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Finite-Horizon H∞ Control for Discrete Time-Varying
Systems with Randomly Occurring Nonlinearities and

Fading Measurements

Derui Ding, Zidong Wang, James Lam and Bo Shen

Abstract—This paper deals with theH∞ control problem for a class
of discrete time-varying nonlinear systems with both randomly occurring
nonlinearities and fading measurements over a finite-horizon. The system
measurements are transmitted through fading channels described by a
modified stochastic Rice fading model. The purpose of the addressed
problem is to design a set of time-varying controllers such that, in the
presence of channel fading and randomly occurring nonlinearities, the
H∞ performance is guaranteed over a given finite-horizon. The model
transformation technique is first employed to simplify the addressed
problem, and then the stochastic analysis in combination with the
completing squares method are carried out to obtainnecessary and
sufficientconditions of an auxiliary index which is closely related tothe
finite-horizon H∞ performance. Moreover, the time-varying controller
parameters are characterized via solving coupled backwardrecursive
Riccati difference equations (RDEs). A simulation exampleis utilized to
illustrate the usefulness of the proposed controller design scheme.

Index Terms—H∞ control, finite horizon, fading channels, randomly
occurring nonlinearities, recursive Riccati difference equations.

I. I NTRODUCTION

Since networks may greatly decrease the need for hardwiringand
the cost of installation as well as implementation, the research on
networked systems has been gaining momentum in the past few years.
Many important results on filter/controller design problems against
network-induced phenomena have been reported in the literature, see
[3], [6], [11], [19] and the references therein, where most results
have focused on communication delays, packet dropouts and sig-
nal quantizations. Unfortunately, another important network-induced
phenomenon, namely, channel fading, has not yet received adequate
attention in the context of filter/control designs. Roughlyspeaking,
the fading phenomenon can be interpreted as a time-varying random
change in the amplitude and phase of the transmitted signal.This
kind of unreliable channels stem mainly from multipath propagation
(multipath induced fading) and shadowing from obstacles affecting
the wave propagation (shadow fading), see [1], [2], [18] formore
details. Since the fading phenomenon can seriously degradethe signal
quality, an issue of crucial importance is how to design a control
system whose performance is insensitive to the effects caused by
the fading channels. Very recently, the networked control systems
with fading channels have received particular research attention and
some preliminary results have been reported in [5], [7], [12], [16] for
stability analysis, LQG control and Kalman filter problems.

In networked environments, a large class of nonlinearitiescan
be understood as the additive nonlinear disturbances caused by
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environmental circumstances [8], [9], [13], [14], [17], where the
nonlinear disturbances may occur in a probabilistic way andare
randomly changeable in terms of their types and/or intensity, which
are customarily referred to as the randomly occurring nonlinearities
(RONs). On the other hand, almost all real-world systems areindeed
time-varying since the system dynamics may experience constant
changes in their structure and parameters caused by temperature,
changes of the operating point, aging of components, etc [13]. In
recent control literature, the research focus has been largely shifted
from conventional linear time-invariant (LTI) systems to nonlinear
time-varying ones that can better reflect the reality, see e.g. [4].
Unfortunately, to the best of the authors’ knowledge, the finite-
horizonH∞ control problem for discrete time-varying systems with
fading measurements has not been properly investigated so far, not
to mention the case where RONs are also involved. It is, therefore,
the purpose of this paper to shorten such a gap.

Summarizing the above discussions, it is of both theoretical im-
portance and practical significance to examine how the measurement
signals transmitted through fading channels would influence the
dynamic behavior of a discrete time-varying system over a finite
horizon. Therefore, the objective of this paper is to designan output
feedback controller, based on fading measurements, such that the
H∞ performance is guaranteed over a given finite-horizon for a class
of discrete time-varying nonlinear systems. By employing stochastic
analysis techniques, the explicit expression of controller gains is
characterized in terms of the solution to coupled recursiveRiccati
difference equations (RDEs). Moreover, a simulation example is
provided to show the effectiveness of the proposed control design
scheme.The novelties of this paper lie in the following three aspects:
1) both channel fading and randomly occurring nonlinearities are
considered in the design of the output feedback controllersguaran-
teeing the desiredH∞ performance; 2) a necessary and sufficient
condition is provided for an auxiliary index which is closely related
to the desired finite-horizonH∞ performance; and 3) a suboptimal
controller design scheme is provided by developing a recursive RDE
approach.

