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Finite-Horizon H,, State Estimation for Stochastic
Coupled Networks with Random Inner Couplings
using Round-Robin Protocol

Yun Chen, Zidong Wang, Licheng Wang and Weiguo Sheng

Abstract—This paper is concerned with the problem of finite- network models with examples including nervous systems,
horizon H.. state estimation for time-varying coupled stochastic computer networks, transportation networks and social net-
networks through the Round-Robin scheduling protocol. The works. Compared with those individual systems, complex

inner coupling strengths of the considered coupled networks are Py . .
governed by a random sequence with known expectations and networks exhibit features such as strong couplings, inherent

variances. For the sake of mitigating the occurrence probability Nonlinearities as well as large scales that contribute greatly
of network-induced phenomena, the communication network is to the complexities in the dynamical behaviors and, therefore,
equipped with the Round-Robin protocol that schedules the signal there appears to be an urgent demand in understanding the
transmissions of the sensors’ measurement outputs. By USING gynamic evolution of complex networks. In recent years,

some dedicated approximation techniques, an uncertain auxiliaryt d h efforts h b d ted to the d .
system with stochastic parameters is established where the multi- '€MENAOUS research etiorts have been devoted to the dynamic

plicative noises enter into the coefficient matrix of the augmented analysis issues for complex networks such as stability, syn-
disturbances. With the established auxiliary system, the desired chronization, state estimation and pining control, see e.g. [6],
finite-horizon Ho. state estimator is acquired by solving coupled [14]-[16], [18], [22], [26], [30], [31], [45].
backward Riccati equations, and the corresponding recursive 1 is \yel| recognized that, as an indispensable part of the
estimator design algorithm is presented that is suitable for online - .
application. The effectiveness of the proposed estimator design poupled networks, the coupling Stre“gths have an essem'al
method is validated via a numerical example. impact on both the topology connection and the dynamics
Index Terms—Stochastic coupled networks; finite-horizonH o .Of cpmplex netvyorks. In most .Of the existing Iitera_ltgre_, an
estimation; random inner couplings; Round-Robin protocol; MPlicit assumption is that coupling strengths deterministic
backward Riccati difference equations. yet fixed In some practical situations, however, the inner
connections between nodes might be uncertain and expose
certain switching/random behaviors owing to a variety of
] o o . reasons such as network congestion, random failures, unknown
With the springing up of the discipline of complexityp; sudden changes of the working conditions as well as the
science over the past few decades, complex networks N@yRynected environmental changes. In view of this, particular
become a research hotspot due mainly to their wide range @fontion has been paid to the investigation on the impact
applications in our daily life. Generally speaking, & typicglom the uncertain/random/switchingouplings on network
complex ryetwork consists of a large _num_ber of nodes a'a%amics 131, [6], [15], [19], [20], [30]. For example, in [22],
edges which can be used to model individual systems agifl oupling strengths have been characterized as a uncertain
their interconnections, respectively. Based on this prominggim and the resulting uncertainties have been dealt with using
structure, many complex systems can be described by compigX ;7 erformance requirements on the filtering error dy-
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been concerned with the time-invariant systems. However, paper. The main results are given in Section Ill. A numerical
practical situations, the evolution of the networks is very likelgxample is provided in Section IV and the conclusion is drawn
to be time-varying with the change of the working environin Section V.
ment. As such, théinite-horizonstate estimation problem for Notation Throughout this paper, the notations used are
the time-varyingcomplex networks, whose main idea is tstandard.R™ denotes the:-dimensional Euclidean spacé.
guarantee a satisfactotyansientperformance over a certainand0 are used to indicate an identity matrix and a zero matrix
period time, has received some initial research attention [29]ith appropriate dimensions, respectivdly.|| designates the
[33], [35]. Up to now, several effective approaches/techniquEsiclidean normE{-} denotes the mathematical expectation.
have been developed, e.g. the recursive linear matrix inequatiiyig{- - - } represents a block diagonal matrix. The Kronecker
(RLMI) approach [5], [42], the Krein-space theory [21] angroduct of the two matriced and B is represented ad ® B.
the backward coupled recursive Riccati equation (BCRREX)' is the Moore-Penrose pseudo inverse of mattixPi/ is
method [26], among which the BCRRE technique has provéme (i, j)-th entry of the matrixP. I3[0, T] refers to a square
to be particularly efficient in facilitating the online applicationsummable space over the finite time interj@alT].
for nonlinear time-varying systems [8].

