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Finite-HorizonH∞ State Estimation for Stochastic
Coupled Networks with Random Inner Couplings

using Round-Robin Protocol
Yun Chen, Zidong Wang, Licheng Wang and Weiguo Sheng

Abstract—This paper is concerned with the problem of finite-
horizon H∞ state estimation for time-varying coupled stochastic
networks through the Round-Robin scheduling protocol. The
inner coupling strengths of the considered coupled networks are
governed by a random sequence with known expectations and
variances. For the sake of mitigating the occurrence probability
of network-induced phenomena, the communication network is
equipped with the Round-Robin protocol that schedules the signal
transmissions of the sensors’ measurement outputs. By using
some dedicated approximation techniques, an uncertain auxiliary
system with stochastic parameters is established where the multi-
plicative noises enter into the coefficient matrix of the augmented
disturbances. With the established auxiliary system, the desired
finite-horizon H∞ state estimator is acquired by solving coupled
backward Riccati equations, and the corresponding recursive
estimator design algorithm is presented that is suitable for online
application. The effectiveness of the proposed estimator design
method is validated via a numerical example.

Index Terms—Stochastic coupled networks; finite-horizonH∞

estimation; random inner couplings; Round-Robin protocol;
backward Riccati difference equations.

I. I NTRODUCTION

With the springing up of the discipline of complexity
science over the past few decades, complex networks have
become a research hotspot due mainly to their wide range of
applications in our daily life. Generally speaking, a typical
complex network consists of a large number of nodes and
edges which can be used to model individual systems and
their interconnections, respectively. Based on this prominent
structure, many complex systems can be described by complex
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network models with examples including nervous systems,
computer networks, transportation networks and social net-
works. Compared with those individual systems, complex
networks exhibit features such as strong couplings, inherent
nonlinearities as well as large scales that contribute greatly
to the complexities in the dynamical behaviors and, therefore,
there appears to be an urgent demand in understanding the
dynamic evolution of complex networks. In recent years,
tremendous research efforts have been devoted to the dynamic
analysis issues for complex networks such as stability, syn-
chronization, state estimation and pining control, see e.g. [6],
[14]–[16], [18], [22], [26], [30], [31], [45].

It is well recognized that, as an indispensable part of the
coupled networks, the coupling strengths have an essential
impact on both the topology connection and the dynamics
of complex networks. In most of the existing literature, an
implicit assumption is that coupling strengths aredeterministic
yet fixed. In some practical situations, however, the inner
connections between nodes might be uncertain and expose
certain switching/random behaviors owing to a variety of
reasons such as network congestion, random failures, unknown
but sudden changes of the working conditions as well as the
unexpected environmental changes. In view of this, particular
attention has been paid to the investigation on the impact
from the uncertain/random/switchingcouplings on network
dynamics [3], [6], [15], [19], [20], [30]. For example, in [22],
the coupling strengths have been characterized as a uncertain
term and the resulting uncertainties have been dealt with using
the H∞ performance requirements on the filtering error dy-
namics. The stochastic coupling (either inter-coupling or outer-
coupling) connecting strengths has been considered in [26].
In [10], the switching coupling strengths obeying a discrete-
time Markov chain have been proposed, whose influences on
both the variance constraint andH∞ performance have been
analyzed.

When analyzing the dynamical performance of complex
networks, it is often a prerequisite that the state information of
all nodes is available especially for certain tasks such as syn-
chronization and consensus. Unfortunately, this is not always
possible due to unknown/unpredictable environmental changes
or limits of measurement technologies/expenses. Therefore,
the state estimation problem of complex networks has become
an issue of primary importance that has recently aroused much
research interest with many results reported in the literature,
see e.g. [26], [31], [39], [40]. It is worth noting that most
results on the state estimation of complex networks have
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been concerned with the time-invariant systems. However, in
practical situations, the evolution of the networks is very likely
to be time-varying with the change of the working environ-
ment. As such, thefinite-horizonstate estimation problem for
the time-varyingcomplex networks, whose main idea is to
guarantee a satisfactorytransientperformance over a certain
period time, has received some initial research attention [29],
[33], [35]. Up to now, several effective approaches/techniques
have been developed, e.g. the recursive linear matrix inequality
(RLMI) approach [5], [42], the Krein-space theory [21] and
the backward coupled recursive Riccati equation (BCRRE)
method [26], among which the BCRRE technique has proven
to be particularly efficient in facilitating the online applications
for nonlinear time-varying systems [8].

With the increase of the network scale, the coupled nodes
lead inevitably to a large amount of information exchange
demanding a great deal of communication resources that are
usually limited. In fact, the inherently limited bandwidth of
the communication network is very likely to create obstacles
for sustaining the ever-expedited data interactions for a large
scale network. To cope with the sparsity of the communication
resources, some efficient data transmission strategies have
been proposed. For example, with purpose to reduce the com-
munication frequency, the event-triggered strategy has been
developed where the information is transmitted only when
certain prescribed event is satisfied, see e.g. [11], [15], [27],
[32], [44]. Another data scheduling strategy that has recently
begun to receive some research attention is the so-called
communication protocol whose main idea is to only grant the
“selected” data the permission to occupy the communication
channel, thereby effectively preventing the undesired data col-
lisions [1]. In general, the commonly deployed communication
protocols include the Round-Robin protocol (RRP) [25], [36],
[38], [41], [43], the Try-Once-Discard protocol [17] and the
random access protocol [48]. Among others, the RRP is a kind
of periodic protocols under which all signals are transmitted
in a given circular fashion. Due to its structural simplicity and
convenient implementation, the RRP has been widely applied
in industry with a surge of interest in dynamics analysis
(e.g. state estimation) problems for a variety of complex
networks, see e.g. [23], [26], [28].

Motivated by the above discussions, in this paper, we
like to initiate a systematic investigation on the new yet
challenging problem of RRP-based finite-horizonH∞ state
estimation problem for a class of time-varying stochastic
coupled networks subject to random inner coupling strengths.
The main contributions of this paper can be summarized as
follows. 1) The coupled networks are quite comprehensive
that involves state-dependent multiplicative noises and random
inner coupling connections. 2) The RRP is adopted to schedule
the measurement data of the underlying stochastic complex
networks. 3) An auxiliary stochastic parameter system is
dedicatedly developed so as to facilitate the evaluation of the
H∞ performance over a finite horizon. 4) A novel BCRRE
approach is put forward to design the gain parameters of the
desired state estimator in a recursive manner.

