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Abstract— In this paper, an approach to the finite-horizon
optimal state-feedback control problem of nonlinear, stochastic,
discrete-time systems is presented. Starting from the dynamic
programming equation, the value function will be approximated
by means of Taylor series expansion up to second-order
derivatives. Moreover, the problem will be reformulated, such
that a minimum principle can be applied to the stochastic
problem. Employing this minimum principle, the optimal con-
trol problem can be rewritten as a two-point boundary-value
problem to be solved at each time step of a shrinking horizon.
To avoid numerical problems, the two-point boundary-value
problem will be solved by means of a continuation method.
Thus, the curse of dimensionality of dynamic programming
is avoided, and good candidates for the optimal state-feedback
controls are obtained. The proposed approach will be evaluated
by means of a scalar example system.

I. I NTRODUCTION

Optimal control of nonlinear stochastic systems is still
a challenging research field. One very useful approach to
treat this problem in case of discrete problems is dynamic
programming, which exploits Bellman’s principle of optimal-
ity [1]. But even in the discrete case, dynamic programming
suffers from the curse of dimensionality. Moreover, an ana-
lytical solution cannot be found in general [2] and numerical
methods have to be employed.

Starting from the dynamic programming equation, Pon-
tryagin’s maximum principle offers necessary optimality
conditions in case of deterministic systems. These conditions
can be employed to reformulate the optimal control problem
as a two-point boundary-value problem (TPBVP) that is
numerically solvable. In case of stochastic, that is noise
affected, systems, this approach is not directly applicable due
to the fact that it is not possible to calculate a deterministic
prediction of the system state. Thus, the determination of an
optimal state-feedback law for nonlinear stochastic systems
requires nonlinear optimization and stochastic state propaga-
tion.

Several approaches to obtain approximate solutions to the
optimal control problem for nonlinear stochastic systems
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with continuous state spaces can be found in the literature.
For an infinite horizon an approximation scheme of the
value function by means of radial-basis functions is proposed
in [3], which leads to a discretization of the problem. Based
on the assumption of an underlying Ito-process, Pontryagin’s
maximum principle is extended to continuous-time stochastic
systems in [4].

An expedient approach to solve the resulting TPBVP
numerically is to employ a continuation method [5]. Thereby,
a solution to an easily solvable initial problem can be
calculated. While the initial problem is being continuously
transformed into the original problem, the solution is being
traced. In case of optimal control problems of nonlinear
systems, a related linear system can be employed to initialize
the continuation method. For a deterministic continuous-time
system this idea has been successfully applied [6].

Nevertheless, an equivalent to the maximum principle
or the TPBVP for stochastic systems in the technically
important discrete-time case has not been found in the
literature yet. In this work an approach is proposed that
employs the idea of dynamic programming to find an ap-
proximate solution to the optimal nonlinear stochastic control
problem. Starting from the dynamic programming equation,
the stochastic problem will be reformulated, such that a
minimum principle can be employed. Using this approach, a
TPBVP will be derived and solved by means of a continua-
tion method.

The remainder of this paper is structured as follows. In
Section II the problem will be formulated. In Section III
an approximation of the stochastic problem by employing
Taylor series expansion of the value function up to second-
order derivatives will be presented. Furthermore, the appli-
cation of a minimum principle to the stochastic system is
described. Section IV deals with the reformulation of the
optimal control problem as a TPBVP, which is numerically
solved by means of a continuation method. Moreover, the
whole algorithm is described in more detail. In Section V the
proposed approach will be evaluated by means of a scalar
example system. Section VI summarizes the results of this
paper and gives a survey of future work.

II. PROBLEM FORMULATION

Exploiting the Markov property, dynamic programming is
a common approach to solve nonlinear optimal closed-loop
control problems by means of backward recursion in case of
an additive cost function [2]. These assumptions will also be
employed in the following.



Let the considered discrete-time system be given by

xk+1 = f(xk, uk) + wk , k = 0, . . . , N − 1 , (1)

where xk ∈ IRN denotes the system state,uk ∈ IRM the
control law variable, andf : IRN × IRM → IRN a nonlinear
function. wk ∈ IRN is an independent additive zero-mean
noise term with covarianceΣw. x̂0 is assumed to be known.

Throughout this workx denotes a random variable, and
x̂ is a concrete realization of the variablex.

The objective is to establish an optimal control lawµ∗
k

that maps the statesxk onto optimal controlsu∗k = µ∗
k
(xk).