Notation: The notation used here is fairly standard except where
otherwise stated.L[0,N] is the space of vector functions over[0, N ].
I denotes the identity matrix of compatible dimension.AT , ‖A‖F
andA† denote the transpose, the Frobenius norm and the Moore-
Penrose pseudo inverse of a matrixA, respectively.diag{. . .} stands
for a block-diagonal matrix.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider the following discrete time-varying stochastic system
defined onk ∈ [0, N ]:

{

xk+1 = Akxk + αkhk(xk) +Bkuk +Dkwk,

zk = Lkxk,
(1)

with measurement
yk = Ckxk + Ekvk (2)

wherexk ∈ R
nx represents the state vector that cannot be observed

directly, yk ∈ R
ny is the measurement output,zk ∈ R

nz is
the controlled output, andwk and vk ∈ L[0,N] are the external
disturbances.Ak, Bk, Ck, Dk, Ek and Lk are known real-valued
time-varying matrices with appropriate dimensions. The stochastic
variableαk is a Bernoulli-distributed white noise sequence taking
values of0 or 1 with the probabilities Prob{αk = 0} = 1 − ᾱ
and Prob{αk = 1} = ᾱ. The nonlinear vector-valued function
hk : Rnx → R

nx is assumed to be continuously differentiable in
x and satisfies the following sector-bound condition

(hk(x)−Φkx)
T (hk(x)−Ψkx) ≤ 0, (3)
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whereΦk andΨk are known matrices with compatible dimensions
with Φk > Ψk for all k.

It follows easily from (3) that
[

hk(x)−
(Φk +Ψk

2
+

Φk −Ψk

2

)

x
]T

×
[

hk(x)−
(Φk +Ψk

2
−

Φk −Ψk

2

)

x
]

≤ 0.

Then, denoting∆(hk) = hk(x)−
1
2
(Φk +Ψk)x andNk = 1

2
(Φk −

Ψk), one has∆T (hk)∆(hk) ≤ xTN T
k Nkx, immediately. Therefore,

there exists at least a functionΘk,x satisfying∆(hk) = Θk,xx and
ΘT

k,xΘk,x ≤ N T
k Nk. Furthermore, the sector-bound condition can

be transformed into the sector-bound uncertainties described by

hk(x) =
Φk +Ψk

2
x+ Fk,xNkxk (4)

with Fk,x := Θk,xN
−1
k satisfyingF T

k,xFk,x ≤ I .
We are now in a position to introduce the fading measurements.

Let the number of paths,ℓ, be given. Considering the fading channels,
the measurement signal received by the controller is described by

ỹk =

ℓk∑

i=0

ϑi
kyk−i +Mξk (5)

with ℓk = min{ℓ, k}, where ϑi
k (i = 0, 1, . . . , ℓk) are the

channel coefficients which are mutually independent and take val-
ues on[0, 1] with mathematical expectations̄ϑi and variances̃ϑi.
ξk ∈ l2([0,+∞);Rny ) is an external disturbance.M is known real-
valued matrix with appropriate dimensions. For simplicity, we will set
{yk}k∈[−ℓ,−1] = 0, i.e.,{xk}k∈[−ℓ,−1] = 0 and{vk}k∈[−ℓ,−1] = 0.

For the given receiver model (5), we consider the following output
feedback controller for the discrete time-varying nonlinear system
(1):

uk = Kkỹk =
ℓ∑

i=0

ϑi
kKkyk−i +Kkξk. (6)

Setting x̄k = [xT
k , x

T
k−1, x

T
k−2, . . . , x

T
k−ℓ]

T and ηk =
[wk, vk, vk−1, . . . , vk−ℓ, ξk]

T , we obtain an augmented system from
(1) and (6) as follows:







x̄k+1 =
(
Ak + BkKkϑ̄Ck + (αk − ᾱ)Ãk

+ αkΘ̃k

)
x̄k + BkKkϑkCkx̄k

+ (BkKkῡEk + Dk)ηk + BkKkυkEkηk,

zk = Lkx̄k,

(7)

whereϑk = [ (ϑ0
k − ϑ̄0)I (ϑ1

k − ϑ̄1)I . . . (ϑℓ
k − ϑ̄ℓ)I ],

Ak =

[
Āk 0
I 0

]

, Ãk = diag{Mk, 0, 0, . . . , 0},

Āk =
[

Ak + ᾱMk 0 0 . . . 0
︸ ︷︷ ︸

ℓ−1

]

, ῡ = [ 0 ϑ̄ I ],

Bk = [ BT
k 0 0 . . . 0 ]T , Dk = diag{Dk, 0, 0, . . . , 0},

Ck = diag{Ck, Ck−1, . . . , Ck−ℓ}, υk = [ 0 ϑk 0 ],

Ek = diag{0, Ek, Ek−1, . . . , Ek−ℓ, I},

Lk = [ Lk 0 0 . . . 0 ], Θ̃k = diag{Θk,x, 0, 0, . . . , 0},

Mk = (Φk +Ψk)/2, ϑ̄ = [ ϑ̄0I ϑ̄1I . . . ϑ̄ℓI ].

Our aim in this paper is to design a finite-horizon output feedback
controller of the form (6) such that, for the given disturbance
attenuation levelγ > 0, the positive definite matrixW and the
initial statex0, the controlled outputzk satisfies the followingH∞

performance constraint:

E{‖zk‖
2
[0,N]} < γ2‖ηk‖

2
[0,N] + γ2

E

{

xT
0Wx0

}

, (8)

where‖xk‖
2
[0,N] :=

∑N

k=0 ‖xk‖
2 for any vector sequencesxk.

