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Abstract—In this paper, an approach to the finite-horizon ~ with continuous state spaces can be found in the literature.
optimal state-feedback control problem of nonlinear, stochastic, For an infinite horizon an approxima’[ion scheme of the
discrete-time systems is presented. Starting from the dynamic 516 function by means of radial-basis functions is proposed

programming equation, the value function will be approximated . . . ..
by means of Taylor series expansion up to second-order "N [3], which leads to a discretization of the problem. Based

derivatives. Moreover, the problem will be reformulated, such  0n the assumption of an underlying Ito-process, Pontryagin's
that a minimum principle can be applied to the stochastic maximum principle is extended to continuous-time stochastic
problem. Employing this r_ninimum principle_, the optimal con- systems in [4].

trol problem can be rewritten as a two-point boundary-value An expedient approach to solve the resuling TPBVP

problem to be solved at each time step of a shrinking horizon. . . . .
To avoid numerical problems, the two-point boundary-value numerically is to employ a continuation method [5]. Thereby,

problem will be solved by means of a continuation method. a solution to an easily solvable initial problem can be
Thus, the curse of dimensionality of dynamic programming calculated. While the initial problem is being continuously
is avoided, and good candidates for the optlmal_state-feedback transformed into the original problem, the solution is being
controls are obtained. The proposed approach will be evaluated traced. In case of optimal control problems of nonlinear
by means of a scalar example system. . S
systems, a related linear system can be employed to initialize
|. INTRODUCTION the continuation method. For a deterministic continuous-time

Optimal control of nonlinear stochastic systems is stilfyStem this idea has been successfully applied [6].
a challenging research field. One very useful approach toNevertheless, an equivalent to the maximum principle
treat this problem in case of discrete problems is dynam@' the TPBVP for stochastic systems in the technically
programming, which exploits Bellman’s principle of optima|_important discrete-time case has not been found in the
ity [1]. But even in the discrete case, dynamic programmin}terature yet. In this work an approach is proposed that
suffers from the curse of dimensionality. Moreover, an an2Mploys the idea of dynamic programming to find an ap-
lytical solution cannot be found in general [2] and numericaProximate solution to the optimal nonlinear stochastic control
methods have to be employed. problem. Starting from the dynamic programming equation,

Starting from the dynamic programming equation, Ponthe stochastic prOblem will be rEformulatEd, such that a
tryagin's maximum principle offers necessary optimalityMinimum principle can be employed. Using this approach, a
conditions in case of deterministic systems. These conditiod$’BVP will be derived and solved by means of a continua-
can be employed to reformulate the optimal control problerffion method.
as a two-point boundary-value problem (TPBVP) that is The remainder of this paper is structured as follows. In
numerically solvable. In case of stochastic, that is noiseection Il the problem will be formulated. In Section IlI
affected, systems, this approach is not directly applicable dg& approximation of the stochastic problem by employing
to the fact that it is not possible to calculate a deterministi¢@ylor series expansion of the value function up to second-
prediction of the system state. Thus, the determination of &{der derivatives will be presented. Furthermore, the appli-
optimal state-feedback law for nonlinear stochastic systenggtion of a minimum principle to the stochastic system is
requires nonlinear optimization and stochastic state propag#escribed. Section IV deals with the reformulation of the
tion. optimal control problem as a TPBVP, which is numerically

Several approaches to obtain approximate solutions to tGelved by means of a continuation method. Moreover, the

optimal control problem for nonlinear stochastic system#hole algorithm is described in more detail. In Section V the
proposed approach will be evaluated by means of a scalar
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Let the considered discrete-time system be given by  has been exploited. Moreover, the gradient in (3) vanishes
due to the expectation value. A recursive calculation of
the Hessian will be given in Theorem 3 after defining the
wherez, € RY denotes the system state, ¢ R the Hamilton function. . -
control law variable, ang : RV x R” — R a nonlinear Remark 1:It is important to mention that (4) is similar to
> he deterministic value function. The only difference is the

ast term, which is the contribution to the noise.