The remainder of this paper is organized as follows. Section
II addresses the problem statement and preliminaries of this

paper. The main results are given in Section III. A numerical
example is provided in Section IV and the conclusion is drawn
in Section V.

Notation: Throughout this paper, the notations used are
standard.Rn denotes then-dimensional Euclidean space.I
and0 are used to indicate an identity matrix and a zero matrix
with appropriate dimensions, respectively.|| · || designates the
Euclidean norm.E{·} denotes the mathematical expectation.
diag{· · · } represents a block diagonal matrix. The Kronecker
product of the two matricesA andB is represented asA⊗B.
(A)† is the Moore-Penrose pseudo inverse of matrixA. P ij is
the (i, j)-th entry of the matrixP . l2[0, T ] refers to a square
summable space over the finite time interval[0, T ].

II. PROBLEM FORMULATION AND PRELIMINARIES

A. The Complex Network Model

Consider the following coupled network withN nodes:

xi,k+1 =f(xi,k) +

N∑

j=1

rijGkxj,k +Bi,kvk + hi(xi,k)wk

(1)

wherexi,k ∈ Rn (i ∈ N = {1, 2, · · · , N}) is the state vector
of node i, vk ∈ Rnv is the bounded exogenous disturbance
belonging tol2[0, T ], andwk is a zero-mean scalar Gaussian
random sequence with varianceE{w2

k} = 1. Bi,k is a time-
varying matrix with appropriate dimensions.rij (i, j ∈ N ) is
the outer coupling between two nodesi andj. rij > 0 (j 6= i)
indicates that there is information transmission from the node
j to nodei; otherwiserij = 0. We assume in this paper that the
information transmission is symmetric and equivalent between
two different nodes, i.e.,rij = rji, and the diffusive condition
rii +

∑N
j=1,j 6=i rij = 0 is satisfied.

The nonlinear vector functionsf(xi,k) ∈ Rn andhi(xi,k) ∈
Rn satisfy the following assumption.

Assumption 1:For any vectorsµk, νk ∈ Rn, the followings
are true:

[f(µk)− f(νk)− F1,k(µk − νk)]
T

× [f(µk)− f(νk)− F2,k(µk − νk)] ≤ 0
(2a)

‖hi(µk)− hi(νk)‖
2 ≤ ‖Si,k(µk − νk)‖

2 (2b)

wheref(0) = 0, hi(0) = 0, andF1,k, F2,k, Si,k are known
matrices.

The inner coupling of the coupled network (1) is

Gk = diag{ψ1,k, · · · , ψn,k} · diag{g1, · · · , gn}

, ΨkG0

(3)

wheregq > 0 (q = 1, 2, · · ·n) are known scalars, andψq,k

are mutually independent random sequences distributed over
the intervals[uq, ūq] with known scalars̄uq ≥ uq ≥ 0. The
mathematical expectations and variances ofψq,k areψq and
σ2
q , respectively. Correspondingly, the expectation of the inner

coupling matrixGk is

G = E{Gk} = ΨG0 = diag{ψ1g1, · · · , ψngn}. (4)

Assumption 2:The random sequenceswk and ψq,k are
mutually independent.
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Remark 1: Both the stochastic noisew(k) and l2-type ex-
ternal disturbancev(k) are considered in this paper. In contrast
with most existing literature, the inner coupling strength matrix
Gk in (1) is allowed to change randomly. As pointed out in
[22], the inner couplings cannot be exactly known in many
real-world coupled networks due to unavoidable variations of
the inner connection among subsystems. In fact, the inner
connection coefficients of the practical coupled networks are
mainly identified through statistic methods and/or measure-
ment technologies, and this would inevitably bring some kind
of stochastic perturbations. Furthermore, different from most
existing results (see e.g. [22]), the model (3) ensures the
inner coupling strengths to be nonnegative and bounded, which
reflects the engineering practice closely.

B. Round-Robin Protocol and Estimation Error Dynamics

For the addressed complex network (1), the measurement
of the sensori is described by

ỹi,k = Ci,kxi,k +Di,kvk (5)

where ỹi,k ∈ Rny , vk ∈ Rnv is the disturbance as specified
in (1), andCi,k, Di,k (i ∈ N ) are time-varying matrices with
compatible dimensions.

In this paper, the measurement signals are transmitted
through a non-ideal communication channel with limited band-
width. In order to alleviate the network load and avoid possible
network congestion, the RRP is applied to schedule the signal
transmission. Based on the RRP, at each time instant, only one
node has the access to transmit its information through the
shared communication channel. Thus, the real measurement
received by the estimatori is

yi,k =

{
ỹi,k, mod(k,N) = i
yi,k−1, otherwise, i ∈ N

(6)

with the initial conditionyi,0 = 0.
Denote

yk ,[yT1,k y
T
2,k · · · y

T
N,k]

T , ỹk , [ỹT1,k ỹ
T
2,k · · · ỹ

T
N,k]

T .

Hence, the measurement updated equation is written as

yk = Iσk
ỹk + (I − Iσk

)yk−1 (7)

where
Iσk

= diag{0, · · · , 0
︸ ︷︷ ︸

σk−1

, I, 0, · · · , 0
︸ ︷︷ ︸

N−σk

}

with σk ∈ N andσk = mod(k − 1, N) + 1.
Based on (6), the Luenberger-type state estimator for each

node is constructed as

x̂i,k+1 =f(x̂i,k) +

N∑

j=1

rijGx̂j,k + Li,k(yi,k − Ci,kx̂i,k) (8)

wherex̂i,k is the estimate ofxi,k, andLi,k is the time-varying
gain matrix to be designed.