Therefore, a value function has to be introduced. In case
of stochastic systems, an apparent approach is to define the
value function at time stepk as the minimal expected cost-
to-go from time stepk to N , that is

Jk(xk) := min
uk

gk(xk, uk) + E
wk

[
Jk+1(xk+1)

]
, (2)

wheregk(xk, uk) denotes the step cost from timek to k +1
depending on the current system state and the applied control
action.Jk+1(xk+1) summarizes the minimal expected cost
to the terminal statexN starting from statexk+1, which is
obtained by (1) whenuk andxk are given. The terminal cost

JN (xN ) = gN (xN )

is independent of the state-feedback. Dynamic programming
determines the optimal state-feedback controlu∗k for each
time step instead of performing the minimization over all
policiesπk = (uk, . . . , uN−1).

III. A PPLICATION OF THEM INIMUM PRINCIPLE

In the following, the stochastic minimization problem
will be reformulated, such that a minimum principle can
be applied. To simplify the derivation, the optimal val-
uesu∗0, . . . , u

∗
N−1 are assumed to be given at this point. The

minimization problem itself will be treated in Section IV.

A. Approximation of the Value Function

Approximating Jk+1 in (2) by means of Taylor series
expansion up to second-order derivatives around the deter-
ministic part of the statexk+1 yields

Jk+1(xk+1) ≈ Jk+1(f(xk, uk)) +
∂Jk+1(f(xk, uk))

∂xk+1

wk

+
1
2
wT

k Hk+1(f(xk, uk))wk , (3)

whereHk denotes the Hesse matrix of the value function.
Third- and higher-order derivatives are assumed to be neg-
ligible. Taking the expectation of (3), the approximation of
Jk(xk) in (2) is given by

Jk(xk) ≈ g(xk, u∗k) + Jk+1(f(xk, u∗k))

+
1
2

tr
(
ΣwHk+1(f(xk, u∗k))

)
, (4)

where the property

wT
k Hk+1wk = tr

(
wkwT

k Hk+1

)

has been exploited. Moreover, the gradient in (3) vanishes
due to the expectation value. A recursive calculation of
the Hessian will be given in Theorem 3 after defining the
Hamilton function.

Remark 1: It is important to mention that (4) is similar to
the deterministic value function. The only difference is the
last term, which is the contribution to the noise.

Considering (4), the value functionJk and its Hesse
matrix Hk are evaluated at states, which would originate
from a deterministic state propagation given by

xk+1 = f(xk, uk) . (5)

Because of that, the state propagation (5) is sufficient to
determine the value of the value function, if (4) is employed
at each time step. In this case, the expectation value needs not
to be considered explicitly, since the additional term in the
value function accounts for the noise that affects the system.

Employing Taylor series expansion to approximate the
gradient of the value function up to second-order derivatives,
the linearized gradient of the value function is given by

∂Jk+1(xk+1)
∂xk+1

≈
∂Jk+1(f(xk, u∗k))

∂xk+1

+
∂2Jk+1(f(xk, u∗k))

∂x2
k+1

wk . (6)

With the approximations (4), (5), and (6) of the stochastic
system the minimum principle can be applied to the stochas-
tic system.

B. Minimum Principle

In case of the stochastic system (1), a necessary minimum
condition for the value functionJk(xk) is given by

∂Jk(xk)
∂uk

=
∂gk(xk, u∗k)

∂uk

+ E
wk

[
∂Jk+1(xk+1)

∂xk+1

]
∂f(xk, u∗k)

∂uk

= 0T , (7)
when the chain rule is employed.

In the following, for an optimal sequence of state-
feedback controls(u∗0, . . . , u

∗
N−1) minimizing (2) for k =

0, . . . , N − 1, the corresponding state sequence is denoted
by (x∗0, . . . , x

∗
N ) according to the state propagation (5).

Definition 1: The costate is defined as the gradient of the
value function evaluated at̂xk, that is

pT
k

:=
∂Jk(x̂k)

∂xk

. (8)

Theorem 1 (Costate Recursion):Employing the approxi-
mations (4), (5), and (6), a recursive calculation of the costate
along the optimal sequence of state-feedback controls and the
corresponding state sequence is given by

pT
N

:=
∂gN (x̂∗N )

∂xN

, k = N , (9)

pT
k

=
∂gk(x∗k, u∗k)

∂xk

+ pT
k+1

∂f(x∗k, u∗k)
∂xk

(10)

for k = N − 1, . . . , 0.