To cope with the parameter uncertainties in (7), a convenient way
is to regard them as one of the sources of the disturbances. Therefore,
what we need to do is to reject the influence from all the disturbances
to the controlled output according to the prescribedH∞ requirement.
For this purpose, we rewrite (7) as follows:







x̄k+1 =
(
Ak + BkKkϑ̄Ck

)
x̄k

+ (αk − ᾱ)Ãkx̄k + BkKkϑkCkx̄k

+ (BkKkθ̄Ẽk + D̃k)η̃k + BkKkθkẼkη̃k,

zk =Lkx̄k,

(9)

where η̃k = [ηTk (εkαkFk,xNkxk)
T ]T , D̃k = [Dk ε−1

k I ],
Ẽk = diag{Ek, 0}, θ̄ = [ῡ 0] and θk = [υk 0]. Here, εk is a
positive function representing the scaling of the perturbation, which
is introduced to provide more flexibility in the controller design.
Furthermore, we introduce the followingauxiliary index:

E
{
‖zk‖

2
[0,N]

}
< E

{
γ2||η̃k||

2
[0,N]

− ᾱγ2||εkℵkx̄k||
2
[0,N]

}
+ γ2

E
{
x̄T
0Wx̄0

}
,

(10)

with ℵk := [ Nk 0 . . . 0 ]. It is worth emphasizing that (8) is
satisfied if (10) holds, see [10] for more details.

III. M AIN RESULTS

In this section, let us investigate both the analysis and synthesis
problems for theH∞ controller design of system (1) with fading
channels (5). The following four lemmas will be used in deriving
our main results, where the proofs of Lemma 2 and Lemma 3 have
been moved to the appendices for clarity of presentation.

Lemma 1: [15] Let U , V and W be known nonzero matrices
with appropriate dimensions. The solutionX to min

X
‖UXW −V‖

F

is U†VW†.
Lemma 2:For the external disturbances̃ηk and the initial value

x̄0, let x̄k be the corresponding solution of system (9) defined on
[0, N ]. Then, we have

J1(x̄0, η̃k)

:= E
{
‖zk‖

2
[0,N] − γ2||η̃k ||

2
[0,N] + ᾱγ2||εkℵkx̄k||

2
[0,N]

}

=

N∑

k=0

E

{[
x̄k

η̃k

]T [
R11

k+1 −Pk R12
k+1

∗ −R22
k+1

] [
x̄k

η̃k

]}

+ E

{

x̄T
0 P0x̄0 − x̄T

N+1PN+1x̄N+1

}

.

(11)

Furthermore, if|R22
k | 6= 0 for all k ∈ [0, N ], by selectingη̃k =

(R22
k+1)

−1(R12
k+1)

T x̄k and denotinḡuk = Kkϑ̄Ckx̄k, one has

J2(ūk; η̃k) := E{‖zk‖
2
[0,N] + ‖ūk‖

2
[0,N]}

=
N∑

k=0

E

{[
x̄k

ūk

]T

Z
1
k

[
x̄k

ūk

]}

+ E

{

x̄T
0 Q0x̄0 − x̄T

N+1QN+1x̄N+1

}

(12)

where α̃ = ᾱ(1 − ᾱ), {Pk}0≤k≤N+1 and {Qk}0≤k≤N+1 are two
families of matrices with partitioningOk =

[
Oij

k

]

ℓ+1,ℓ+1
(O :=

P or Q), and

Z
1
k =

[
∆k+1 + LT

k Lk −Qk S1
k+1

∗ S2
k+1

]

,

Π1
k+1 = diag{ϑ̃0, ϑ̃1, . . . , ϑ̃ℓ} ⊗ (KT

k B
T
k P11

k+1BkKk),

Π2
k+1 = [0 diag{ϑ̃0, ϑ̃1, . . . , ϑ̃ℓ} 0 0]

⊗ (KT
k B

T
k P11

k+1BkKk),

Π3
k+1 = diag{0, ϑ̃0, ϑ̃1, . . . , ϑ̃ℓ, 0, 0} ⊗ (KT

k B
T
k P

11
k+1BkKk),

Ξ1
k+1 = diag{ϑ̃0, ϑ̃1, . . . , ϑ̃ℓ} ⊗ (KT

k B
T
k Q11

k+1BkKk),
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Ξ2
k+1 = [0 diag{ϑ̃0, ϑ̃1, . . . , ϑ̃ℓ} 0 0]

⊗ (KT
k B

T
k Q11

k+1BkKk),

Ξ3
k+1 = diag{0, ϑ̃0, ϑ̃1, . . . , ϑ̃ℓ, 0, 0} ⊗ (KT

k B
T
k Q

11
k+1BkKk),

R11
k+1 = (Ak + BkKkϑ̄Ck)

TPk+1

(
Ak + BkKkϑ̄Ck

)

+ α̃Ã
T
k Pk+1Ãk + C

T
k Π1

k+1Ck + ᾱγ2ε2kℵ
T
k ℵk + LT

k Lk,

R12
k+1 = (Ak + BkKkϑ̄Ck)