By defining the estimation error of thei-th estimator as
ei,k , xi,k − x̂i,k, and denotingxk , [xT1,k xT2,k · · ·x

T
N,k]

T ,

x̂k , [x̂T
1,k x̂

T
2,k · · · x̂

T
N,k]

T andek , [eT
1,k e

T
2,k · · · e

T
N,k]

T , the
estimator (8) can be written as

x̂k+1 =Fk,x̂ + (R ⊗G)x̂k + Lk(yk − Ckx̂k) (9)

where

Fk,x̂ ,[fT (x̂1,k) f
T (x̂2,k) · · · f

T (x̂N,k)]
T

R ,[rij ]N×N

Lk ,diag{L1,k, L2,k, · · · , LN,k}

Ck ,diag{C1,k, C2,k, · · · , CN,k}.

By settingf(χi,k) = f(xi,k)−f(x̂i,k) and noticing (1), (7)
and (8), we have

ek+1 =Fk,e + [R⊗ (Gk −G) + Lk(I − Iσk
)Ck]xk

+ (R⊗G− LkCk)ek − Lk(I − Iσk
)yk−1

+ (Bk − LkIσk
Dk)vk +Hk,xwk

(10)

where

Fk,e ,[fT (χ1,k) f
T (χ2,k) · · · f

T (χN,k)]
T

Bk ,[BT
1,k, B

T
2,k, · · · , B

T
N,k]

T

Dk ,[DT
1,k, D

T
2,k, · · · , D

T
N,k]

T

Hk,x ,[hT1 (x1,k) h
T
2 (x2,k) · · ·h

T
N (xN,k)]

T .

Let the output signal (to be estimated) for the underlying
complex network (1) be given by

zi,k =Ei,kxi,k (11)

where the time-varying matrixEi,k is dimensionally compat-
ible. Then, one obtains

z̄i,k ,zi,k − ẑi,k = Ei,kei,k

=Ei,kxi,k − Ei,kx̂i,k.

Setting ηk , [xTk yTk−1 eTk ]
T , z̄k , zk − ẑk, zk ,

[zT
1,k zT

2,k · · · z
T
N,k]

T and ẑk , [ẑT
1,k ẑT

2,k · · · ẑ
T
N,k]

T , the dy-
namics ofηk is expressed as

{

ηk+1 =(Ak +∆k)ηk + Fk + Bkvk +Hkwk

z̄k =Ekηk
(12)

where

Ak ,





R⊗G 0 0
Iσk

Ck Iδσk
0

LkI
δ
σk
Ck −LkI

δ
σk

R⊗G− LkCk





∆k ,





R⊗ (Gk −G) 0 0
0 0 0

R⊗ (Gk −G) 0 0





Fk ,





Fk,x

0
Fk,e



 , Hk ,





Hk,x

0
Hk,x





Bk ,





Bk

Iσk
Dk

Bk − LkDk





Ek ,
[
0 0 Ek

]

Ek ,diag{E1,k, E2,k, · · · , EN,k}

Iδσk
,I − Iσk

.

(13)
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Remark 2: The RRP is introduced in this paper to ease
the network load and avoid the possible network-induced
problems in the shared communication channel. Due to the
introduction of Iσk

, the measurement equation (7) and the
augmented system (12) exhibit the periodically switching
behaviors. However, different from the standard switched
systems [5], [7], [37], the switching caused byIσk

in system
(12) isN -periodic in a fixed circle with a constant switching
time interval.

C. Approximations of Nonlinear Functionsf(·) and hi(·)

It is observed from (12) that two nonlinear vector-valued
functionsFk and Hk correspond to the nonlinear functions
f(·) and hi(·), respectively. In order to design theH∞

estimator (8) by means of Riccati-type difference equation
method, the nonlinear vector functionsFk andHk are now
handled properly as in [9], [21].

Let us consider a time-varying nonlinear scalar-valued func-
tion c(νk) satisfying[c(νk)− aνk][c(νk)+ aνk] ≤ 0, which is
equivalent toc2(νk) ≤ a2ν2k or −aνk ≤ c(νk) ≤ aνk, where
a > 0 is a known scalar. It is easy to verify that there indeed
exists a scalarmk ∈ [−1, 1] such thatc(νk) = mk · aνk for
any k = 0, 1, 2, · · · . Note that the above technical handling
process can be directly applied to the nonlinear vector-valued
function f(xi,k) subject to (2a).

For the nonlinear vector-valued functionf(xi,k) with
f(0) = 0, the inequality (2a) can be rewritten as

[(f(xi,k)−Θkxi,k)−Υkxi,k]
T

× [(f(xi,k)−Θkxi,k) + Υkxi,k] ≤ 0

where

Θk =
F1,k + F2,k

2
, Υk =

F1,k − F2,k

2
.

Similar to the scalar case discussed previously, there always
exists a matrixMk satisfyingMT

k Mk ≤ I such thatf(xi,k)−
Θkxi,k =MkΥkxi,k or

f(xi,k) = Θkxi,k +MkΥkxi,k. (14)

Also, one hasf(χi,k) = Θkei,k +MkΥkei,k. In view of (2b),
the nonlinear functionhi(xi,k) can now be rearranged as

hi(xi,k) = M̄kSi,kxi,k (15)

where the matrixM̄k satisfiesM̄T
k M̄k ≤ I.

By introducing the following notations

̥k ,diag{Θk,Θk, · · · ,Θk
︸ ︷︷ ︸

N

}

Fk =diag{Υk,Υk, · · · ,Υk
︸ ︷︷ ︸

N

}

Sk ,diag{S1,k, S2,k, · · · , SN,k}

Fk ,diag{̥k, 0,̥k}

Fk ,diag{Fk, 0,Fk}

Hk ,
[
ST
k 0 ST

k

]T

(16)

the nonlinear functionsFk andHk in (12) are expressed as

Fk =(Fk +MkFk)ηk

Hk =M̄kHkxk.

Rearranging (12) gives the following auxiliary equation

ηk+1 =(Ak + Fk +∆k)ηk +Bkvk

z̄k =Ekηk
(17)

whereAk,∆k, Ek andFk are given in (13) and (16), respec-
tively, and

Bk ,
[
Bk α−1

k I β−1

k Iwk

]

vk ,
[
vTk αk(MkFkηk)

T βk(M̄kHkηk)
T

]T

Hk ,
[
Hk 0 0

]

(18)

with αk, βk being tuning scalars to enhance the feasibility of
the addressed estimator design problem.