Proof:
k = N :

pT
N

:=
∂JN (x̂∗N )

∂xN

=
∂gN (x̂∗N )

∂xN

.

k ∈ {N−1, . . . , 0}: The dynamic programming equation (2)
yields

pT
k

:=
∂Jk(x∗k)

∂xk

=
∂gk(x∗k, u∗k)

∂xk

+
∂gk(x∗k, u∗k)

∂uk

∂µ∗
k
(x∗k)

∂xk

+ E
wk

[
∂Jk+1(xk+1)

∂xk+1

∂f(x∗k, u∗k)
∂xk

]
+ E

wk

[
∂Jk+1(xk+1)

∂xk+1

∂f(x∗k, u∗k)
∂uk

∂µ∗
k
(x∗k)

∂xk

]
, (11)

wherexk+1 denotes the one-step prediction by means of the
system function (1) starting from the statex∗k. Employing the
necessary minimum condition (7) forJk(x∗k), equation (11)
can be rewritten as

∂Jk(x∗k)
∂xk

=
∂gk(x∗k, u∗k)

∂xk

+ E
wk

[
∂Jk+1(xk+1)

∂xk+1

]
∂f(x∗k, u∗k)

∂xk

(12)

for k = N − 1, . . . , 0. Considering (8), (10), and (12), it
remains to show that for a given statex∗k

E
wk

[
∂Jk+1

(
f(x∗k, u∗k)

)
∂xk+1

+ wk)

]
=

∂Jk+1(x∗k+1)
∂xk+1

(13)

is satisfied. Because of the assumptions, the statesxk , k =
1, . . . , N , are calculated by means of (5). Taking the expec-
tation, (6) can be rewritten as (13) and the proof of (10) is
concluded.

Remark 2:The consideration of higher-order derivatives
in (6) would require the existence of an inverse mapping of
∂Jk+1
∂xk+1

to satisfy (13).

Definition 2 (Stochastic Hamilton Function):To define a
stochastic Hamilton function, the influence of noise has to be
incorporated. In case of system (1), this leads to the definition

Hk(xk, p
k+1

, uk,wk):=gk(xk, uk)+ pT
k+1

(
f(xk, uk)+ wk

)
for k = N − 1, . . . , 0.

Theorem 2:Along the optimal sequence of state-feedback
controls and the corresponding state sequence, the following
properties hold fork = N − 1, . . . , 0.

∂

∂xk

(
Hk(x∗k, p

k+1
, u∗k,wk)

)
= pT

k
, (14)

∂

∂xk

(
Hk(x∗k, p

k+1
, u∗k,wk)

)
=

∂Jk(x∗k)
∂xk

, (15)

∂

∂uk

(
Hk(x∗k, p

k+1
, u∗k,wk)

)
= 0T . (16)

Proof:
Equation (14):Let k ∈ {0, . . . , N − 1}. Then,

∂Hk

∂xk

=
∂gk(x∗k, u∗k)

∂xk

+ pT
k+1

∂f(x∗k, u∗k)
∂xk

= pT
k

.

Equation (15):follows immediately from (8) and (14).
Equation (16):Because of the approximation of the gradient
of the value function by means of Taylor series expansion
given by (6) and the necessary minimum condition (7) for
the value functionJk(x∗k), (13) holds. With property (13),

∂Hk

∂uk

=
∂gk(x∗k, u∗k)

∂uk

+ pT
k+1

∂f(x∗k, u∗k)
∂uk

=
∂gk(x∗k, u∗k)

∂uk

+
∂Jk+1(x∗k+1)

∂xk+1

∂f(x∗k, u∗k)
∂uk

(17)

is equivalent to (7), which concludes the proof.
Remark 3 (Stochastic Minimum Principle):With the as-

sumptions of Theorem 1, a necessary minimum condition for
the considered stochastic system along the optimal control
sequence and the corresponding states is given by (16), which
can be evaluated by means of the Hamiltonian.

Theorem 3 (Hessian Recursion):The Hesse matrix in (4)
can be recursively calculated as follows, where the arguments
of the functions are omitted to simplify the readability.

HN :=
∂2gN

∂x2
N

Hk =
∂2Hk

∂x2
k

+
(

∂f

∂xk

)T

Hk+1

∂f

∂xk

−

[(
∂f

∂xk

)T

Hk+1

(
∂f

∂uk

)
+

∂2Hk

∂xk∂uk

]

·

[(
∂f

∂uk

)T

Hk+1

∂f

∂uk

+
∂2Hk

∂u2
k

]−1

·

[
∂2Hk

∂uk∂xk

+
(

∂f

∂uk

)T

Hk+1

∂f

∂xk

]
(18)

for k = N−1, . . . , 0, whereHk denotes the Hesse matrix of
the value function andHk refers to the Hamilton function.