TPk+1

× (BkKkθ̄Ẽk + D̃k) + C
T
k Π2

k+1Ẽk,

R22
k+1 = γ2I − (BkKkθ̄Ẽk + D̃k)

TPk+1

× (BkKkθ̄Ẽk + D̃k)− Ẽ
T
k Π3

k+1Ẽk,

Λk+1 = (BkKkθ̄Ẽk + D̃k)(R
22
k+1)

−1(R12
k+1)

T ,

∆k+1 = (Ak + Λk+1)
TQk+1(Ak + Λk+1) + α̃Ã

T
k Qk+1Ãk

+ C
T
k Ξ1

k+1Ck + 2C T
k Ξ2

k+1Ẽk(R
22
k+1)

−1(R12
k+1)

T

+R12
k+1(R

22
k+1)

−1T
Ẽ

T
k Ξ3

k+1Ẽk(R
22
k+1)

−1(R12
k+1)

T ,

S1
k+1 = (Ak + Λk)

TQk+1Bk, S2
k+1 = B

T
k Qk+1Bk + I.

Lemma 3:Given the disturbance attenuation levelγ > 0 and the
positive definite matrixW . For the augmented system (9) with any
nonzero{η̃k}0≤k≤N ∈ L[0,N], the following two statements are
equivalent:

(i) The auxiliary index (10) is satisfied.
(ii) There exists a set of real-valued matrices{Kk}0≤k≤N ,

positive scalars{εk}0≤k≤N and matrices{Pk}0≤k≤N+1

(with the final conditionPN+1 = 0) such that the following
backward recursive RDE:

R11
k+1 +R12

k+1(R
22
k+1)

−1(R12
k+1)

T = Pk (13)

gives
R22

k+1 > 0 and P0 < γ2W, (14)

where the corresponding matrix parameters are defined in Lemma 2.
It should be pointed out that Lemma 3 provides a necessary and

sufficient condition of the auxiliary index (10). Such a condition
serves as a key to solve the addressed stochastic disturbance atten-
uation problems. In the next stage, we shall proceed to tackle the
design problem of the controller (6) such that the closed-loop system
(7) satisfies theH∞ performance requirement (8).

Theorem 1:For the given disturbance attenuation levelγ > 0 and
positive definite matrixW , the closed-loop system (7) satisfies the
H∞ performance constraint (8) for any nonzero disturbance sequence
{ηk}0≤k≤N ∈ L[0,N] if there exists a set of solutions{(εk, Pk, Qk,
Kk)}0≤k≤N with εk > 0 satisfying (13) and the following recursive
RDE:

∆k+1 + LT
k Lk − S1

k+1(S
2
k+1)

−1(S1
k+1)

T = Qk, (15)

subject to






PN+1 = QN+1 = 0, (16a)

S2
k+1 > 0, R22

k+1 > 0, P0 < γ2W, (16b)

K∗
k = argmin

Kk

∥
∥Kkϑ̄Ck + (S2

k+1)
−1(S1

k+1)
T
∥
∥
F
, (16c)

where corresponding matrix parameters are defined in Lemma 2.
Proof: Firstly, if there exists{Pk}0≤k≤N satisfying (13) and

(16b), it can be easily seen from Lemma 3 that the system (9)
satisfies the auxiliary index (10) and therefore the pre-specified
H∞ performance (8) is satisfied for the closed-loop system (7).
In this case, the worst-case disturbance can be expressed asη̃∗k =
(R22

k+1)
−1(R12

k+1)
T x̄k.

Next, by employing the worst-case disturbance, we aim to provide
a design scheme of the controller parameterKk. For this purpose,

by using the completing squares method, it follows from Lemma 2
that

J2(ūk; η̃
∗
k)

= E

{

x̄T
0 Q0x̄0 − x̄T

N+1QN+1x̄N+1

}

+
N∑

k=0

E

{

x̄T
k

(
∆k+1

+ LT
k Lk −Qk − S1

k+1(S
2
k+1)

−1(S1
k+1)

T
)
x̄k

+ (ūk − ū∗
k)

TS2
k+1(ūk − ū∗

k)
}

≤ E

{

x̄T
0 Q0x̄0 − x̄T

N+1QN+1x̄N+1

}

+
N∑

k=0

E

{

x̄T
k

(
∆k+1

+ LT
k Lk − S1

k+1(S
2
k+1)

−1(S1
k+1)

T −Qk

)
x̄k

+
∥
∥Kkϑ̄Ck + (S2

k+1)
−1S1T

k+1

∥
∥2

F

∥
∥S2

k+1

∥
∥
F
‖x̄k‖

2
}

(17)

whereū∗
k = −(S2

k+1)
−1(S1

k+1)
T x̄k. Furthermore, the controller pa-

rameterKk can be selected to satisfy (15) and (16c) simultaneously,
which ends the proof.

Clearly, it is generally difficult to solve the optimizationproblem
(16c). For the convenience in application, the expression of the
parameterKk can be acquired by using the Moore-Penrose pseudo
inverse in the following theorem.