Remark 3:The two nonlinear vector-valued functionsf(·)
andhi(·) are transformed to (14) and (15), respectively, based
on which the linear difference equation (17) with time-varying
parametric uncertainties is obtained. It is noted that (15) is a
special case of (14) withF1,k = −F2,k, in which the nonlinear
functionf(xi,k) is decomposed into two parts, i.e., the certain
termΘkxi,k and the uncertain termMkΥkxi,k, respectively.

D. Main Objective and Preliminary Results

In this paper, we aim to construct the state estimator (9)
for the network (1) with the random inner coupling (3)
and the Round-Robin scheduling protocol (6) such that the
resulting augmented estimation error dynamics (12) satisfies
the followingH∞ performance index:

J1 =

T∑

k=0

E
{

‖ z̄k ‖2 −γ2 ‖ vk ‖2 −γ2ηT0 Wη0

}

< 0 (19)

for a prescribed disturbance attenuation levelγ > 0 over a
finite time horizon[0, T ], whereW > 0 is a weighted matrix
andη0 is any given nonzero initial condition.

For the auxiliary system (17), the following performance
index is defined

J2 =

T∑

k=0

E
{

‖ z̄k ‖2 −γ2(‖ vk ‖2 − ‖ αkFkηk ‖2

− ‖ βkHkηk ‖2)− γ2ηT0 Wη0

}

.

From the definitions ofJ1, J2,vk, it is clear that

J1 − J2 =

T∑

k=0

E
{

γ2(‖ αkMkFkηk ‖2 − ‖ αkFkηk ‖2)

+ γ2(‖ βkM̄kHkηk ‖2 − ‖ βkHkηk ‖2)

}

.

By employingMT
k Mk ≤ I andM̄T

k M̄k ≤ I, we obtain

J1 − J2 ≤
T∑

k=0

E
{

γ2(‖Mk ‖2 −I) ‖ αkFkηk ‖2

+ γ2(‖ M̄k ‖2 −I) ‖ βkHkηk ‖2
}

≤ 0
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which means thatJ1 < 0 is ensured byJ2 < 0. Hence, in the
next section we will concentrate on designing an estimator (8)
such thatJ2 < 0.

Before proceeding further, the following two lemmas are
presented.

Lemma 1: ( [13]) Let P = [pij ]n×n be a real matrix and
R = diag{r1, r2, · · · , rn} be a diagonal stochastic matrix.
Then, we have

E{RTPR} =








E{r21} E{r1r2} · · · E{r1rn}
E{r2r1} E{r22} · · · E{r2rn}

...
...

. . .
...

E{rnr1} E{rnr2} · · · E{r2n}







◦ P

where◦ is the Hadamard product.
Lemma 2: ( [2]) For any zero-mean scalar Gaussian random

sequencewk with prior varianceE{w2
k} = σ2, the following

holds:

E{w2
kw

2
l } =

{

σ4, if k 6= l

3σ4, if k = l.

III. M AIN RESULTS

In this section, a criterion is established to ensure the
finite-horizonH∞ performance constraintJ2 < 0 for the
auxiliary system (17) based on the BCRRDE approach. Then,
the estimator (8) is determined by solving two BCRRDEs.
Moreover, a recursive algorithm is provided to compute the
gain matrix of the estimator (8).

For notational simplicity, we denote:

Ak ,Ak + Fk

Ξk ,
[
Bk α−1

k I 0
]

Γk ,
[
0 0 β−1

k I
]

Xk ,ΞT
k Pk+1Ξk + ΓT

k Pk+1Γk

Yk ,ΞkΩ
−1

k ΞT
k + ΓkΩ

−1

k ΓT
k

Mk ,Pk+1(YkQk+1Yk + 4ΞkΩ
−1

k ΓT
kQk+1ΓkΩ

−1

k ΞT
k

+ 2ΓkΩ
−1

k ΓT
kQk+1ΓkΩ

−1

k ΓT
k )Pk+1

Zk ,Qk+1 +Qk+1YkPk+1 + Pk+1YkQk+1 +Mk

Ḡ ,





R⊗ Ḡ 0 0
0 0 0

R⊗ Ḡ 0 0





Ḡ ,G0diag{σ1, σ2, · · · , σn}

φk ,LkCkηk

I ,
[
0 0 I

]T

Ck ,
[
0 0 −Ck

]
.

(20)

A. Estimator Performance Analysis

For the auxiliary system (17), the following theorem is
established.

Theorem 1:Consider the coupled network (1) with fixed
estimator (8), where the measurement is given by (7). For a
given scalarγ > 0 and a weighted matrixW > 0, the auxiliary
system (17) achieves the prescribedH∞ disturbance rejection
level γ if there exist a set of positive definite matricesPk and

two sets of positive scalarsαk, βk (k = 0, 1, 2, · · · , T ) such
that the following backward Riccati recursive equations

Pk =A
T
k Pk+1Ak + Ḡ

TPk+1Ḡ+ ET
k Ek + γ2α2

kF
T
k Fk

+ γ2β2
kH

T
kHk + A

T
k Pk+1ΞkΩ

−1

k ΞT
k Pk+1Ak

(21)

are feasible withPT+1 = 0 and

Ωk =γ2I −Xk > 0

P0 <γ
2W.

(22)

Proof: See Appendix.
Remark 4:From the proof of Theorem 1, we can see that

the random inner coupling matrixGk and the state-dependent
multiplicative stochastic noisehi(xi,k)wk pose substantial d-
ifficulties on the analysis of theH∞ performance. By utilizing
Lemma 1, the randomness of the matrixGk is eventually
reflected by the term̄GTPk+1Ḡ in (21). By the decomposition
operation in (34), the effects of stochastic noise are reflected
by both the last term in (21) andXk in (22).

We now proceed to design the finite-horizonH∞ estimator
(8) for the network (1) under the worst-case disturbancesv

∗
k.