Considering (4), the value functiod, and its Hesse
matrix H; are evaluated at states, which would originate
from a deterministic state propagation given by

z = flzg,u) twy, , k=0,...,N—-1, (1)

function. w, € R" is an independent additive zero-mea
noise term with covarianck,,. z, is assumed to be known.
Throughout this worke denotes a random variable, and
& is a concrete realization of the variakite
The objective is to establish an optimal control lay
that maps the states, onto optimal contr.olsy; = Hz(gi). L1 = flap,uy) - (5)
Therefore, a value function has to be introduced. In case
of stochastic systems, an apparent approach is to define f@cause of that, the state propagation (5) is sufficient to

value function at time step as the minimal expected cost- determine the value of the value function, if (4) is employed

to-go from time stepk to N, that is at each time step. In this case, the expectation value needs not
] to be considered explicitly, since the additional term in the
Je(z) = min ge(zy, we) + B [Jkv1(®p41)] 5 (@) value function accounts for the noise that affects the system.
uy, :

_ Employing Taylor series expansion to approximate the
wheregy,(z,, ;) denotes the step cost from tilketo £+ 1 gradient of the value function up to second-order derivatives,

depending on the current system state and the applied contjigé |inearized gradient of the value function is given by
action. Ji41(x,, ) summarizes the minimal expected cost

to the terminal state, starting from statez, ., ,, which is 01 (@p1) O (f (2, ui))
obtained by (1) whem, andz, are given. The terminal cost Oy yy Oy 41
0%J, T, u;
In(zn) =gn(zy) + kﬂ(iz(*k ) wy, . (6)
0Ty 41

is independent of the state-feedback. Dynamic programming
determines the optimal state-feedback conigplfor each
time step instead of performing the minimization over al
policies 7y, = (wy, ..., Un_1)-

With the approximations (4), (5), and (6) of the stochastic
system the minimum principle can be applied to the stochas-
tic system.

B. Minimum Principle

IIl. APPLICATION OF THEMINIMUM PRINCIPLE

. : s In case of the stochastic system (1), a hecessary minimum
In the following, the stochastic minimization problem o ; A
condition for the value functiow,(z,.) is given by

will be reformulated, such that a minimum principle can
be applied. To simplify the derivation, the optimal val- §.J;(x;)  9gi(zy, uj}) B OJks1(2hyqr)] Of (2, up)
uesug, ..., uj_, are assumed to be given at this point. The 5, — o, + wh { }

minimization problem itself will be treated in Section IV.

Oy, Ay,

=0", @)
A. Approximation of the Value Function when the chain rule is employed.

Approximating J,1 in (2) by means of Taylor series N the foIIowmg,* for an optimal sequence of state-
expansion up to second-order derivatives around the deté€dPack controlgug, ..., uy_,) minimizing (2) for k =
ministic part of the state, ,, yields 0,...,N — 1, the corresponding state sequence is denoted

Shd by (zg,...,z}) according to the state propagation (5).
Tert(@ess) ~ Jost (f( )+ 3Jk+1(f(§k7@k))w Definition 1: The costate is defined as the gradient of the
k1 Zpt1) ~ Jr+1 Lk Uk Oz, =k value function evaluated at,, that is
1 .
+ sl Hir (f (2 ) Jwy. 3) o7 = 20elde) ®)

oxy,
where H;, denotes the Hesse matrix of the value function. Theorem 1 (Costate RecursiorEmploying the approxi-
Th_'rd' and_hlgher-order deF'Vat'VeS are assumed_ to l_)e Neations (4), (5), and (6), a recursive calculation of the costate
ligible. Taklng the_ expectation of (3), the approximation Ofalong the optimal sequence of state-feedback controls and the
Ji(z) in (2) is given by

corresponding state sequence is given by

Ti(zp) = 9(zp, up) + Jear (f (2g, 7)) v don(EN) L _ ©)
1 N PN = ) = )
5t (o Hn () . @ Oy .
T agk(&]@ﬂk) T ai(ilm@k) (10)
where the property by = oz, P Oz,

Q%Hk+1%=tr (kafH;m) fork=N-1,...,0.