With the increase of the network scale, the coupled nodes |I. PROBLEM FORMULATION AND PRELIMINARIES
lead ine_vitably to a large amount qf ir!formation exchangg Tne Complex Network Model
demanding a great deal of communication resources that ar

usually limited. In fact, the inherently limited bandwidth of eConS|der the following coupled network witN' nodes:

the communication network is very likely to create obstacles N

for sustaining the ever-expedited data interactions for a largetist1 =f (i) + > 15 Grjk + Birvr + hi(wsx)wy
scale network. To cope with the sparsity of the communication J=1

resources, some efficient data transmission strategies have @)
been proposed. For example, with purpose to reduce the cagterex, , € R” (i € N = {1,2,--- , N}) is the state vector

munication frequency, the event-triggered strategy has besfinodes, v, € R™ is the bounded exogenous disturbance
developed where the information is transmitted only Wheb'ek)nging tol»[0, 7], andwy, is a zero-mean scalar Gaussian
certain prescribed event is satisfied, see e.g. [11], [15], [2f&ndom sequence with varianggw?} = 1. B, is a time-
[32], [44]. Another data scheduling strategy that has recent}mying matrix with appropriate dimensionsj (3,7 €N)is
begun to receive some research attention is the so-caligé outer coupling between two nodeand. ri; >0 # 1)
communication protocol whose main idea is to only grant thadicates that there is information transmission from the node
“selected” data the permission to occupy the communicatigno nodei; otherwiser;; = 0. We assume in this paper that the
channel, thereby effectively preventing the undesired data cplformation transmission is symmetric and equivalent between
lisions [1]. In general, the commonly deployed communicatiaivo different nodes, i.ez;; = 7;;, and the diffusive condition
protocols include the Round-Robin protocol (RRP) [25], [36};,. + Z{V:l i 7ij =0 is satisfied.

[38], [41], [43], the Try-Once-Discard protocol [17] and the The noniinear vector function(z; ;) € R™ andhi(z;) €
random access protocol [48]. Among others, the RRP is a kif® satisfy the following assumption.

of periodic protocols under which all signals are transmitted Assumption 1:For any vectorsu, v € R", the followings

in a given circular fashion. Due to its structural simplicity angdre trye:

convenient implementation, the RRP has been widely applied () — F(o) — Fun(pue — vi)]”

in industry with a surge of interest in dynamics analysis (2a)
(e.g. state estimation) problems for a variety of complex x [f () = f(vk) — Foe(pe — ve)] <0
networks, see e.g. [23], [26], [28]. 1hi(pr) = i i) I < NSk (e — vi) |2 (2b)

Motivated by the above discussions, in this paper, we
like to initiate a systematic investigation on the new yé/%/her_ef(()) = 0, hi(0) = 0, and Fy x, Fz 1, Si 1. are known
challenging problem of RRP-based finite-horizéh, state matrlcgs. . .

L . . . The inner coupling of the coupled network (1) is
estimation problem for a class of time-varying stochastic
coupled networks subject to random inner coupling strengths.  Gi, = diag{¥1 k. -+ , ¥nx} - diag{g1, -+ , gn} 3
The main contributions of this paper can be summarized as 29,6 ()
follows. 1) The coupled networks are quite comprehensive
that involves state-dependent multiplicative noises and rand¥fi€®9q > 0 (¢ = 1,2,---n) are known scalars, and,,;
inner coupling connections. 2) The RRP is adopted to sched@l€ Mutually independent random sequences distributed over
the measurement data of the underlying stochastic compl8€ intervalsfu,, u,| with known scalarsi; > u, > 0. The
networks. 3) An auxiliary stochastic parameter system fathematical expectations and variances/pf; are, and
dedicatedly developed so as to facilitate the evaluation of tAe "€SPectively. Correspondingly, the expectation of the inner
H.. performance over a finite horizon. 4) A novel BCRREEOUPING matrixGy, is
app_roach is put forward_ to design _the gain parameters of the — ~ _ E{G:} = UGy = diag{t11, -+ ,¥ngn}.  (4)
desired state estimator in a recursive manner.

The remainder of this paper is organized as follows. SectionAssumption 2:The random sequences; and v, are
Il addresses the problem statement and preliminaries of thisitually independent.
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Remark 1: Both the stochastic noise(k) andls-type ex- @, = (&7, 21, ---2% 17 andey = [T, eI, - €% ], the
ternal disturbance(k) are considered in this paper. In contragéstimator (8)ycan be written as o '
with most existing literature, the inner coupling strength matrix . . .
G}, in (1) is allowed to change randomly. As pointed out in Ept1 =Fe + (R@ G)2y, + Li(y, — Crix) ©)
[22], the inner couplings cannot be exactly known in manyhare
real-world coupled networks due to unavoidable variations of

A7 T (4 T (A T (A T
the inner connection among subsystems. In fact, the inner Fioa = @) 7 (F2n) - 7 (@ k)]
connection coefficients of the practical coupled networks are R 2[rijInxn
mainly identified through statistic methods and/or measure- Ly 2diag{Ly o, Log,- - L}

ment technologies, and this would inevitably bring some kind AL
of stochastic perturbations. Furthermore, different from most Cr =diag{Cr, Cops -, Ok}

existing results (see e.g. [22]), the model (3) ensures theBy settingf(x; ) = f(zix)— f(&:x) and noticing (1), (7)
inner coupling strengths to be nonnegative and bounded, whiid (8), we have

reflects the engineering practice closely. eis1 =Fpe + [R® (G, — G) + Lip(I — I, )Crlzs,
+1 =Lk - — tok
+ (R®G — LiCr)er — Li(I — I, )yx—1  (10)

B. Round-Robin Protocol and Estimation Error Dynamics + (By = LiLy, Di)vg + Hy
For the addressed complex network (1), the measuremsv

nt
of the sensoi is described by here N
Fre 27 0an) £M(xak) T Oxwn)])”