Theorem 2:For the given disturbance attenuation levelγ > 0 and
positive definite matrixW , the closed-loop system (7) satisfies the
H∞ performance constraint (8) for any nonzero disturbance sequence
{ηk}0≤k≤N ∈ L[0,N], if there exists a set of solutions{(εk, λk, δk,
Pk, Qk, Kk)}0≤k≤N (with λk > 0 and εk > 0) satisfying the
following recursive RDEs:

{

R11
k+1 + R̄12

k+1(R̄
22
k+1)

−1(R̄12
k+1)

T = Pk, (18a)

∆̄k+1 + LT
k Lk − S̄1

k+1(S
2
k+1)

−1(S̄1
k+1)

T = Qk, (18b)

subject to







PN+1 = QN+1 = 0, (19a)

R̄22
k+1 > 0, P0 < γ2W, S2

k+1 > 0, (19b)

K∗
k = Υ†

k+1Γk+1(ϑ̄Ck)
†, (19c)

Wk ≤ δkI, (19d)

where

Gk =
[

D̃k λ−1
k Bk

]
, Λ̄k+1 = Gk(R̄

22
k+1)

−1(R̄12
k+1)

T ,

R̄12
k+1 = (Ak + BkKkϑ̄Ck)

TPk+1Gk, U = [ I 0 0 ],

R̄22
k+1 = γ2I − G

T
k Pk+1Gk − δkU

TU ,

S̄1
k+1 = (Ak + Λ̄k+1)

TQk+1Bk,

∆̄k+1 = (Ak + Λ̄k+1)
TQk+1(Ak + Λ̄k+1)

+ α̃Ã
T
k Qk+1Ãk + C

T
k Ξ1

k+1Ck,

Γk+1 = − (S2
k+1)

−1
B

T
k Qk+1(I + Gk(R̄

22
k+1)

−1
G

T
k Pk+1)Ak,

Υk+1 = I + (S2
k+1)

−1
B

T
k Qk+1Gk(R̄

22
k+1)

−1
G

T
k Pk+1Bk,

Wk = γ2λkE
T
k

(
ῡTK∗T

k K∗
k ῡ

+ diag{0, ϑ̃0, . . . , ϑ̃ℓ, 0} ⊗ (K∗T
k K∗

k )
)
Ek,

and the other corresponding matrix parameters are defined asin
Lemma 2.

Proof: Denoteṽk = λk

(∑ℓ

i=0 ϑ
i
kKkEk−ivk−i+Kkξk

)
where

λk > 0 is introduced to offer more flexibility in the controller design.
Next, selecting

ζk = [wk ṽk (εkαkFkNkxk)
T ]T ,



4 FINAL VERSION

we rewrite (9) as follows:






x̄k+1 =
(
Ak + BkKkϑ̄Ck

)
x̄k + (αk − ᾱ)Ãkx̄k

+ BkKkϑkCkx̄k + Gkζk,

zk = Lkx̄k.

(20)

It can be easily seen that the nonzero disturbance sequence
{ζk}0≤k≤N belongs toL[0,N]. On the other hand, it follows from
Lemma 1 that (19c) is the solution of the optimization problem

min
Kk

∥
∥Υk+1Kkϑ̄Ck − Γk+1

∥
∥
F

which can be rewritten as

min
Kk

∥
∥Kkϑ̄Ck + (S2

k+1)
−1(S̄1

k+1)
T
∥
∥
F
. (21)

According to Theorem 1, if there exists a set of solutions satisfying
the recursive RDEs (18a) and (18b) with (19a)-(19d), one has

E
{
‖zk‖

2
[0,N]

}
< E

{

γ2||ζk||
2
[0,N] − δk||Uζk||

2
[0,N]

− ᾱγ2||εkℵkx̄k||
2
[0,N]

}

+ γ2
E

{

x̄T
0Wx̄0

}

.
(22)

Furthermore, in light of (19d), the above inequality yields

E
{
‖zk‖

2
[0,N]

}

< E

{

γ2||η̃k ||
2
[0,N] + γ2||ṽk||

2
[0,N] − δk||wk||

2
[0,N]

− ᾱγ2||εkℵkx̄k||
2
[0,N]

}

+ γ2
E

{

x̄T
0Wx̄0

}

≤ E
{
γ2||η̃k||

2
[0,N] − ᾱγ2||εkℵkx̄k||

2
[0,N]

}
+ γ2

E

{

x̄T
0Wx̄0

}

(23)

which implies that the closed-loop system (7) achieves theH∞

performance constraint (8). The proof is complete.
Remark 1: In this paper, we examine how the channel fading and

randomly occurring nonlinearities influence theH∞ performance
over finite-horizon[0, N ]. It is worth mentioning that the conditions
in Lemma 3 and Theorem 1 are obtained mainly by the “completing
the square” technique which results in little conservatism. Compared
to existing literature, our results have the following three distinguish-
ing features: 1) the system under investigation is in the discrete time-
varying form; 2) the technology of model transformation is employed
to reduce the complexity of system analysis; and 3) this paper
represents one of the first attempts to address both channel fading and
RONs for theH∞ control problems by using the backward recursive
RDEs. Furthermore, in Theorem 2, all the system parameters,the
probability for channel coefficients as well as RONs are reflected in
the backward recursive RDEs.

