, then a similar argument implies that G

is a 2-group and it has a unique involution and a unique cyclic subgroup of order 4, which implies that G is a

generalized quaternion group having precisely two elements of order 4, a contradiction. Thus, we conclude

πe(G) ⊆ {2, 3, 4, 5, 6}.

In order to get the desired result, we suppose that G has an element h of order 6. Then it is easy to see

that 5 ∈ ̸ πe(G).

Case 1. G has two distinct cyclic subgroups of order 6.

Assume that H1 = 〈h〉 and H2 = 〈h2〉 are two distinct cyclic subgroups of order 6. In order to avoid

that {h2, h, h
2, h3, h4, h5} induces K1,5, we may assume that |H1 ∩ H2| ≥ 2. In fact, any two distinct cyclic

subgroups of order 6 have nontrivial intersection.

Subcase 1.1. There exist two distinct cyclic subgroups of order 6 such that their intersection has order 3.

Without loss of generality, we may assume that |H1 ∩ H2| = 3. Suppose that G has an element x of order

4. If 〈h3, x〉 is not cyclic, then {x, h, h2, h3, h4, h5} induces a subgraph isomorphic to K1,5, a contradiction.

We conclude that 〈h3, x〉 is cyclic, and so h3 = x2. Similarly, we also can obtain h32 = x2. It follows that

x2 ∈ H1 ∩ H2, which is impossible as |H1 ∩ H2| = 3. Hence, in this subcase πe(G) ⊆ {2, 3, 6}. Since every

generator of anymaximal cyclic subgroup of order 2 or 3 is adjacent to each of 〈h〉\{e}, every cyclic subgroup

of order 2 or 3 is not maximal. If 〈y〉 ≠ 〈h2〉 is a subgroup of order 3, and let 〈y〉 ⊆ 〈h3〉 with |h3| = 6, then

|〈h3〉 ∩ Hi| = 2 for i = 1, 2 and so h33 = h3 = h32, which is impossible as H1 = ̸ H2. This implies that G has a

unique subgroup of order 3. Nowwe know that G ∼= Z
m
2 ⋉Z3 for some integerm ≥ 2. Pick an involution u in G.

Then since 〈u〉 is notmaximal, there exists an element h′ of order 6 such that 〈u〉 ⊆ 〈h′〉. By the uniqueness of

the subgroup of order 3, we see that 〈h′〉∩〈h〉 = 〈h2〉. It follows that 〈u, h2〉 is cyclic. Namely, every involution

of G and h2 commute. This implies that G ∼= Z
m
2 × Z3 for some integer m ≥ 2, as desired.

Subcase 1.2. The intersection of each two distinct cyclic subgroups of order 6 has order 2.

In this case we first claim that G has a unique involution. Assume, to the contrary, that u is an involution

of G such that u ≠ h3. Then 〈u, h2〉 is not cyclic, since there are no two cyclic subgroups of order 6 such that
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their intersection has order 3. This implies that {u, h, h2, h3, h4, h5} induces a subgraph isomorphic to K1,5,

a contradiction. Thus, our claim is valid.

Now note that πe(G) ⊆ {2, 3, 4, 6}. If 4 ∈ ̸ πe(G), then G ∼= Z2 × Q, where Q is a noncyclic 3-group of

exponent 3. Thus, we may assume that πe(G) = {2, 3, 4, 6}. Note that Z3 ⋊ Z4 has a unique cyclic subgroup

of order 6, where Z4 acts on Z3 by inversion. By Theorem 2.1 we see that that G ∼= SL(2, 3) or G ∼= Z
n
3 ⋊ Z4,

where Z4 acts on Z
n
3 by inversion, and n ≥ 2, as required.

Case 2. G has a unique cyclic subgroup of order 6.

We first see that 〈h〉 is a normal subgroup of G. Note that πe(G) ⊆ {2, 3, 4, 6}. If G has an element x in

G \ 〈h〉 such that x ∈ CG(h), the centralizer of h in G, then G has a subgroup isomorphic to Z2 ×Z6 or Z3 ×Z6,

which contradicts the fact that G has precisely two elements of order 6. This implies that CG(h) = 〈h〉. So

G/〈h〉 is isomorphic to a subgroup of Z2, and hence |G| = 6 or 12. It follows that G ∼= Z3 ⋊Z4, where Z4 acts

on Z3 by inversion, as desired.

Theorem 3.6. ΓG is K1,6-free if and only if G is isomorphic to one of the following groups:

(a) A noncyclic group G with πe(G) ⊆ {2, 3, 4, 5, 6};

(b) Z10 × Z
m
2 , m ≥ 1.

Proof. If G is isomorphic to a group in (a), then it follows from Lemma 3.2 that α(ΓG) ≤ 5, and so ΓG is K1,6-

free. If G ∼= Z10 × Z
m
2 for some m ≥ 1, then |Cyc(G)| = 5 and we may check that ΓG is a complete multipartite

graph whose each partite set has size 5, which implies ΓG is K1,6-free.

For the converse, suppose that ΓG is K1,6-free. Since ϕ(n) is even for n ≥ 3, by Lemma 3.1, we have that

ϕ(|g|) ≤ 4 for any g ∈ G. It follows that πe(G) ⊆ {2, 3, 4, 5, 6, 8, 10, 12}. An argument similar to the one

used in the third paragraph of the proof of Theorem 3.5 shows that 8, 12 ∈ ̸ πe(G). Consequently, we have

πe(G) ⊆ {2, 3, 4, 5, 6, 10}.

In order to get the desired result, we suppose that G has an element h of order 10. Then it is easy to see

that πe(G) = {2, 5, 10} and G has a unique subgroup of order 5. Thus, wemay assume that G ∼= P⋉Z5, where

P is an elementary abelian 2-group of order at least 4. Pick any involution u in P. If 〈u, h2〉 is not cyclic, then

{u, h2, h4, h6, h8, h5, h} induces a subgraph isomorphic to K1,6, a contradiction. Thus, every element in P

and h2 commute. It follows that G ∼= P × Z5, that is, G ∼= Z10 × Z
m
2 for some m ≥ 1, as desired.
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