Proof:
k=N:

r . O0Jn(ZN)  Ogn(Zn) .

Equation (15):follows immediately from (8) and (14).

Equation (16):Because of the approximation of the gradient
of the value function by means of Taylor series expansion
given by (6) and the necessary minimum condition (7) for

ke {N—1,...,0}: The dynamic programming equation (Z)the value function/y(z}), (13) holds. With property (13),

yields OHy,  Ogi(zj,up) o Of(zh,up)
v O(ep) _ Ogelaiup) | Ogulai,up) O (i) Ouy, Ouy, o .
by = Oz, N Oz, Ouy, Oz, = gz, ui) 8Jk+1(£k+l) 8i(§k,gk) a7
L E OJp41(gyq) Of (xy, uy) Oy, 011 Ay,
we| - 0Zpg o), is equivalent to (7), which concludes the proof. n
- - Remark 3 (Stochastic Minimum PrincipleYvith the as-
0 , : L o

LR 01 (1) Of (3, u) l‘k(xk)] , (11) sumptions of Theorem 1, a necessary minimum condition for
W Oy iy Ouy, Oz, the considered stochastic system along the optimal control

wherez, , , denotes the one-step prediction by means of theeduence and the corresponding states is given by (16), which

system function (1) starting from the statg. Employing the
necessary minimum condition (7) fof,(z;), equation (11)

can be rewritten as

OJx(z) _ Ogi(xy, ui)
Oy, Oz,

+E

W Oy Oy,

for k = N —
remains to show that for a given statg

0Ji+1 (i(&Za @Z))

E
Ozp 41

Wy

8§k+1

is satisfied. Because of the assumptions, the state =
1,..., N, are calculated by means of (5). Taking the expec-
tation, (6) can be rewritten as (13) and the proof of (10) is

concluded.

Remark 2: The consideration of higher-order derivatives
in (6) would require the existence of an inverse mapping

kst 19 satisfy (13).
Ty

Definition 2 (Stochastic Hamilton Function)fo define a
stochastic Hamilton function, the influence of noise has to be
incorporated. In case of system (1), this leads to the definition

Hyy (g5 2y, 1 g W) =gk (2, w )+ oy, (f (@ w) + wy,)

fork=N-1,...,0.

Theorem 2:Along the optimal sequence of state-feedbac
controls and the corresponding state sequence, the followi

properties hold fokk = N —1,...,0.

0 . .
Er (Hk<§kagk+1a@kaﬂk)) =p

9 ] ) ()
oz, (Hk(zk,gk+1,yk7wk)) = "on,
P . . .

ayk (Hk(£k7gk+1auk7wk)) :Q .

Proof:
Equation (14):Let k € {0,..., N — 1}. Then,
OHy _ Og(zpup) | o Of(@pui) 4
= +

|:8Jk+1(wk+1):| Of(x}, up)

1,...,0. Considering (8), (10), and (12), it

+wk)] _ Oen (i)

Py oz, b, -

can be evaluated by means of the Hamiltonian.

Theorem 3 (Hessian Recursionjhe Hesse matrix in (4)
can be recursively calculated as follows, where the arguments
of the functions are omitted to simplify the readability.

a29N
Hpy =
N 8&?\[

9%H, af\" of
Ers +(axk) Hivigy,
ar\" of
‘[(axk) Huo () +

(13) T -1
[y et o]

Ouy, Ouy, 8@%

2 af\" )
'[8Hk +<f) Hkﬂaai] (18)

(12)
H, =

2 Hy, ]

0z, 0uy,

Ouy Oz, ou Dz,

fork=N-1,...,0, whereH, denotes the Hesse matrix of

c}pe value function and{;, refers to the Hamilton function.
Proof:

k=N:

- 82JN - ang

©02%  0x%

ke {N —1,...,0}: Because of (15), the Hessidd; can

be calculated by means of the Hamiltonian along the optimal

sequence of controls and the corresponding state sequence.

lg:onsidering the gradient df; as a function o@k,gk ¥ and

He and assuming tha ;. has already been computdd

IS"given as the second partial derivative of the Hamiltonian

with respect taz,,, that is

_ 0*H, 0% H,, of

H = k1o
15z,

Hy

(14)

o * oy,

15
(19 [ 92 H, of

k1 — + (19)

3§k83k+1 Ou;,  0z,0uy | Oz,

o |
(16)

OH  gnd 2
8§k8£k+1

oz, *
ot (o)
Or,0p, ., \Oz

with unknowns

(20)



holds, if (14) and the costate recursion (10) are employedA. Solution with a Continuation Method

Since (16) is satisfied for alt, ,
0 (O0Hj
s
holds, that is
0?Hy,
Ou, Oz,

O?H, of
k H]g+1 ( +

M(lfkvkarlvuk)) =0

o PH g O
Oz, uy.0p, | Uy,
0% H,, 0%H,,
where —2Hx__ s unknown. With
6Ekaﬂk+1
OHi _ Ogx , r Of
uy — Ouy, B’““@yk 7

it follows that

of

Oudpy,,  \Ouw)
Substitution of (22) in (21) and subsequent substitutioftep; if the functiont” is sufficiently smooth.
of (20) and (21) in (19) yields proposition (18) and concludes N the considered case, the stochastic nonlinear system (1)

the proof of Theorem 3.

of au;;>

Oz, 87@1@ Oxy,

(22)

IV. TwWO-POINT BOUNDARY-VALUE PROBLEM

The boundary conditions (9) and the known stage the

A continuation method provides an approach to solve the
nonlinear equation system (24), which is a difficult task in
general. The main idea of the continuation method is to
embed (24) into a parameterized family of problems

(8Ho(£37£1(v)&3(v)&o) T
Oug

(aHl (@} ()2, () (7)) )T
Ou,

(@wal@x,l(v)gN(v),gyv,l(v),gN,l))T
Oun_q

=0,7€[0,1], (25)

such that for the parameter = 0 the solution to an easy
problem is obtained and foy = 1 the original problem

is described. With an increasing parameter< v < 1,

the easy problem is being continuously transformed into
the original problem. During this process the solution to
the problem is being traced. This means, that the solution
for the previous value/~ serves as an initial guess for the
current continuation parameter. Then, the nonlinear equation
system (25) can be solved, for example by means of a
Newton method. The desired solution is obtained-fee 1.
Instead of applying a minimization method directly to (24),
the continuation approach yields good initial guesses at each

can be parameterized, such that the easy problem is to find
the optimal control for a linear system. For example, the
system description (1) can be changed into

state iteration (5), and the costate recursion (10) define aZk+1(7) =7 f(@p,up) + (1 = 7) Uz, we) + 2wy, (26)
TPBVP for the considered system. For a given sequence @fich that the problem foy = 0 consists in solving the LQ-

controls(uy, . -

-,un_1), the corresponding states can be calproblem. The original system (1) is obtained for= 1. In

culated by means of (5). After that, the corresponding costagge linear case, the solution to the optimal control problem

sequencép, , ...