Uik = Cipxip + D; pv 5

Yik ik Uk (5) By 2(BY,, BL,, -+ BT
wherej; ;. € R™, v, € R™ is the disturbance as specified Dy, £[D{}, D3 .-+ D k]"

in (1), andC; i, D; 1. (i € N) are time-varying matrices with Hyo é[h’{(ka) hg“(xzk) o h?]\“](xN,k)]T.

compatible dimensions. ) ) )

In this paper, the measurement signals are transmitted-€t the output signal (to be estimated) for the underlying
through a non-ideal communication channel with limited ban§omMplex network (1) be given by
width. In order to alleviate the network load and avoid possible o = s

. . . . ik =L kT k (11)

network congestion, the RRP is applied to schedule the signal ' Y
transmission. Based on the RRP, at each time instant, only avigere the time-varying matrig; ;, is dimensionally compat-
node has the access to transmit its information through titke. Then, one obtains
shared communication channel. Thus, the real measurement 5 L. 2 e
received by the estimataris Fik =2k T Zik b kCik

=E; xxip — i 1Tk

Yip = Uik mod(k:,.N) ik (6) i s 17, T  JTIT 5 O 5 s
g yik_1, oOtherwise i e N TSettlipg Mk T: :[ka Yr—1 fk] K ZkTZ ZkT— ija 2k =
P and 3, = [27, 20, ---% , the dy-
with the initial conditiony; o = 0. L;;;icggm ig’g]xpresseg as Pl 22 A Y
Denote
J o ar ap Ne+1 =(Ak + Ag)nk + Fi + Brog + Hiwy, (12)
Yk :[yl,k Y2 - "yN,k] y Yk = [?Jm Yo - "yN,k] . Zr =Epni
Hence, the measurement updated equation is written as  where
~ R®G 0 0
=10+ (I —I1,,)ys— 7
Yk = Loy Gk + ( W Yk-1 (7 Ael Lo s 0
where | LIl O —Lipll, R®G— LiCy
I,, = diag{0,---,0,1,0,---,0} [R®(Gy—G) 0 0
T o Ay = 0 0 0
. R®(Gr,—G) 0 0
with o, € A andor, = modk — 1, N) + 1. - P I
Based on (6), the Luenberger-type state estimator for each A k@ A ko
node is constructed as r o
ke k,x
N -
. " " . B
Rierr =f(@ig) + D 15 Gjn + Lin(yin — Cinir) (8) S
j:1 k = Ok k
By — LDy,
wherez; . is the estimate of; ;, andL; j is the time-varying AT
. . . ’ ’ 51@ —[ 0 0 Ek ]
gain matrix to be designed. .
By defining the estimation error of thath estimator as By =diag{Er i, Eo i, -+ Eni}

A -~ H A T T T 1T 5 A
ek = Tip — T, and denotingry, = | 1Lk Iz,k"'fEN,k] , I =I-1,,.
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Remark 2: The RRP is introduced in this paper to easthe nonlinear functiong, and?#; in (12) are expressed as
the network load and avoid the possible network-induced
. L Fir =(F M, F
problems in the shared communication channel. Due to the i (, k + MiFi)me
introduction of I, , the measurement equation (7) and the Hi =M Hyz.
augmented system (12) exhibit the periodically switchingearranging (12) gives the following auxiliary equation
behaviors. However, different from the standard switched

systems [5], [7], [37], the switching caused By, in system nktl =(Ap +Fr+ D)y + Brvy (17)

(12) is N-periodic in a fixed circle with a constant switching zZ, =,

time interval. where Ay, Ax, & andFy, are given in (13) and (16), respec-
tively, and

C. Approximations of Nonlinear Functiorf-) and h;(-) By 2[ B, oa,'I B ' Tw |

It is observed from (12) that two nonlinear vector-valued vy, £ [ vf  op(MpFrmr)”  Br(MiHene)” ]T (18)
functions F;, and H;, correspond to the nonlinear functions H, é[ Hy 0 0 }

f(-) and h;(-), respectively. In order to design th& _ _ _ -
estimator (8) by means of Riccati-type difference equatid’ﬁ'th ag, B being tuning scalars to enhance the feasibility of
method, the nonlinear vector functiods, and 74, are now the addressed estimator design problem. .

handled properly as in [9], [21]. Remark 3:The two nonlinear vector-valued func;t|0|f$-)

Let us consider a time-varying nonlinear scalar-valued fun@d:(-) are transformed to (14) and (15), respectively, based
tion c(vy,) satisfying[c(vy,) — av][c(ve) + avi] < 0, which is  ©N Wh|ch.the Ilnear_dlffergnce equation (_17) with time-varying
equivalent toc (1) < a2v? or —avy < c(vy) < avy, where parametrlc uncertalntlles is obtalned._ It is lnoted that (15) is a
a > 0 is a known scalar. It is easy to verify that there indeetP€cial case of (14) withy ,, = —F3 x, in which the nonlinear
exists a scalarny, € [~1,1] such thate(vy,) = my, - av, for function f(xz; 1) is decompos_ed into two parts, i.e., tht_a certain
any k = 0,1,2,---. Note that the above technical handlind®™ ©xix and the uncertain term/; T.z; », respectively.
process can be directly applied to the nonlinear vector-valued
function f(z; ;) subject to (2a). D. Main Objective and Preliminary Results