Replacingvk by v
∗
k = Ω−1

k B
T
k Pk+1(Ak + Fk)ηk in (17)

and decomposingAk into Ak = Āk + ILkCk, we have

ηk+1 =(Āk + B̄kĀk +∆k)ηk + (B̄k + I)Iφk

z̄k =Ekηk
(23)

where

Āk ,Āk + Fk

Āk ,





R⊗G 0 0
Iσk

Ck Iδσk
0

LkI
δ
σk
Ck −LkI

δ
σk

R⊗G





Bk ,B̄kĀk + ILkCk

B̄k ,BkΩ
−1

k B
T
k Pk+1

=(ΞkΩ
−1

k ΞT
k + 2ΞkΩ

−1

k ΓT
kwk + ΓkΩ

−1

k ΓT
kw

2
k)Pk+1.

(24)

Define the following performance index for system (23)

J̃ ,

T∑

k=0

E
{

‖ z̄k ‖2 + ‖ φk ‖

}

. (25)

In the sequel, we will construct the estimator (8) by
minimizing the indexJ̃ in (25). The corresponding result is
presented as follows.

Theorem 2:Consider the coupled network (1) with the
measurement (7). Assume that there are two sets of positive
definite matricesPk, Qk and two sets of positive scalarsαk, βk
(k = 0, 1, 2, · · · , T ) such that, for a given positive scalar
γ > 0 and a weighted matrixW > 0, the coupled backward
Riccati difference equations (21) and

Qk =Ā
T
kZkĀk + Ḡ

TQk+1Ḡ+ ET
k Ek + Ā

T
k (Mk

+Qk+1YkPk+1)ILkCk +C
T
kL

T
k I

T (Mk

+ Pk+1YkQk+1)Āk − Ā
T
k (Pk+1Yk + I)

×Qk+1IΨ
−1

k ITQk+1(YkPk+1 + I)Āk

(26)

are feasible under the conditionsPT+1 = 0, QT+1 = 0, (22)
and

Ψk = ITZkI + I > 0. (27)
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Then, (8) is theH∞ estimator of (1) satisfying

LkCk = −Ψ−1

k ITQk+1(YkPk+1 + I)Āk. (28)

The values of the given cost functionsJ2 and J̃ are, respec-
tively, given as

J2 =ηT0 (P0 − γ2W )η0, J̃ = ηT0 Q0η0. (29)

Proof: See Appendix.
Remark 5: It should be noted that, since the augmented

disturbance vectorvk in (18) does not explicitly contain
the Gaussian noisewk which actually exists inBk, it is
reasonable to require that the worst-case disturbance is set
asvk , v

∗
k = Ω−1

k B
T
k Pk+1(Ak +Fk)ηk. In fact, (17) can be

viewed as a kind of stochastic parameter systems which have
been investigated in the existing literature [8].

B. Estimator Design

In this subsection, we will present an algorithm to compute
the estimator gain matrixLi,k in (8).

For brevity, the notations

Wk ,−Ψ−1

k ITQk+1(YkPk+1 + I)Āk

Ĩi ,diag{0, · · · , 0
︸ ︷︷ ︸

i−1

, In×n, 0, · · · , 0
︸ ︷︷ ︸

N−i

}

are adopted In the sequel.
Noticing the form ofCk in (20), the following equation

LkCk =W̄k

holds, whereW̄k ∈ RNn×Nn is the third block element of
matrixWk. Moreover, it can be found thatLi,kCi,k = W̄k Ĩi.
Hence, the gain matrix of estimator (8) is computed by
using Moore-Penrose pseudo inverse, which is stated in the
following Theorem.

Theorem 3:Consider the coupled network (1) the mea-
surement (7). For a given scalarγ > 0 and a weighted
matrix W > 0, if there are two sets of positive definite
matricesPk, Qk with PT+1 = 0, QT+1 = 0, and two sets
of positive scalarsαk, βk (k = 0, 1, 2, · · · , T ) such that the
coupled backward Riccati difference equations (21) and (26)
hold under the constraints (22) and (27), then (8) is theH∞

estimator of (1) with the gain matrix given by

Li,k =W̄k ĨiC
†
i,k. (30)

To facilitate the implementation, the following finite-horizon
H∞ estimator (FHHE) design algorithm is provided to recur-
sively compute the gain matrixLi,k based on Theorems 1-3.

Remark 6: In this paper, the problem of finite-horizonH∞

state estimation is dealt with for a class of time-varying cou-
pled stochastic networks under the Round-Robin scheduling
protocol. The underlying network model is quite compre-
hensive that features stochastic inner coupling strengths and
Round-Robin protocol scheduling. Some dedicated approxi-
mation techniques are used to establish an uncertain auxiliary
system whose coefficient matrix is subject to multiplicative
noises, thereby giving rise to a certain stochastic parameter

Algorithm FHHE

Step 1. Give the scalarsγ > 0, αk, βk (k = 0, 1, · · · , T ), weighted
matrix W > 0, and letk = T andPT+1 = QT+1 = 0.

Step 2. Calculate the matrixΩk by (22), and solve (27) to obtain the
matrix Ψk. If Ψk > 0, thenLi,k can be determined by (30),
and go to the next step, otherwise go to step 1.

Step 3. IfΩk > 0, thenPk andQk can be obtained by (21) and (26),
respectively, and then go to the next step, else go to step 5.

Step 4. Ifk > 0, setk = k− 1 and go to step 2. Whenk = 0, stop.
Step 5. If anyone in (22) and (27) is violated, then this algorithm is

infeasible for givenγ, αk, βk andW , stop or go to step 1
and start another recursive loop by resetting the values ofγ,
αk , βk andW .

system. Based on such an auxiliary system, we go ahead
to design the finite-horizonH∞ state estimator by solving
coupled backward Riccati equations. A recursive algorithm is
proposed to calculate the corresponding gain matrix of the
H∞ estimator. Note that, in the conditions of our main results
stated in Theorem 3, all the network information (e.g. the
nonlinear functions, statistical law about the inner couplings,
H∞ performance index) is reflected, which conforms with the
engineering practice.

