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Abstract 

The stabilizing influence of finite-ion-gyroradius effects on 

magnetohydrjdynamic ballooning modes for a simple model toroidal equil "nrium 

is demonstrated. 
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At present it is widely believed that the critical beta (ratio of plasma 

to Mijnet;c pressure) in toroidal systems is determined by the onset 

conditions for high mode number ptessure-driven perturbations in regions of 

unfavorable Field line curvature. These "ballooning instabilities" have been 

extensively studied in the magnetohydrodynamic (MHO) limit 1 - 3 with the general 

conclusion that the most dangerous modes occur for large toroidal mode numhfrs 

<n >> 1). However, in more recent work it has been emphasized that in this 

]arge-n recrimn kinetic modifications due, for example, to finite-'on-

qyroradius effects could prove to be important. 7n the present paper the 

primary purptT.se is to demonstrate that for a simple model toroidal equi t ibr J nm 

the f • m r e-ion-yyroradius effects can exert a significant stabiLiz;nq 

influenrt1 on the ballooning modes. 

The derivation of the appropriate set of kinetic eiqenmode equations 

qoverninq ballooning instabilities in general axisymmetric toroidal systems 

has been given in detail in Ref. 4. In the present study these equations are 

applied to thp model equilibrium employed in a number of previous ideal MHD 

calculations. The model essentially corresponds to a large-aspeot-ratio 

tokamak with circular flux surfaces over which the poloidal magnetic field is 

uniform but the shear is nonuniform. In a more physically consistent sense, 

this model can also be taken to represent a low beta plasma with locally steep 

pressure gradients giving rise to the ballooning (destabilizing) forces and to 

the shear modulation over the surface. For the large aspect ratio limit of 

interest here r trapped-particle and drift resonance effects are treated as 

being negligibly small. Hence, the general set of equations reduces to the 

following simplified form of the governing kinetic ballooning mode equation, 

k '1 + (sn" £ i Q < P r o s i n n ) j + a c o s n + s i n n f s n -' a n ' «sinn) ](J> 

http://purptT.se
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2 
+ SJ(a-B) ("l + {sri - nsinn> ]* = ° ( 1 > 

where the mean shear and pressure gradient parameters are respectively 
7 2 s " d(fna) / d(£nr) and a 5 - (2Rct /B )dP/dr, and B E UU . A> represents the *pj A 

kinetic contribution with "* Di beinq the usual (pressure-driven ion 

diamagnetic drift frequency and u E v /qR being the Alfven frequency. Also, 
A A 

T is the familiar safety factor, P is the plasma pressure, R/r is the aspect 

ratio, and - °° <n<=» is the range of the extended poloidal variable introduced 

in the ballooning representation. 

In analyzing Bq. (1) note that in the absence of the last term, the ideal 

MHD ballooning mode equation governinq marginal stability conditions is 

recovered. The appropriate boundary condition for this problem 
1/2 

i s ;. •> !l as h i • •» . Making the t r ans fo rma t ion , q, - A Q , Bq- (1) can he 
cari in the convenient forrci. 

, d 2 

J — + F ! • ! . • = 0 ( 2 ) 

H , 2 

where 

F = o ( o - B) + - S ^ H _ rs - ccosrn 

2 1/2 
A 3 1 + (sn - ns inn) , B = (ctA) / 2 , A 5 b / r 

P 

2 2 1/e I - RdUnP)/dr , bE k p, /2 , and k, = no^r P 1 i L " 

with n being *he toroidal mode number and p. L»._ing the ion gyroradius. Note 
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tnat both « and h are assumed to be small in this calculation. 
r 

Equation (2) has been solved numerically for an appropriate range of 

parameters with the results summarized by Fig. 1. Here are plotted th.fr 

marginal stability curves as functions of the shear parameter, s, and the 

pressure parameter, rt, for various values of the finite gy-oradi us parameter, 
2 .*. In the ideal MHD limit, A = 0, the previously reported results (dashed 

curve) are reproduced. As A is increased, the stable region .,: 

correspondingly enlarged, thus demonstrating the stabilising influence of tho 

finitc-ion-gyroradius effects. This trend, of course, becomes appreciable 

when h (a measure of the stabilizing gyroradius contributions) exceeds ' 'a 

measure of r.he destabilizing pressure-driven forces). Note also that the .so-

called second (high beta) stable reqirr.e ' ' becomes more accessible fnr 

finite .'.. Specifically, as thr> pressure gradient and/or beta ;s increased at 

a fixed value of shear, th£ plasma can pass more readily into the second 

stable regime. 

In summary, for the model toroidal equilibrium considered, the inclusion 

of finite gyroiadius effects is found to e^ert a significant stabilizing 

influence on ballooning modes and is suggestive that the correspondvnu 

critical beta limit could aLso be improved. Tt should be emphasized, however, 

that an appreciable improvement in critical beta (fic) would be possible only 

if the ideal MHD calculations of this quantity at infinite-n were found to be 

much lower than that at moderate va_ues of n; i.e., 9- (n ») << 
c 

ft (n - 10! • As demonstrated in recent finite-n MHD calculations, this c^n 
r. 

indeed he the case For certain types of realistic equilibria. More general 

Vinetically-modified ballooning mode calculations, which are properly 

interfaced with actual self-consistent equilibria, are currently in progress. 

http://th.fr
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Figure Captions 

Fig. 1. Stability boundaries for ballooning modes as a function of the shear 
2 2 

parameter, s = rq'/eu and the pressure parameter, a ~ - (2Rq /B ) rtP/dr = 
2PqVr„• at various values of the f in i te gyroradius parameter, A = b/f. . 
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F n . 1. S t a b i l i t y boundar ies for ba l loon inq modes as a funrMnn of this =>,s,-|,. 

paramptpr , s = r a ' A l , and the p r e s s u r e paramete r , u = - I ?Pn /FT ) *p/!r -

2Rl /r. j a t v a r i o u s va lues o f t he f i n i t e q y r o r a d i u s parametpr , A - h.', ^. 