For the nonlinear vector-valued functioffi(z; ;) with In this paper, we aim to construct the state estimator (9)
f(0) = 0, the inequality (2a) can be rewritten as for the network (1) with the random inner coupling (3)

T and the Round-Robin scheduling protocol (6) such that the
[(f(@in) = Ouik) = Trti] resulting augmented estimation error dynamics (12) satisfies

X [(f(zik) — Orzik) + Trwig] <0 the following H.., performance index:
where r . s o
CFutBu o R P =3 €l a1 = | = Wi} <0 (19)
O = T2k oy SLEC =

for a prescribed disturbance attenuation leyet- 0 over a

Similar to the scalar case discussed previously, there alwgysie time horizon[0, T, whereW > 0 is a weighted matrix
exists a matrix\;, satisfying ;" M, < I such thatf(zi.x) —  andy, is any given nonzero initial condition.

Okwip = My Trik OF For the auxiliary system (17), the following performance

index is defined
fxik) = Orzip + MpYLrxi k. (14)

T
_ = 2 2 2 2
Also, one hasf(xi.) = Ore; x + My Tre; k. In view of (2b), J2 _ZE{ 12 117 =77 v [IF = [ axFrng ||
the nonlinear functiork;(z; ;) can now be rearranged as k=0

| BHe [1?) - 7277§W770}-

From the definitions of/y, Js, vy, it is clear that

hi(zik) = MpS; ik (15)

where the matrix\/,, satisfiesM; M;, < I.

By introducing the following notations )
Y 9 9 5= a2 = Y E{ 0 M |2 ~ |l axFun )
Fk édiag{(_)ka@ka”' 1916} k=0
_,—/ _
. N + (| BeMeHymy, 1> — || BrHimi ||2)}-
Sk =diag{ Yy, Yp, -, Ti}
—_— —— . _ _ .
N By employing M, M;, < I and M, M;, < I, we obtain
Sk, 2diag{ St ., Sak. -, Sva) (16) T
F, 2diag(/ 10,1 1} 5= a2 < S ELP M 1P =) i |
k=0

Fr, £diag{F%, 0, 3x} o = s )
el st 0 st #9200 2 1) | BuFt |7 <0
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which means that/; < 0 is ensured by/; < 0. Hence, in the two sets of positive scalarsy, 8; (k = 0,1,2,---,T) such
next section we will concentrate on designing an estimator @jat the following backward Riccati recursive equations

such that/, < 0. P, =Al Poi1Ag + GT Py 1G + ELEL + 2l FLFy

Before proceeding further, the following two lemmas are o (21)
presented. + 2 BEHE H + Af Ppi 110, 'EF Prv1 A
Lemma 1:( [13]) Let P = [p;j]n.xn be a real matrix and are feasible withPr; = 0 and
R = diag{r1,r2, -+ ,r,} be a diagonal stochastic matrix. O =21 — Xj, > 0
Then, we have ) (22)
) Py <~v=W.
E{ri} E{“?} o Bl Proof: See Appendix. ]
r Blrora}  Birg} oo B{rom} Remark 4:From the proof of Th 1 that
E{RTPR} = _ _ _ o P emark 4:From the proof of Theorem 1, we can see tha
: : . : the random inner coupling matri%;, and the state-dependent
E{rnri} E{rnr} -+ E{r?} multiplicative stochastic noisg;(z; ,)w; pose substantial d-

ifficulties on the analysis of thél, performance. By utilizing
Lemma 1, the randomness of the matd is eventually
Feflected by the terr&” P, 1 G in (21). By the decomposition

whereo is the Hadamard product.

Lemma 2:([2]) For any zero-mean scalar Gaussian rando
sequencevy, with prior varianceE{w?} = o2, the following

holds: operation in (34), the effects of stochastic noise are reflected
’ ot i k£l by both the last term in (21) and}, in (22).
E{wiw]} = { L We now proceed to design the finite-horizéfh, estimator
307, if k=1 (8) for the network (1) under the worst-case disturbanges

Replacingvy, by vi = Q; 'Bf Piy1(Ay, + Fi)ne in (17)
[1l. M AIN RESULTS and decomposingl,, into A, = Ay, +ZL;Cy, we have
In this section, a criterion is established to ensure the 5, | =(A; +BrAy + Ap)e + (Br + 1)Zoy

finite-horizon H,, performance constrainf, < 0 for the 2 —Exnk (23)
auxiliary system (17) based on the BCRRDE approach. Then,
the estimator (8) is determined by solving two BCRRDEé’Yh_ere )
Moreover, a recursive algorithm is provided to compute the Ay, =A; + Fy,
gain matrix of the estimator (8). R®G 0 0
For notational simplicity, we denote: A 2| 1,0 I3 0
Ay 2A, +Fy Lyl C, —Lyll, R®G
= é[ By 04;1[ 0 } B éBkAk + 7L, Cy
2[00 0 8] By £BiQ, 'Bj Pri1
Xy, 228 Py B + UL Py T =(ER s+ 25 Tk + TR Ty ) P
24
Vi 25,0 B + e ' T _ _ _ 4)
R iy i Define the following performance index for system (23)
My, =Ppy1 (ViQri1 Y + 42,Q, T Qria Th Q" Ex "
+ 2FngIF£Qk+1Fng1F5)Pk+1 J ﬁZE{ | Z H2 + 1l o | } (25)
Zi 2Qui1 + Qe YiPis1 + Per1ViQuar + My, (20) k=0
RoG 0 0 In the sequel, we will construct the estimator (8) by
G2 0 0 0 minimizing the indexJ in (25). The corresponding result is
RoG 0 0 presented as follows.