Remark 7: In this paper, a systematic investigation is ini-
tiated on the new yet challenging problem of RRP-based
finite-horizonH∞ state estimation problem for a class of
time-varying stochastic coupled networks subject to random
inner coupling strengths. The main novelties of this paper
are outlined as follows: 1) the research problem addressed
is new that represents the first of few attempts to deal
with the protocol-based state estimation problem for complex
networks under hybrid phenomena of stochastic coupling,
external disturbances and communication protocols; 2) the
concept of finite-horizonH∞ performance is used to provide
a reasonable way in evaluating the transient performance of
the stochastic complex networks by means of the disturbance
rejection/attenuation capacity; and 3) the developed BCRRE
approach is new that offers a recursive algorithm suitable for
online applications.

IV. A N ILLUSTRATIVE EXAMPLE

This section provides an illustrative example to show the
effectiveness of the state estimation method.

Consider the complex network (1) with three nodes (N = 3)
over a prescribed finite time horizon[0, 40], i.e.,T = 40. The
outer coupling configuration matrix is given as follows

R =





−0.2 0.1 0.1
0.1 −0.2 0.1
0.1 0.1 −0.2



 . (31)

The time-varying nonlinear functionsf(xi,k) andhi(xi,k)
are chosen as follows

f(xi,k) =

[
0.2xi1,k + tanh(0.1xi1,k)
0.15xi2,k + tanh(0.05xi2,k)

]

hi(xi,k) =

[
0.3xi1,k

0.2xi2,k + tanh(0.1xi2,k)

]
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TABLE I
ESTIMATOR GAIN MATRIX Li,k (i = 1, 2, 3)

k L1,k L2,k L3,k

0

[

−0.1445

−0.0445

] [

0.0881

−0.0044

] [

−0.2679

−0.1960

]

1

[

−0.1436

−0.0452

] [

0.0908

−0.0066

] [

−0.2564

−0.2037

]

2

[

−0.1421

−0.0467

] [

0.0937

−0.0086

] [

−0.2732

−0.1901

]

...
...

...
...

38

[

−0.1099

−0.0694

] [

0.0488

0.0240

] [

−0.2112

−0.2183

]

39

[

−0.0859

−0.0861

] [

0.0302

0.0405

] [

−0.1610

−0.2420

]

40

[

0

0

] [

0

0

] [

0

0

]

wherexiυ,k (υ = 1, 2) is the υ-th element ofxi,k, and the
time-varying matricesBi,k (i = 1, 2, 3) are given as follows

B1,k =

[
0.6 + 0.3sin(k)

−0.5

]

B2,k =

[
0.5

0.6 + 0.1cos(0.5k)

]

, B3,k =

[
−0.6
0.8

]

.

It is easy to verify that

F1,k =

[
0.2 0
0 0.15

]

, F2,k =

[
0.3 0
0 0.2

]

Si,k =

[
0.3 0
0 0.3

]

.

The parameters in (5) and (11) are set as

C1,k =[0.3 0.2], D1,k = 0.5, E1,k = [0.5 0.5]

C2,k =[−0.2 0.1], D2,k = 0.5, E2,k = [0.3 0.4]

C3,k =[0.1 0.1], D3,k = 0.6, E3,k = [0.4 0.6].

Let γ = 0.8, αk = 0.5, βk = 0.4 and W = I15. For
the inner coupling (3),g1 and g2 are, respectively, selected
as g1 = 0.2 and g2 = 0.3. ψ1,k, ψ2,k andψ3,k are mutually
independent random sequences obeying uniform distribution
over the interval[0.1, 0.9]. As such, the means and variances
of the random sequencesψi,k areψ1 = ψ2 = ψ3 = 0.4 and
σ1 = σ2 = σ3 = 0.0533. According to Algorithm FHHE, the
values of gain matrixLi,k (i = 1, 2, 3; k = 0, 1, 2, . . . , 40) are
recursively calculated and listed in Table I. It should be noted
from Algorithm FHHE and Table I that the estimator gains at
instantk = 40 become zero because of the equality (30) and
the preseted valuesP41 = Q41 = 0.

The exogenous disturbance isv(k) = 2 cos(k)e−0.02k.
The initial conditions of the measurements, system states and
their estimations are given asy1,0 = y2,0 = y3,0 = 0,
x1,0 = [0.1 −0.1]T , x2,0 = [0.2 0.1]T , x3,0 = [0.1 0.2]T ,
x̂1,0 = [−0.1 0.1]T , x̂2,0 = [0.1 −0.1]T and x̂3,0 =
[−0.1 0.1]T . The responses ofxi,k (I = 1, 2, 3) and their

estimates are illustrated in Figs. 1-3. The output estimation
errors z̄i,k (i = 1, 2, 3) are shown in Fig. 4. It is evident
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from Fig. 4 that the designed estimator achieves satisfactory
performance over the prescribed finite horizon[0, 40].

V. CONCLUSIONS

In this paper, the finite-HorizonH∞ state estimation prob-
lem has been investigated for a class of stochastic coupled
networks subject to random inner coupling variations and the
Round-Robin scheduling protocol. In order to reduce the net-
work communication burden, the Round-Robin transmission
protocol has been applied to schedule the measurement signals
from the sensors to the estimators. A novel linearization
technique has been developed to deal with the system non-
linearities. Also, for the purpose of facilitating the theoretical
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Fig. 4. The output estimation errors

analysis, some ingenious system transformation operations
have been adopted such that the multiplicative noise term is
included in the coefficient matrix rather than the augmented
disturbance vector. By employing the backward Riccati differ-
ence equation technique, the desired finite-horizonH∞ state
estimators have been determined by recursively solving a set
of coupled difference equations. The effectiveness of the state
estimation algorithm has been finally verified by a numerical
example. Future research topics would be to extend the main
results to more complicated systems with different perfor-
mance specifications (e.g. variance-constrained performance,
mixedH2/H∞ index). Similarly, we can also investigate the
finite-horizonH∞ state estimation problems for stochastic
coupled networks based on event-triggered mechanism and
other communication scheduling protocols [4], [6], [10], [24],
[35], [46]–[50].