Proof:
k = N :

HN =
∂2JN

∂x2
N

=
∂2gN

∂x2
N

.

k ∈ {N − 1, . . . , 0}: Because of (15), the HessianHk can
be calculated by means of the Hamiltonian along the optimal
sequence of controls and the corresponding state sequence.
Considering the gradient ofHk as a function ofxk, p

k+1
, and

uk and assuming thatHk+1 has already been computed,Hk

is given as the second partial derivative of the Hamiltonian
with respect toxk, that is

Hk =
∂2Hk

∂x2
k

+
∂2Hk

∂xk∂p
k+1

Hk+1

∂f

∂xk

+

[
∂2Hk

∂xk∂p
k+1

Hk+1

∂f

∂uk

+
∂2Hk

∂xk∂uk

]
∂µ∗

k

∂xk

(19)

with unknowns ∂2Hk

∂xk∂p
k+1

and
∂µ∗

k

∂xk
.

∂2Hk

∂xk∂p
k+1

=
(

∂f

∂xk

)T

(20)



holds, if (14) and the costate recursion (10) are employed.
Since (16) is satisfied for allxk ,

∂

∂xk

(
∂Hk

∂uk

(xk, p
k+1

, u∗k)
)

= 0

holds, that is

∂2Hk

∂uk∂xk

+
∂2Hk

∂uk∂p
k+1

Hk+1

(
∂f

∂xk

+
∂f

∂uk

∂µ∗
k

∂xk

)
+

∂2Hk

∂u2
k

∂µ∗
k

∂xk

= 0 ,

which leads to

∂µ∗
k

∂xk

= −

(
∂2Hk

∂uk∂p
k+1

Hk+1

∂f

uk

+
∂2Hk

∂u2
k

)−1

·

(
∂2Hk

∂uk∂xk

+
∂2Hk

∂uk∂p
k+1

Hk+1

∂f

∂xk

)
, (21)

where ∂2Hk

∂uk∂p
k+1

is unknown. With

∂Hk

∂uk

=
∂gk

∂uk

+ pT
k+1

∂f

∂uk

,

it follows that

∂2Hk

∂uk∂p
k+1

=
(

∂f

∂uk

)T

. (22)

Substitution of (22) in (21) and subsequent substitution
of (20) and (21) in (19) yields proposition (18) and concludes
the proof of Theorem 3.

IV. T WO-POINT BOUNDARY-VALUE PROBLEM

The boundary conditions (9) and the known statex̂0, the
state iteration (5), and the costate recursion (10) define a
TPBVP for the considered system. For a given sequence of
controls(u0, . . . , uN−1), the corresponding states can be cal-
culated by means of (5). After that, the corresponding costate
sequence(p

N
, . . . , p

0
) is obtained by means of (9) and (10),

starting from the final statêxN of the system iteration. Thus,
the knowledge of theuk-sequence is sufficient to obtain the
remaining information. Introducing an augmented vector of
the unknown optimal controlsu∗k, k = 0, . . . , N − 1, as

U∗ :=
(
(u∗0)

T · · ·
(
u∗N−1

)T)T

, (23)

the optimal state-feedback control for the current statex∗0 :=
x̂0 is given byu∗0. Moreover, the necessary minimum con-
dition (16) is rewritten by means of the nonlinear equation
system

F (U∗) :=



(
∂H0(x

∗
0 ,p

1
,u∗0 ,w0)

∂u0

)T

(
∂H1(x

∗
1 ,p

2
,u∗1 ,w1)

∂u1

)T

...(
∂HN−1(x

∗
N−1,p

N
,u∗N−1,wN−1)

∂uN−1

)T


= 0 (24)

with N nonlinear equations for theN unknown optimal
controlsu∗0, . . . , u

∗
N−1.

A. Solution with a Continuation Method

A continuation method provides an approach to solve the
nonlinear equation system (24), which is a difficult task in
general. The main idea of the continuation method is to
embed (24) into a parameterized family of problems

F (U∗(γ)) :=



(
∂H0(x

∗
0 ,p

1
(γ),u∗0(γ),w0)

∂u0

)T

(
∂H1(x

∗
1(γ),p

2
(γ),u∗1(γ),w1)

∂u1

)T

...(
∂HN−1(x

∗
N−1(γ),p

N
(γ),u∗N−1(γ),wN−1)

∂uN−1

)T


=0 , γ ∈ [0, 1] , (25)

such that for the parameterγ = 0 the solution to an easy
problem is obtained and forγ = 1 the original problem
is described. With an increasing parameter0 ≤ γ ≤ 1,
the easy problem is being continuously transformed into
the original problem. During this process the solution to
the problem is being traced. This means, that the solution
for the previous valueγ− serves as an initial guess for the
current continuation parameter. Then, the nonlinear equation
system (25) can be solved, for example by means of a
Newton method. The desired solution is obtained forγ = 1.
Instead of applying a minimization method directly to (24),
the continuation approach yields good initial guesses at each
step, if the functionF is sufficiently smooth.