A , Theorem 2:Consider the coupled network (1) with the
G =Godiag{on, 02, -+, 00} measurement (7). Assume that there are two sets of positive
b 2LLCrni definite matriced’;, Q; and two sets of positive scalatg, S
Ié[ 00 I ]T (k = 0,1,2,---,T) such that, for a given positive scalar

R ~v > 0 and a weighted matri¥}” > 0, the coupled backward
Cr = [ 0 0 —C ] : Riccati difference equations (21) and

Qr =AY ZiAy + G Qi1 G + E[ &, + AL (M,

A. Estimator Performance Analysis P
+ Qr+1Yi Prt1)ZLrCr + Cy Ly, T (M,

For the auxiliary system (17), the following theorem is _ - (26)
established. + Pey1YeQpi1) Ak — Ay (Pep1 Yy + 1)
Theorem 1:Consider the coupled network (1) with fixed X Qui1 29, T Qpi1 (Y Prs1 + I)Ay,

estimator (8), where the measurement is given by (7). FOrygs feasible under the conditiory ;1 = 0, Q.1 = 0, (22)
given scalary > 0 and a weighted matri/ > 0, the auxiliary 54

system (17) achieves the prescribéd, disturbance rejection
level ~ if there exist a set of positive definite matricEs and U, =T 2,7+ 1> 0. (27)
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Algorithm FHHE

Step 1.  Give the scalarg > 0, ag, B (k=0,1,---,T), weighted

Then, (8) is theH, estimator of (1) satisfying

LiCr = =V ' T7 Qpy1 (Vi Pt + I)Ay,. (28) matrix W > 0, and letk = T and Pry1 = Q741 = 0.
Step 2.  Calculate the matri®; by (22), and solve (27) to obtain the
The values of the given cost functiods and J are, respec- matrix Wy If ¥y, > 0, then L;,;; can be determined by (30),
. . and go to the next step, otherwise go to step 1.
t'vely' given as Step 3. IfQ; > 0, then P, and @y, can be obtained by (21) and (26),
T 5 - T respectively, and then go to the next step, else go to step 5.
Jo =0y (Po — v*W)no, J =n5 Qono- (29) Step 4. Ifk > 0, setk = k — 1 and go to step 2. Wheh = 0, stop.
Step 5.  If anyone in (22) and (27) is violated, then this algorithm is
Proof: See Appendix. ] infeasible for givenry, oy, 8, and W, stop or go to step 1

and start another recursive loop by resetting the values, of

Remark 5:1t should be noted that, since the augmented ap. B and W,

disturbance vectow; in (18) does not explicitly contain

the Gaussian noisev;, which actually exists inBy, it is

reasonable to require that the worst-case disturbance is set

A x _ O—1pT

asvi = vi = O, By Py (A + Fi)nr.. In fact, (17) can be system. Based on such an auxiliary system, we go ahead

wewed asa kind qf stochag'uc_: paTameter systems which héRfedesign the finite-horizor, state estimator by solving

been investigated in the existing literature [8]. coupled backward Riccati equations. A recursive algorithm is
proposed to calculate the corresponding gain matrix of the

B. Estimator Design H_, estimator. Note that, in the conditions of our main results
In this subsection, we will present an algorithm to compufg@ted in Theorem 3, all the network information (e.g. the
the estimator gain matriZ; 5 in (8). nonlinear functions, statistical law about the inner couplings,
For brevity, the notations H. performance index) is reflected, which conforms with the
R - - engineering practice.
Wi = =V, T Qrir (Y Per + 1) Ak Remark 7:In this paper, a systematic investigation is ini-
I; 2diag{0, - -- ,0, Ixp,0,--- ,0} tiated on the new yet challenging problem of RRP-based
N—— N——