APPENDIX

A. Proof of Theorem 1

Proof: Define the following index

J̄k ,E{ηTk+1Pk+1ηk+1 − ηTk Pkηk}. (32)

Along the dynamics of auxiliary system (17), the index (32)
is calculated by

J̄k =E
{

ηTk [(Ak + Fk)
TPk+1(Ak + Fk)

+ ∆T
k Pk+1∆k + 2(Ak + Fk)

TPk+1∆k − Pk]ηk

+ 2ηTk (Ak + Fk +∆k)
TPk+1Bkvk

+ v
T
k B

T
k Pk+1Bkvk

}

.

(33)

By virtue of E{∆k} = 0 and denotingAk , Ak+Fk, (33)
is simplified as

J̄k =E
{

ηTk [A
T
k Pk+1Ak +∆T

k Pk+1∆k − Pk]ηk

+ 2ηTk A
T
k Pk+1Bkvk + v

T
k B

T
k Pk+1Bkvk

}

.

In addition, one further calculates

E
{

ηTk ∆
T
k Pk+1∆kηk

}

=E
{

ηTk diag{R̃T
k (P

11
k+1 + 2P 13

k+1 + P 33
k+1)R̃k, 0, 0}ηk

}

whereR̃k = R⊗ (Gk −G) andPµν
k+1

is the(µ, ν)-th entry of
matrix Pk+1 (µ, ν = 1, 2, 3).

Applying Lemma 1 and the mutual independence of
ψq,k (q = 1, 2, · · · , n) in (3), one observes that

E
{

ηTk ∆
T
k Pk+1∆kηk

}

= E
{

ηTk Ḡ
TPk+1Ḡηk

}

.

It is obvious thatBk in (18) is decomposed into two parts as
follows

Bk =
[
Bk α−1

k I 0
]
+
[
0 0 β−1

k I
]
wk

=Ξk + Γkwk

(34)

where the first and second parts indicate in deterministic and
stochastic settings, respectively.

It follows from the statistical characteristics ofwk that

E
{

2ηTk A
T
k Pk+1Bkvk

}

= E
{

2ηTk A
T
k Pk+1Ξkvk

}

and

E
{

v
T
k B

T
k Pk+1Bkvk

}

= E
{

v
T
kXkvk

}

whereXk is given in (20). Then, one derives

J̄k =E
{

ηTk [A
T
k Pk+1Ak + Ḡ

TPk+1Ḡ− Pk]ηk

+ 2ηTk A
T
k Pk+1Ξkvk + v

T
kXkvk

}

.

By adding the following zero term

‖ z̄k ‖2 −γ2(‖ vk ‖2 − ‖ αkFkηk ‖2 − ‖ βkHkηk ‖2)

− ‖ z̄k ‖2 +γ2(‖ vk ‖2 − ‖ αkFkηk ‖2 − ‖ βkHkηk ‖2)

to J̄k results in

J̄k =E
{

ηTk [A
T
k Pk+1Ak + Ḡ

TPk+1Ḡ− Pk

+ ET
k Ek + γ2α2

kF
T
k Fk + γ2β2

kH
T
kHk]ηk

+ 2ηTk A
T
k Pk+1Ξkvk − v

T
k (γ

2I −Xk)vk− ‖ z̄k ‖2

+ γ2(‖ vk ‖2 − ‖ αkFkηk ‖2 − ‖ βkHkηk ‖2)

}

.

(35)

Moreover, invoking the completing-the-squares technique
leads to

2ηTk A
T
k Pk+1Ξkvk − v

T
k (γ

2I −Xk)vk

=(v∗
k)

TΩkv
∗
k − (vk − v

∗
k)

TΩk(vk − v
∗
k)
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wherev
∗
k = Ω−1

k ΞT
k Pk+1Akηk andΩk = γ2I −Xk. Subse-

quently, we arrive at

J̄k =E
{

ηTk+1Pk+1ηk+1 − ηTk Pkηk

}

=E
{

ηTk [A
T
k Pk+1Ak + Ḡ

TPk+1Ḡ+ ET
k Ek + γ2α2

kF
T
k Fk

+ γ2β2
kH

T
kHk + A

T
k Pk+1ΞkΩ

−1

k ΞT
k Pk+1Ak − Pk]ηk

− (vk − v
∗
k)

TΩk(vk − v
∗
k)− ‖ z̄k ‖2

+ γ2(‖ vk ‖2 − ‖ αkFkηk ‖2 − ‖ βkHkηk ‖2)

}

.

(36)

Summing both sides of (36) from0 to T and noticing (21),
it is easy to see that

E
{

ηTT+1PT+1ηT+1 − ηT0 P0η0

}

=

T∑

k=0

E
{

− (vk − v
∗
k)

TΩk(vk − v
∗
k)− ‖ z̄k ‖2

+ γ2(‖ vk ‖2 − ‖ αkFkηk ‖2 − ‖ βkHkηk ‖2)

}

.

(37)

On the basis of (20), we deduce that

J2 =

T∑

k=0

E
{

‖ z̄k ‖2 −γ2(‖ vk ‖2 − ‖ αkFkηk ‖2

− ‖ βkHkηk ‖2)− γ2ηT0 Wη0

}

=E
{

− ηTT+1PT+1ηT+1 − ηT0 (γ
2W − P0)η0

−
T∑

k=0

(vk − v
∗
k)

TΩk(vk − v
∗
k)

}

.

(38)

With the help ofPT+1 = 0, Ωk > 0 andP0 < γ2W , it is
obvious thatJ2 < 0 holds and this completes the proof of this
theorem.

B. Proof of Theorem 2

Proof: Introduce a performance index as

J̃k =E{ηTk+1Qk+1ηk+1 − ηTk Qkηk}. (39)

Noticing (23), (24) andE{∆k} = 0, the above index is
computed as

J̃k =E
{

ηTk [(Āk + B̄kĀk +∆k)
TQk+1(Āk + B̄kĀk +∆k)

−Qk]ηk + φTk I
T (B̄k + I)TQk+1(B̄k + I)Iφk

+ 2ηTk (Āk + B̄kĀk +∆k)
TQk+1(B̄k + I)Iφk

}

=E
{

ηTk [(Āk + B̄kĀk)
TQk+1(Āk + B̄kĀk)

+ ∆T
kQk+1∆k −Qk]ηk + 2ηTk (Āk + B̄kĀk)

TQk+1

(B̄k + I)Iφk + φTk I
T (B̄k + I)TQk+1(B̄k + I)Iφk

}

.