Remark 2: In the case of the time-varying systems without RONs,
a RDE-based condition of theH∞ control can be easily deduced from
Theorem1 as long as the terms̄αMk, α̃Ã

T
k Pk+1Ãk, ᾱγ2ε2kℵ

T
k ℵk

andα̃Ã
T
k Qk+1Ãk are removed fromAk, R11

k+1 and∆k+1. Further-
more, in case of no fading channels, the corresponding results can
be obtained from Theorem 1 by settingℓ = 0.

IV. N UMERICAL EXAMPLE

Consider system (1) with the fading measurement (5) with

Ak =

[
0.42 + sin(2k − 1) −0.40

−0.40 + e−5k 0.85

]

, Bk =

[
0.85
−0.65

]

,

Ck = [0.65 − 0.70], Dk = [−0.02 0.015]T ,

Ek = 0.01, Lk = [0.20 0.20].
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Fig. 1. The system output.

Let the nonlinear vector-valued functionfk(xk) be

hk(xk) =







[
−0.60x1

k + 0.30x2
k + tanh(0.30x1

k)
0.60x2

k − tanh(0.20x2
k)

]

,

0 ≤ k < 15,
[

0.35x1
k − tanh(0.25x1

k)
0.5x2

k

]

, 15 ≤ k ≤ 41,

where xi
k (i = 1, 2) denotes thei-th element of the system state

xk. The probability of RONs is taken as̄α = 0.10. The order of
the fading model isℓ = 2 and channel coefficientsϑ0

k, ϑ1
k and

ϑ2
k obey the Gaussian distributionsN (0.9, 0.12), N (0.2, 0.52) and

N (0.2, 0.52), respectively. Meanwhile, it is easy to see that the
constraint (3) can be met with

Φk =







[
−0.30 0.30

0 0.60

]

, 0 ≤ k < 15,
[

0.10 0
0 0.50

]

, 15 ≤ k < 41,

Ψk =







[
−0.60 0.30

0 0.40

]

, 0 ≤ k < 15,
[

0.35 0
0 0.50

]

, 15 ≤ k < 41.

In this example, theH∞ performance levelγ, positive definite
matrix W and time-horizonN are taken as0.98, diag{0.50, 0.50}
and40, respectively. Using the given algorithm and Matlab software,
the set of solutions to recursive RDEs in Theorem 2 are obtained and
the controller gain matrices are shown in Table I, whereεk, λk and
δk are selected asεk = 1.0, λk = 2.5 and δk = 0.25, respectively.
In the simulation, the exogenous disturbance inputs are selected as

wk = 5 sin(k), vk = 0.8 cos(0.7k), ξk = 0.48 cos(0.2k).

The simulation results are shown in Fig. 1 and Fig. 2, where Fig. 1
plots the output trajectories of the open-loop and closed-loop system,
and Fig. 2 depicts the measurement outputs and the received signals
by controller, respectively. The simulation results have confirmed that
the designed controller performs very well.

It is interesting to see the relationship between the disturbance
attenuation levelγ and the probabilityᾱ. For the same parameters
λk, εk and δk, the permitted minimumγ is shown in Table II. It is
easy to find that the disturbance attenuation performance deteriorates
with increased̄α.
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Fig. 2. The measurement signal and the received signal.

TABLE I
THE DISTRIBUTED STATE ESTIMATOR GAIN MATRICES

k 0 1 2 3 4 · · ·

Kk -0.0757 -0.2549 -0.1898 -0.1938 -0.2574· · ·

TABLE II
THE PERMITTED MINIMUM γ

ᾱ 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14
γ 0.94 0.95 0.96 0.98 0.99 1.00 1.02 1.03

V. CONCLUSIONS

In this paper, we have investigated the finite-horizonH∞ control
problem for a class of discrete time-varying systems with fading
channels and randomly occurring nonlinearities. By employing the
completing squares method and the stochastic analysis techniques,
some sufficient conditions have been provided to ensure thatthe
close-loop system satisfies theH∞ performance constraint. Further-
more, the desired controller gains can be obtained by solving two
coupled backward recursive RDEs.

APPENDIX I: PROOF OFLEMMA 2

Along the trajectory of system (9), it can be derived that

E
{
x̄T
k+1Pk+1x̄k+1 − x̄T

k Pkx̄k

}

= E
{
x̄T
k (Ak + BkKkϑ̄Ck)

TPk+1

(
Ak + BkKkϑ̄Ck

)
x̄k

− x̄T
kPkx̄k + 2x̄T

k (Ak + BkKkϑ̄Ck)
TPk+1(BkKkθ̄Ẽk

+ D̃k)η̃k + x̄T
k α̃Ã

T
k Pk+1Ãkx̄k + x̄T

k C
T
k ϑ

T
kK

T
k B

T
k

× Pk+1BkKkϑkCkx̄k + 2x̄T
k C

T
k ϑ

T
kK

T
k B

T
k Pk+1

× BkKkθkẼkη̃k + η̃Tk Ẽ
T
k θ

T
kK

T
k B

T
k Pk+1BkKkθkẼkη̃k

+ η̃Tk (BkKkθ̄Ẽk + D̃k)
TPk+1(BkKkθ̄Ẽk + D̃k)η̃k

}
.