finite-horizon H,, state estimation problem for a class of
time-varying stochastic coupled networks subject to random
are adopted In the sequel. _ _ inner coupling strengths. The main novelties of this paper
Noticing the form ofC;. in (20), the following equation  gre outlined as follows: 1) the research problem addressed
LiCh =TV, is new that represents the first of few attempts to deal
with the protocol-based state estimation problem for complex
holds, wherelV, € R¥"*Nn s the third block element of networks under hybrid phenomena of stochastic coupling,
matrix ;.. Moreover, it can be found that; ,.C; = Wil external disturbances and communication protocols; 2) the
Hence, the gain matrix of estimator (8) is computed bgoncept of finite-horizort{., performance is used to provide
using Moore-Penrose pseudo inverse, which is stated in fhdeasonable way in evaluating the transient performance of
following Theorem. the stochastic complex networks by means of the disturbance
Theorem 3:Consider the coupled network (1) the meaLejection/attenuation capacity; and 3) the developed BCRRE
surement (7). For a given scalar > 0 and a weighted approach is new that offers a recursive algorithm suitable for
matrix W > 0, if there are two sets of positive definiteOnline applications.
matrices Py, Q) with Pry; = 0,Qr11 = 0, and two sets
of positive scalarsvg, 8 (k = 0,1,2,---,T) such that the
coupled backward Riccati difference equations (21) and (26)
hold under the constraints (22) and (27), then (8) is thg This section provides an illustrative example to show the
estimator of (1) with the gain matrix given by effectiveness of the state estimation method.
Consider the complex network (1) with three nod&s= 3)
over a prescribed finite time horizda, 40}, i.e.,T = 40. The

To facilitate the implementation, the following finite-horizorPUter coupling configuration matrix is given as follows
H,, estimator (FHHE) design algorithm is provided to recur- 02 01 01
sively compute the gain matrik; , based on Theorems 1-3. n_ O.i _(')_2 0:1 _ (31)
Remark 6:In this paper, the problem of finite-horizdif.. 0.1 01 —02
state estimation is dealt with for a class of time-varying cou-
pled stochastic networks under the Round-Robin schedulingrie time-varying nonlinear functions(z; x) and h;(x; 1)
protocol. The underlying network model is quite compregre chosen as follows
hensive that features stochastic inner coupling strengths and
Round-Robin protocol scheduling. Some dedicated approxi- Fmig) = [ 0.221 1 + tanh(0.1z:1 1) }
mation techniques are used to establish an uncertain auxiliary " 0.152i2,k + tanh(0.05ziz,k )
system whose coefficient matrix is subject to multiplicative _ 0.32;1.%
noises, thereby giving rise to a certain stochastic parameter hi(wik) = [ 0.22, 1 + tanh(0.1242 1) ]

i—1 N—i

IV. AN ILLUSTRATIVE EXAMPLE

Liy =WiL,CJ . (30)
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TABLE |
ESTIMATOR GAIN MATRIX L; i, (1 = 1,2, 3)

k Ly Lo g L3
0 —0.1445 0.0881 —0.2679
—0.0445 —0.0044 —0.1960
1 —0.1436 0.0908 —0.2564
—0.0452 —0.0066 —0.2037
9 —0.1421 0.0937 —0.2732
—0.0467 —0.0086 —0.1901
38 —0.1099 0.0488 —0.2112
—0.0694 0.0240 —0.2183
39 —0.0859 0.0302 —0.1610
—0.0861 0.0405 —0.2420
40 0 0 0
0 0 0

wherez;,, 1, (v = 1,2) is the v-th element ofz; 5, and the
time-varying matrices3; ;, (i = 1,2, 3) are given as follows

~ | 0.6+ 0.3sin(k)
Bk = { -0.5 }
0.5 —0.6
Bar = { 0.6 + 0.1cog0.5k) ] P { 08 } |

It is easy to verify that

02 0 0.3 0
Flv’“_[ 0 0.15}’&’“[ 0 0.2}

03 0
S““_{ 0 0.3}'

The parameters in (5) and (11) are set as

Cip=[03 02],D14=05FE,=[05 0.5
Cop =[~0.2 0.1],Da) =05, Esp =103 0.4]
Csp=[0.1 0.1], D3, =0.6,Es, =[0.4 0.6].

Letv = 0.8, ax = 0.5, Bx = 04 andW = I;5. For

15 — + - Estimation @y, (k) |{
— & = Estimation i1 (k)

xl(k) and its estimate

5 10 15 20 25 30 35 40
Time (k)

Fig. 1. x1(k) ard its estimates

15

xz(k) and its estimate
=)

5 10 15 20 25 30 35 40
Time (k)

Fig. 2. zo(k) ard its estimates

from Fig. 4 that the designed estimator achieves satisfactory
performance over the prescribed finite horiZon 40].

V. CONCLUSIONS

In this paper, the finite-Horizoi, state estimation prob-
lem has been investigated for a class of stochastic coupled
networks subject to random inner coupling variations and the
Round-Robin scheduling protocol. In order to reduce the net-
work communication burden, the Round-Robin transmission

the inner coupling (3)g1 and g» are, respectively, selectedprotocol has been applied to schedule the measurement signals
asg; = 0.2 and gy = 0.3. Y1k, Y2 andis . are mutually from the sensors to the estimators. A novel linearization
independent random sequences obeying uniform distributig@¢hnique has been developed to deal with the system non-
over the interval0.1,0.9]. As such, the means and variancelinearities. Also, for the purpose of facilitating the theoretical

of the random sequences ;, arey; = i = )3 = 0.4 and

o1 = 0o = o3 = 0.0533. According to Algorithm FHHE, the
values of gain matrid; , (: =1,2,3; k=0,1,2,...,40) are
recursively calculated and listed in Table I. It should be noted
from Algorithm FHHE and Table | that the estimator gains at
instantk = 40 become zero because of the equality (30) and
the preseted valueB;; = Q41 = 0.