:p,) is obtained by means of (9) and (10),can be obtained by the discrete-time Riccati equation [2].
starting from the final statg ,, of the system iteration. Thus,

the knowledge of they, -sequence is sufficient to obtain the

B. Implemented Algorithm

remaining information. Introducing an augmented vector of For a fixed terminal time, candidates for the desired
the unknown optimal controls;, k =0,...,N —1, as

U= ()"

(Q*N—l)T>T ’

(23)

the optimal state-feedback control for the current sigte=

I, is given bywug. Moreover, the necessary minimum con-
dition (16) is rewritten by means of the nonlinear equatiory

system
. . T
9Ho (zg,p, su4,W0)
Ouy
( OH\(z7,p,,u]w,) )T
EWU") = o

(aHN,l(z}‘V,l,gN,y?\z,laﬂNfl))T

Oun_y

with N nonlinear equations for thév unknown optimal

controlsuyy, . .., uh_;-

=0 (24)

optimal state-feedback controlg;, ¥ = 0,...,N — 1,
of the nonlinear system are determined as summarized in
Algorithm 1. The known current statg, is accessible and
is employed as a new initial value. The continuation method
initially solves the LQ-problem and yields the solution
U*(0). This solution serves as an initial guess,;(y) for
a Newton method that calculatés* () for increasingy to
satisfy condition (25). The desired state-feedback conitol
is given as the first entry dii*(1).

Remark 4:The initial value to the numerical algorithm is
a good choice, since the initial guess is the assumed correct
solution of the previous step~ of the continuation. In case
of sufficiently small continuation steps and a sufficiently
smooth value function, the Newton iteration yields the cor-
rect solution, if the initial guess is close to the solution.

The extension of Algorithm 1 to the technically important
model predictive control is straightforward.



Algorithm 1
1: init: 6 > 0; T := terminal time
2. for k=0to T do
3 =1y

4 N:=T-k
5. U*(0) = LQC(Z,, N) .
6: fory=6v<1,vy=~+4ddo
7 YT =y =90 o S .
—0. —a— Uy e UN 1,0 =

8: Qinit (7) = Q* (’7_) ‘ ‘ ---11‘(5],.,.,1%',;‘0 =0.1 ‘
o: U*(y) = newton (Ujnii(7)) o 1 2 3 4 5
10:  end for -
11 QZ = @8 1) Fig. 1. Example state- and control sequencessfes 0 ando = 0.1. The
122 xp g = f(;ﬁk, UZ) + w,, state is shifted significantly due to the relatively strong noise influence on
13: ena for T 7 the system. The control has to be adapted due to this deviation.

V. EXAMPLE Equation (27) reveals that the influence of noise is as

strong as the influence of the control variable Moreover,

the sine as the nonlinear part of the system function is
Tp+1 = sin(qxg) +up +wy (27)  bounded and attains values within the interjal, 1]. Thus,
even the influence of noise with standard deviatioa: 0.1

can be regarded as a relatively strong influence on the
considered system. This fact is stressed by Fig. 1 for one
example simulation withi:y = 0.4, where the deviations of

Let a scalar example system be given by

wherez, € R, q = %. The simulations are performed
for 1o € X = {-1,-0.9,...,1}. wy is a zero-mean
independent Gaussian noise term with standard deviatien

and a candidate for the optimal state-feedback control of the " the following, J,—; denotes the approximated value

shrunk horizon is determined. The parameterized system fBinction for the initial horizon defined by (29) for= 1. The
the continuation is given by system is affected by noise with standard deviatioithere-

fore, J,—o denotes the value function for the deterministic

Tpt1(y) =y sin(gae) + (1 —v)ze +up +wi , (28)  system, that is (29) without the additional term depending
where0 < ~ < 1. The solution of each continuation step®" the noise influence. Far > 0 the arising cost/y(io)

is employed as the initial guess of the solution of the nex@f the simulation changes with each run. A Monée-CarIo
continuation step. The system state is propagated by meatigulation provides an approximate upper bounfs of
of (5). Denoting the second derivative @f .., by A1, the the true value function depending en= i by calculating

approximated value function according to (4) is given by the arithmetic mean of all arisen costs starting frgne .
Remark 6: After 3000 runs, the result of the Monte-Carlo

simulation is assumed to provide a sufficiently good estimate
1 of the true value function (under deterministic control). This
Ji(zr,7) = 3 ((zx — ¢)* + a(up(7))?) + Jut1 (ze41(y))  assumption is based on the uniqueness of the solution to the
1, LQ-problem and the employment of the continuation method,
+ 50 M1 (@r41 (7)) (29)  which keeps the solution in the correct minimum.