(24)

Taking (24) into consideration, it follows that

E
{
‖zk‖

2
[0,N]

}
=

∑N

k=0
E

{

x̄T
kL

T
k Lkx̄k

}

+ E
{
x̄T
0 P0x̄0

− x̄T
N+1PN+1x̄N+1

}
+

∑N

k=0
E

{

x̄T
k

[

(Ak

+ BkKkϑ̄Ck)
TPk+1

(
Ak + BkKkϑ̄Ck

)

+ α̃Ã
T
k Pk+1Ãk + C

T
k Π1

k+1Ck − Pk

]

x̄k

+ 2x̄T
k

[

(Ak + BkKkϑ̄Ck)
TPk+1(BkKkθ̄Ẽk + D̃k)

+ C
T
k Π2

k+1Ẽk

]

η̃k + η̃Tk

[

(BkKkθ̄Ẽk + D̃k)
TPk+1

× (BkKkθ̄Ẽk + D̃k) + Ẽ
T
k Π3

k+1Ẽk

]

η̃k
}

= E
{
x̄T
0 P0x̄0 − x̄T

N+1PN+1x̄N+1

}
+ E

{
γ2||η̃k||

2
[0,N]

− γ2||εkℵkx̄k||
2
[0,N]

}
+

N∑

k=0

E
{
[x̄T

k η̃Tk ]Z
3
k [x̄T

k η̃Tk ]
T
} (25)

with Z
2
k =

[
R11

k+1 −Pk R12
k+1

∗ −R22
k+1

]

.

Similarly, noticing thatūk = Kkϑ̄Ckx̄k, one has

E

{

x̄T
k+1Qk+1x̄k+1 − x̄T

kQkx̄k

}

= E

{

x̄T
k

(

A
T
k Qk+1Ak + α̃Ã

T
k Qk+1Ãk + C

T
k Ξ1

k+1Ck

−Qk

)

x̄k + 2x̄T
k A

T
k Qk+1Bkūk + ūT

k B
T
k Qk+1Bkūk

+ 2x̄T
k

[

A
T
k Qk+1(BkKkθ̄Ẽk + D̃k) + C

T
k Ξ2

k+1Ẽk

]

η̃k

+ 2ūT
k B

T
k Qk+1(BkKkθ̄Ẽk + D̃k)η̃k

+ η̃Tk

[

(BkKk θ̄Ẽk + D̃k)
TQk+1(BkKkθ̄Ẽk + D̃k)

+ Ẽ
T
k Ξ3

k+1Ẽk

]

η̃k
}

.

Moreover, under|R22
k+1| 6= 0 for all k ∈ [0, N ], by selectingη̃k =

(R22
k+1)

−1(R12
k+1)

T x̄k, it is easy to obtain that

E
{
‖zk‖

2
[0,N]

}

=

N∑

k=0

E{‖zk‖
2 + ‖ūk‖

2 − ‖ūk‖
2}+ E

{
x̄T
0 Q0x̄0

− x̄T
N+1QN+1x̄N+1

}
+

N∑

k=0

E
{
x̄T
k∆k+1x̄k

+ 2x̄T
k (Ak + Λk+1)Qk+1Bkūk + ūT

k B
T
k Qk+1Bkūk

}

= E

{

x̄T
0 Q0x̄0 − x̄T

N+1QN+1x̄N+1

}

−
N∑

k=0

E

{

‖ūk‖
2
}

+

N∑

k=0

E

{

x̄T
k (∆k+1 + LT

k Lk)x̄k + 2x̄T
k (Ak + Λk+1)

T

×Qk+1Bkūk + ūT
k (B

T
k Qk+1Bk + I)ūk

}

= E

{

x̄T
0 Q0x̄0 − x̄T

N+1QN+1x̄N+1

}

−
N∑

k=0

E

{

‖ūk‖
2
}

+
N∑

k=0

E

{[
x̄k

ūk

]T

Z
3
k

[
x̄k

ūk

]}

(26)

with Z
3
k =

[
∆k+1 + LT

k Lk −Qk (Ak +Λk+1)
TQk+1Bk

∗ B
T
k Qk+1Bk + I

]

.

Obviously, equalities (11) and (12) are guaranteed by (25) and (26),
respectively. Therefore, the proof is complete.