The exogenous disturbance igk) = 2cos(k)e 002k
The initial conditions of the measurements, system states and
their estimations are given ag o = y20 = Y30 = 0,

1,0 = [01 —O.I]T, 2.0 = [02 O.l]T, 3,0 = [01 O.Q]T,
£170 = [—01 0.1]T, 57270 = [01 —0.1]T and 57370 =

[-0.1 0.1]7. The responses of; ;. (I = 1,2,3) and their
estimates are illustrated in Figs. 1-3. The output estimation

xs(k) and its estimate

[ 5 10 15 20 25 30 35 40
Time (k)

errorsz; ,, (1 = 1,2,3) are shown in Fig. 4. It is evidentFig. 3. z3(k) and its estimates
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Estimation error of node 1
Estimation error of node 2
Estimation error of node 3|1

In addition, one further calculates

E{ngA£Pk+lAk77k}

:E{ngmaqéfgﬁil+2B£1+Ifﬁjémaoh%}

Estimation error

-0.05

-o1f whereRy, = R® (G — G) and P[", is the (u, v)-th entry of
matrix Pry1 (u,v =1,2,3).
Applying Lemma 1 and the mutual independence of

R N R ) gk (@=1,2,---,n) in (3), one observes that

Time (k)

-0.15

Fig. 4. The output estimation errors E{ankaHAknk} = E{ﬁkTGTPk-a-lGnk}-

) . ) ) It is obvious thatB;, in (18) is decomposed into two parts as
aralysis, some ingenious system transformation operatiofgos

have been adopted such that the multiplicative noise term is

included in the coefficient matrix rather than the augmented By =[ B, o' 0]+[0 0 B 'T Jws
disturbance vector. By employing the backward Riccati differ- ==, + Thwp

ence equation technique, the desired finite-horizhp state

estimators have been determined by recursively solving a sétere the first and second parts indicate in deterministic and
of coupled difference equations. The effectiveness of the statechastic settings, respectively.

estimation algorithm has been finally verified by a numerical It follows from the statistical characteristics of, that
example. Future research topics would be to extend the main

results to more complicated systems with different perfor- E{2nkTAka+1Bka} — E{%fAkaHEka}

mance specifications (e.g. variance-constrained performance,

mixed H»/H, index). Similarly, we can also investigate theand
finite-horizon H,, state estimation problems for stochastic

coupled networks based on event-triggered mechanism and T T

other communication scheduling protocols [4], [6], [10], [24], E{"k By P’“+1B’CV’€} = E{Vk kak}
[35], [46]-[50].

(34)

where X, is given in (20). Then, one derives

APPENDIX Ji :E{ng[A£Pk+lAk +G'P1G — Pk

A. Proof of Theorem 1 - .
) o + 20, Ay P12 vie + v X .
Proof: Define the following index Tk Sk TRt =k VE TV ka}

(32) By adding the following zero term

zZe |12 =72 vk |7 = || axF 2 H 2
Along the dynamics of auxiliary system (17), the index (32) 2 11 = v I ouFur | I 6L 1)

s caloclated by I 2 02 4220 v 12 = | cxBane 1” = || BB [12)

Je 2E{nL 1 Peyines1 — 0t Penie}-

) . ., to .J;, results in
Ji —E{nk [(Ax + Fr)" Peg1(Ag + Fi)

jk —E{’I]g [AngJrlAk + GTPkJrlG — P

+ Afpk_,_l Ap + Q(Ak + Fk)TPk_HAk — Pk]nk (33)

+ 20 (Ax + Fi + Ax)" PeyaBrvy, + ELEL + Vi TFLTFy + v BiHL{ Hy e
VBB, ) +onf AT P Zive —vE G Xipvie | 5 |

(0w P = a2 = 1 Bt )
By virtue of E{A;} = 0 and denotingy, £ A + Fy, (33) (35)
is simplified as
Moreover, invoking the completing-the-squares technique
Ik :E{ng[ACISPKﬂ-lAk + AL Pey1 Ay — Pilny leads to

277£A£Pk+15kvk — V?(VQI — Xk)Vk

TaAT TRT
+ 277k Ak Pk-l—lBka + Vi Bk P/H—lBkvk}- :(VZ>TQ]¢VZ _ (Vk _ V;;)TQk(Vk _ VZ)
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where v = Q, 'EF P 1 Agne and Q, = 721 — X, Subse-

quently, we arrive at

J —E{ng-i—lPkJrlnkJrl - W;?Pknk}

=E{n;§r (A} Pop1Ag + G P G + ELEL + Y2l F LTy

+ ’YQﬂngHk + Agpk+1EkQ;15£Pk+1Ak — Pk]nk

— (Vi = Vi) Qv = vi)— || Z |17

+ 72 vie I” = | cwFreme [|* = || BeHene 1) -

(36)
Summing both sides of (36) froto 7" and noticing (21),

it is easy to see that

E{ﬁ%+1PT+177T+1 - 770TP0770}

T
—ZE{ S O
k=0

37)
2 vi 12 = | axFims I — | BeHu ||2>}.
On the basis of (20), we deduce that
T
I =ZE{ 2 12 =22 vi 12 = || axFame |12
k=0
) BeH ) ’72770TW770}
(38)

—E{ - 77%+1PT+177T+1 - W(JT(’YQW — Po)no

T
= vk = Vi) vk — v;;)}.