with a weighting factora — 2 and the desired terminal In some practical applications, only the knowledge of the

statec = 0. The costate recursion and the Hamilton functiorlliru?j_v"‘llue frl]mCt'(l)n |fs desired, rllnste_ad of thehopt|mal contrlol
yield the necessary minimum condition eading to the value function. Thus, in Fig. 2 the Monte-Carlo

estimateJ ¢ the approximated value functioh,—; given

o=1i1

JIn(zN) :%(mN —¢)?

OHk (i (7), Prir (), ui(7), wy) aui(y) +prsi(y) =0 by (29), and the deterministic value functioh—o, which
Ouy, * would result from the negligence of the noise in the system
and therefore an analytical solution function (27), are compared. To calculate the Monte-Carlo
N 1 estimate, a multitude of simulations is necessary in contrast
up(y) = —a” pes1(y) (30)

to the value function approximations in Fig. 2, which can
to a candidate of the optimal state-feedback condfly). be calculated directly. Fig. 2(a) shows that_ o5 is very
Thus, (30) can be employed to verify the numerical solutioslose to JMS .. On the other hand/,—, would also be
of the algorithm. an acceptable approximation of the value function. &6t
Remark 5:In contrast to an algorithm, which does not0.1, the approximation and the Monte-Carlo estimate almost
employ the continuation method, Algorithm 1 always cone€oincide yet, in contrast td,—, as depicted in Fig. 2(b).
verged and provided correct results. Therefore, the addition@herefore, the proposed algorithm yields significantly better
expenses arising from the continuation are justified. approximations of /X |. Since the influence of higher-

g



cost —

(@) JMSG o5 and Jo—g.05 almost coin- (b) JMG | and J,—o.1 almost coincide (c) The structural approximation error be-
cide. A slight approximation improvement  yet. The approximation by means df —o comes more significant far = 0.2.
to J,—o can be seen. is significantly worse.

Fig. 2. Estimated true value function and its approximations for a five-step horizon and different noise influences.

TABLE |
QUALITY OF THE APPROXIMATIONS FOR DIFFERENT NOISE INFLUENCES

d(Jo=0.05, JMG 05) | d(Jo=0, TG 05) | d(Jo=0.1,J3LG 1) | d(Jo=0, J2G 1) | d(Jo=0.2, JXLG o) | d(Jo=0, 2T 5)
mean 0.0015 0.0404 0.0098 0.1533 0.1426 0.5096
max 0.0041 0.0430 0.0190 0.1671 0.1584 0.5454

order derivatives in the Taylor series expansion of the value being transformed into the desired nonlinear system.
function increases with increasing standard deviation, th® nonlinear system has been simulated, which employs
error of the proposed approximation also increases in cas#ise proposed approach. The true value function has been
where these derivatives do not vanish, which is stressed legtimated by means of a Monte-Carlo algorithm. In case of
Fig. 2(c). But even in this case, the employment/pf, » is the considered example, the estimated value function and the
in fact preferable to the employment &f_, to approximate approximated value function almost coincide, even in case
JMS . Table | summarizes the quality of the approximation®f relatively strong noise. Moreover, the results reveal that
Jy—o and.J,—; of JMC i ¢ S, where the distance measute the proposed approximation is superior to an approximation,

is defined pointwisg, that is for ally € X which does not consider any influence of noise.
. . Future work will be aimed at extended incorporation of
d(f1, f>) = || }1(0) = fa(io)l2 b

the stochastic behavior of the system into determination of
for two functionsf,, f,. Furthermore, the structural error for the optimal control sequence.
increasingo due to (4) is revealed. Taking everything into
account, the proposed approximation is preferable to the full REFERENCES
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