(40)

As in the proof of Theorem 1, it is easy to observe that

E
{

ηTk ∆
T
kQk+1∆kηk

}

= E
{

ηTk Ḡ
TQk+1Ḡηk

}

whereḠ is given in Theorem 1.
It follows from Lemma 2 thatE{wk} = E{w3

k} = 0,
E{w2

k} = 1, E{w4
k} = 3 and

E
{

ηTk [(Āk + B̄kĀk)
TQk+1(Āk + B̄kĀk)]ηk

}

=E
{

ηTk Ā
T
k [Qk+1 + 2Qk+1B̄k + B̄

T
kQk+1B̄k]Ākηk

}

=E
{

ηTk Ā
T
k [Qk+1 + 2Qk+1YkPk+1 + B̄

T
kQk+1B̄k]Ākηk

}

(41)

where Yk is given in (20), and the last term of the above
equality is shown as

E
{

ηTk Ā
T
k B̄

T
kQk+1B̄kĀkηk

}

=E
{

ηTk Ā
T
k Pk+1(ΞkΩ

−1

k ΞT
kQk+1ΞkΩ

−1

k ΞT
k

+ 4ΞkΩ
−1

k ΓT
kQk+1ΓkΩ

−1

k ΞT
k

+ 3ΓkΩ
−1

k ΓT
kQk+1ΓkΩ

−1

k ΓT
k

+ 2ΓkΩ
−1

k ΓT
kQk+1ΞkΩ

−1

k ΞT
k )Pk+1Ākηk

}

,E{ηTk Ā
T
k MkĀkηk}

(42)

where

Mk =Pk+1(ΞkΩ
−1

k ΞT
kQk+1ΞkΩ

−1

k ΞT
k

+ 4ΞkΩ
−1

k ΓT
kQk+1ΓkΩ

−1

k ΞT
k

+ 3ΓkΩ
−1

k ΓT
kQk+1ΓkΩ

−1

k ΓT
k

+ 2ΓkΩ
−1

k ΓT
kQk+1ΞkΩ

−1

k ΞT
k )Pk+1

=Pk+1(YkQk+1Yk + 4ΞkΩ
−1

k ΓT
kQk+1ΓkΩ

−1

k ΞT
k

+ 2ΓkΩ
−1

k ΓT
kQk+1ΓkΩ

−1

k ΓT
k )Pk+1.

Then, we obtain

E
{

ηTk [(Āk + B̄kĀk)
TQk+1(Āk + B̄kĀk)]ηk

}

=E
{

ηTk Ā
T
k [Qk+1 + 2Qk+1YkPk+1 +Mk]Ākηk

}

,E
{

ηTk Ā
T
kZkĀkηk

}

.

(43)

Similarly, we have

E
{

2ηTk (Āk + B̄kĀk)
TQk+1(B̄k + I)Iφk

}

=E
{

2ηTk Ā
T
kQk+1(B̄k + I)Iφk

+ 2ηTk Ā
T
k B̄

T
kQk+1(B̄k + I)Iφk

}

=E
{

2ηTk Ā
T
kQk+1(YkPk+1 + I)Iφk

+ 2ηTk Ā
T
k (Mk + Pk+1YkQk+1)Iφk

}

(44)
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and

E
{

φTk I
T (B̄k + I)TQk+1(B̄k + I)Iφk

}

=E
{

φTk I
T [Qk+1 + 2Qk+1YkPk+1 +Mk]Iφk

}

,E
{

φTk I
TZkIφk

}

.

(45)

Consequently, we have

J̃k =E
{

ηTk [Ā
T
kZkĀk + Ḡ

TQk+1Ḡ−Qk + ET
k Ek

+ Ā
T
k (Mk +Qk+1YkPk+1)ILkCk

+C
T
k L

T
k I

T (Mk + Pk+1YkQk+1)Āk]ηk

+ 2ηTk Ā
T
kQk+1(YkPk+1 + I)Iφk

+ φTk (I
TZkI + I)φk− ‖ z̄k ‖2 − ‖ φk ‖2

}

.

(46)

Denoting

Ψk =ITZkI + I

φ∗k =Ψ−1

k ITQk+1(YkPk+1 + I)Ākηk
(47)

we have

2ηTk Ā
T
kQk+1(YkPk+1 + I)Iφk + φTk (I

TZkI + I)φk

=(φk + φ∗k)
TΨk(φk + φ∗k)− (φ∗k)

TΨkφ
∗
k.

Thus, J̃k becomes as

J̃k =E
{

ηTk [Ā
T
kZkĀk + Ḡ

TQk+1Ḡ+ ET
k Ek −Qk

+ Ā
T
k (Mk +Qk+1YkPk+1)ILkCk

+C
T
kL

T
k I

T (Mk + Pk+1YkQk+1)Āk

− Ā
T
k (Pk+1Yk + I)TQk+1I

×Ψ−1

k ITQk+1(YkPk+1 + I)Āk]ηk

+ (φk + φ∗k)
TΨk(φk + φ∗k)− ‖ z̄k ‖2 − ‖ φk ‖2

}

.

(48)

According to (26) and (48), it follows readily that

E
{

ηTT+1QT+1ηT+1 − ηT0 Q0η0

}

=
T∑

k=0

E
{

(φk + φ∗k)
TΨk(φk + φ∗k) ‖ z̄k ‖2 − ‖ φk ‖2

}

.

(49)

Combining (25), (39) andQT+1 = 0 leads to

J̃ =

T∑

k=0

E
{

(φk + φ∗k)
TΨk(φk + φ∗k)

}

+ ηT0 Q0η0 (50)

and we see immediately thatφk = −φ∗k, or

LkCk =−Ψ−1

k ITQk+1(YkPk+1 + I)Āk (51)

minimizes the performance index̃J as ηT0 Q0η0. Meanwhile,
from (38) with PT+1 = 0, the cost ofJ2 is determined by
ηT0 (P0 − γ2W )η0. The proof of this theorem is thus fulfilled.
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