Finite Gyroradius Stabilization of Eallooning Modes

 in a Toroidal Geometryby

W. M. Tang. J. W. Connor*, and R. R. White
Princeton Plasma Physics Iaboratory, Princeton University
Princeton, New Jersey 08544

Abstract

The stabilizing influence of finite-ion-gyroradius effects on magnetohydrudymamic hallooning modes for a simple model toroifal equil'inrium is demonstrated.

$$
\frac{d}{d n}\left\{1+(\sin -\alpha \sin \eta)^{2}\right] \frac{d \phi}{d \eta}+\alpha[\cos n+\sin n(\sin -\alpha \sin n)] \phi
$$

$+s\left(\{2-B)\left[1+\{\operatorname{sn}-\operatorname{cosinn}\rangle^{2}\right]_{\phi}=0\right.$

$$
\begin{equation*}
\frac{d^{2}}{d r^{2}}+r y=0 \tag{2}
\end{equation*}
$$

where

$$
\begin{aligned}
& F=2(9-\mathrm{F})+\frac{\operatorname{acos} \eta}{A}-\left[\frac{\left.s-\frac{\cos n}{A}\right]^{2},}{},\right. \\
& A \equiv 1+\left(\sin -(\sin n)^{2}, \quad R=(a n)^{1 / 2} / 2, \quad \Lambda \equiv b / r_{\mathrm{F}},\right. \\
& 1 / \varepsilon_{p} \equiv-R A(\ln P) / d r, \quad b \equiv k_{\perp}^{2} \rho_{i}^{2} / 2 \text {, and } k_{L}=n a / r
\end{aligned}
$$

Acknowledgment

This work was supported by United States Department of Energy Contract No. DE-ACO2-76-CHO3073.
(1) Connor, J. W., Hastie, R. J., Taylor, J. B., Phys. Rev. Lert. 4 (1978) 396; Proc. P. Soc. (London) Ser. A 365 (1939) 1.
i2: Lorcz, D., Nhhrenberg, J., Phys. Letr. 68A (1978) 49.
[3] Poqutse, O. P., Turchenko, E. I., Sov. J. Pkasma Phys. 5 ; 9979, 441.
(4) Tanq, W. M., Connnr, J. W., Hastie, R. J., Nuci. Fusion $20,1980,1439$.
[5] Greene, J. M., Chance, M. S., Nuc1. Fusion (in press).
[6] Coppı, B., Ferreira, A., dark, J. W.-K.. Ramos, J. J., Nuct. fuston 19 (1979) 715; Coppı, B., Ferreira, A., Ramos, J. J., Phys. Rev. Lert. 44 (1980) 990.
[7] Dewar, R. L., Mentckam, J., Grimm, R. C., Chance, M. S., Nucl. Fusion inn pressi.

Figure Captions

Fig. 1. Stability boundaries for ballooning modes as a function of the shear parameter, $s=r q^{\prime} / Q$, and the pressure parameter, $\alpha=-\left(2 \mathrm{Rq}^{2} / \mathrm{B}^{2}\right) \mathrm{dP} / \mathrm{dr}=$ $2 R q_{1} / r_{p}$, at various values of the finite gyroradius parameter, $\Lambda=b / \varepsilon_{p}$.

Fig. 1. Stahility boundaries for ballooning modes as a function of tho abor
 $2 R r^{2} / r_{n}$, at various values of the finite qyroradius narameter, $A=h r^{\prime}$