APPENDIX II: PROOF OFLEMMA 3

(ii) ⇒ (i). For non-negative definite matrices{Pk}0≤k≤N+1

satisfying the recursive RDE (13), it follows from Lemma 2 that

E
{
‖zk‖

2
[0,N]

}
− E

{
γ2||η̃k ||

2
[0,N] − ᾱγ2||εkℵkx̄k||

2
[0,N]

}

= E

{

x̄T
0 P0x̄0 − x̄T

N+1PN+1x̄N+1

}

+
N∑

k=0

E

{

x̄T
k (R

11
k+1

− Pk)x̄k + 2x̄T
kR

12
k+1η̃k − η̃Tk R

22
k+1η̃k

}
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=

N∑

k=0

E

{

x̄T
k

(
R11

k+1 − Pk +R12
k+1(R

22
k+1)

−1(R12
k+1)

T
)
x̄k

− (η̃k − η̃∗k)
TR22

k+1(η̃k − η̃∗k)
}

+ E

{

x̄T
0 P0x̄0 − x̄T

N+1PN+1x̄N+1

}

where η̃∗k = (R22
k+1)

−1(R12
k+1)

T x̄k.
SinceR22

k > 0 andP0 < γ2W , for any nonzero{η̃k}0≤k≤N ∈
L[0,N], it can be derived from the final conditionPN+1 = 0 that

E
{
‖zk‖

2
[0,N]

}
− γ2

E{x̄T
0Wx̄0}

− E{γ2||η̃k||
2
[0,N] − ᾱγ2||εkℵkx̄k||

2
[0,N]}

< E
{
‖zk‖

2
[0,N]

}
− E{x̄T

0 P0x̄0}

− E{γ2||η̃k||
2
[0,N] − ᾱγ2||εkℵkx̄k||

2
[0,N]}

=− E

{ N∑

k=0

(η̃k − η̃∗k)
TR22

k+1(η̃k − η̃∗k)
}

< 0.

(27)

(i) ⇒ (ii). We proceed to show that “if (ii) is not true, then (i) is
also not true”. For convenience, let us provide an expression for the
condition and conclusion of this proposition, respectively.

• The IF statement (i.e., the condition that (ii) is not true):Due to
R22

N+1 = γ2I > 0, PN can be calculated from the recursion (13). It
is easy to see that, by the same procedure, the recursion RDE (13)
can be solved backward when|R22

k+1| 6= 0 for all k ∈ [0, N − 1].
It means that the recursion RDE (13) fails if there exists some k0
satisfying|R22

k0+1| = 0, which fails without the condition (14).
In short, in terms of (14) and the backward recursion character of

(13), the “if statement” can be divided into three cases:

a) R22
k+1 > 0 for all k ∈ [0, N − 1], but the initial condition

P0 < γ2W can’t be satisfied;
b) there exists ak0 such that|R22

k0+1| = 0 and R22
k+1 > 0

(k0 < k < N ). It means thatR22
k0+1 has at least one zero

eigenvalue;
c) there exists ak0 such that i)R22

k0+1 is neither positive semi-
definite nor positive definite; ii)R22

k+1 > 0 (k0 < k < N ),
that is,R22

k0+1 has at least one negative eigenvalue.

Furthermore, combining b) and c), one has that, for somek0, R22
k+1 >

0 (k0 < k < N ) and R22
k0+1 has at least one zero or negative

eigenvalue denoted asλk0
≤ 0.

• The THEN statement (i.e., the conclusion that (i) is not true):
There exists(x̄0, η̃) 6= 0 such that

E
{
‖zk‖

2
[0,N]

}
≥ E

{
γ2||η̃k ||

2
[0,N] − ᾱγ2||εkℵkx̄k||

2
[0,N]

}

+ γ2
E

{

x̄T
0Wx̄0

}

.
(28)

First, denote

J (x̄0, η̃) := E

{

‖zk‖
2
[0,N] − γ2||η̃k||

2
[0,N]

+ ᾱγ2||εkℵkx̄k||
2
[0,N]

}

− γ2
E

{

x̄T
0Wx̄0

}

.
(29)

Case a): We can choosẽηk = η̃∗k, and then obtain

J (x̄0, η̃)

=
N∑

k=0

E
{
x̄T
k

(
R11

k+1 −Pk +R12
k+1(R

22
k+1)

−1(R12
k+1)

T
)
x̄k

− (η̃k − η̃∗k)
TR22

k+1(η̃k − η̃∗k)
}
− γ2

E
{
x̄T
0Wx̄0

}

+ E
{
x̄T
0 P0x0 − x̄T

N+1PN+1x̄N+1

}

= E
{
x̄T
0 (P0 − γ2W )x̄0

}
.

(30)

Obviously, there always exists āx0 6= 0 satisfyingJ (x̄0, η̃) ≥ 0,
even ifP0 − γ2W has at least one non-negative eigenvalue.

Case b)and Case c): We assume that there exists a non-positive
eigenvalue ofR22

k+1 at time k0, and design the special sequence
(x̄0, η̃) 6= 0 as follows:

x̄0 = 0 and η̃k =







ψk0
, k = k0,

η̃∗k, k0 < k ≤ N,
0, 0 ≤ k < k0,

(31)

whereψk0
is the eigenvector ofR22

k0+1 with respect toλk0
. For the

purpose of simplicity, denotẽη := {η̃k}0≤k≤N .
The rest of the proof follows readily from that of Lemma2 in [4].
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