0

With the help of Pr1 = 0, Q, > 0 and Py < v?W, it is

obvious that/; < 0 holds and this completes the proof of this

theorem. [ |
B. Proof of Theorem 2
Proof: Introduce a performance index as
Je =E{nE 1 Qrs1mit1 — 1f Qi) (39)

Noticing (23), (24) andE{A;} = 0, the above index is
computed as

T —E{nkT[(Ak + BrAr + Ar)T Qry1 (A + By + Ay)
— Qe + oL T (Br + DT Qrrr (Bi + 1Ty,
+ 20 (Ag + BrAy + Ar)" Qrar (Br + I)Im}
ZE{WT[(Ak + BrAy) " Qrr1(Ag + BrAy)
+ AL Qrr1 Ak — Qi + 20 (Ag + BrAy)" Quia
Br + NZ¢r + AL Br + 1) Qur(Br + I -

(40)

As in the proof of Theorem 1, it is easy to observe that

E{nkTA;;FQkHAWk} = E{ngGTQk+1GWk}
whereG is given in Theorem 1.
It follows from Lemma 2 thatE{w,} = E{w}}

=0
k ]
E{w}} =1, E{w}} =3 and
E{W}?[(Ak + BrAr) T Qi1 (Ax + BkAk)]nk}
) oriT = @T = 1%
—E{Wk AL [Qr+1 + 2Qr+1By + By, Qk+1Bk]Akﬁk}
—E{WgAf[QkH + 2Qk+1Y5 Pey1 + BE Qri1Br]Ayne
(41)

where Y, is given in (20), and the last term of the above
equality is shown as

E{nIzAngQkJrlBkAknk }

TAT —_ —1=T —_ —1=T
ZE{% Ap Pry1 (i€, Ef Qre1ExQ, g

+ 455 T Qren T, 2L (42)
+ 30k ' TF Qi T, 1T
+ 2FkQ;lrngHEkQ;lEg)PkHAWk}

éE{ngAngAkﬁk}

where

My =Pry1(ZxQ;, 'S5 Qe ExQ, 'EL
+ 45,0, ' T Qe T, ' 2L
+ 3T ' TEQr i T ' TF
+ 2060 ' TF Qi 126, ' EL ) Pt
=Pp1 (YeQr41Ye + 4550, 'TF Qpia T, ' EF

+ 2T TE Qi1 T ' TT) Prr -

Then, we obtain

{18 + B Qun (B + Bt |
ZE{%TA;QF[Qkﬂ +2Qi+1Yi Prot1 + Mk]Awk} (43)

éE{ﬁkTAkaAknk}
Similarly, we have
E{%ng(Ak +BrAr) " Qri1 (Br + I)I@c}
ZE{QﬁkTA;;FQkH(Bk + 1)Ly,
R CC (44)

ZE{QﬁkTA;;FQkH (YiPit1+ 1)Zoy

+ 20 AL (M + Piga Yka+1)I¢k}
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and
E{ R 2 (Br + )" Qrir (Br, + I)I@c}
=E{¢£ZT [Qnr1+2Qu1 Yi Pevr + Mk]zm} (45)
éE{¢{ITZkI¢k}.
Consequently, we have
Jk ZE{mT[A;;FZkAk + G Qi1G — Qi + ELEL

+ Ag(Mk + Qk-‘,—lykpk-g-l)ILka

+ CLLET" (M + Piy1YiQus1)Ar] (46)
+ 20 AL Qrir (Y Pry1 + DIy,
+ @ BT+ Do 2 - o P |.
Denoting
Uy, =I" T+ 1 )

o5 =V "I Qrop1 (Yie Pt + DAy,
we have
20 AL Qu1 (YiPoy1 + DIow + o (I ZuZ + 1)y
=(¢r + 0%) " Ur(dn + 07) — (97)T V.

Thus, J,, becomes as
Ji ze{ngmgzkm G GT QG+ ETEL —
+ AL (My, 4+ Qr+1Yi Pyi1)ZLi Cy,
+ CLLLT" (My, + Pioy1 YiQpi1)Ay
— AT (Pes1 Ve + DT Q1T
X U T Qpt (Yo Pryr + T)Ax]nk
+ 00 ST+ G- 3 2 = o IP .
(48)
According to (26) and (48), it follows readily that

E{n%+1QT+177T+1 - ﬁoTQono}
T
=S e {6+ a0 o+ 1) 2 1P~ e I .
k=0

(49)
Combining (25), (39) and)7+; = 0 leads to

T
J=> E{(m + ¢0) Uy (d + ¢>Z)} +n8'Qono  (50)
k=0

and we see immediately thaf, = —¢;, or

LiCr = — U, T Qi1 (Vi Pigr + 1A, (51)

minimizes the performance indek as nd' Qono. Meanwhile,

from (38) with Pry; = 0, the cost of.J; is determined by

nd (Po — v*W)no. The proof of this theorem is thus fulfilled.
|
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