In the considered case, the stochastic nonlinear system (1)
can be parameterized, such that the easy problem is to find
the optimal control for a linear system. For example, the
system description (1) can be changed into

xk+1(γ) = γ f(xk, uk) + (1− γ) l(xk, uk) + wk , (26)

such that the problem forγ = 0 consists in solving the LQ-
problem. The original system (1) is obtained forγ = 1. In
the linear case, the solution to the optimal control problem
can be obtained by the discrete-time Riccati equation [2].

B. Implemented Algorithm

For a fixed terminal time, candidates for the desired
optimal state-feedback controlsu∗k, k = 0, . . . , N − 1,
of the nonlinear system are determined as summarized in
Algorithm 1. The known current statêxk is accessible and
is employed as a new initial value. The continuation method
initially solves the LQ-problem and yields the solution
U∗(0). This solution serves as an initial guessU init(γ) for
a Newton method that calculatesU∗(γ) for increasingγ to
satisfy condition (25). The desired state-feedback controlu∗k
is given as the first entry ofU∗(1).

Remark 4:The initial value to the numerical algorithm is
a good choice, since the initial guess is the assumed correct
solution of the previous stepγ− of the continuation. In case
of sufficiently small continuation steps and a sufficiently
smooth value function, the Newton iteration yields the cor-
rect solution, if the initial guess is close to the solution.

The extension of Algorithm 1 to the technically important
model predictive control is straightforward.



Algorithm 1
1: init: δ > 0; T := terminal time
2: for k = 0 to T do
3: x̂0 := x̂k

4: N := T − k
5: U∗(0) = LQC(x̂0, N)
6: for γ = δ; γ ≤ 1; γ = γ + δ do
7: γ− := γ − δ
8: U init(γ) = U∗(γ−)
9: U∗(γ) = newton (U init(γ))

10: end for
11: u∗k := u∗0(1)
12: xk+1 = f(x̂k, u∗k) + wk

13: end for

V. EXAMPLE

Let a scalar example system be given by

xk+1 = sin(q xk) + uk + wk , (27)

where xk ∈ IR, q = 3 π
4 . The simulations are performed

for x̂0 ∈ X := {−1,−0.9, . . . , 1}. wk is a zero-mean
independent Gaussian noise term with standard deviationσ ∈
S := {0.05, 0.1, 0.2}. The initial horizon is set to five steps.
After each time step the current system state is accessible
and a candidate for the optimal state-feedback control of the
shrunk horizon is determined. The parameterized system for
the continuation is given by

xk+1(γ) = γ sin (q xk) + (1− γ)xk + uk + wk , (28)

where0 ≤ γ ≤ 1. The solution of each continuation step
is employed as the initial guess of the solution of the next
continuation step. The system state is propagated by means
of (5). Denoting the second derivative ofJk+1 by hk+1, the
approximated value function according to (4) is given by

JN (xN ) =
1
2
(xN − c)2

Jk(xk, γ)=
1
2
(
(xk − c)2 + a (u∗k(γ))2

)
+ Jk+1 (xk+1(γ))

+
1
2
σ2hk+1(xk+1(γ)) (29)

with a weighting factora = 2 and the desired terminal
statec = 0. The costate recursion and the Hamilton function
yield the necessary minimum condition

∂Hk(x∗k(γ), pk+1(γ), u∗k(γ),wk)
∂uk

= a u∗k(γ) + pk+1(γ) = 0

and therefore an analytical solution

u∗k(γ) = −a−1 pk+1(γ) (30)

to a candidate of the optimal state-feedback controlu∗k(γ).
Thus, (30) can be employed to verify the numerical solution
of the algorithm.

Remark 5: In contrast to an algorithm, which does not
employ the continuation method, Algorithm 1 always con-
verged and provided correct results. Therefore, the additional
expenses arising from the continuation are justified.
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u
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N−1
, σ = 0.1

Fig. 1. Example state- and control sequences forσ = 0 andσ = 0.1. The
state is shifted significantly due to the relatively strong noise influence on
the system. The control has to be adapted due to this deviation.

Equation (27) reveals that the influence of noise is as
strong as the influence of the control variableuk. Moreover,
the sine as the nonlinear part of the system function is
bounded and attains values within the interval[−1, 1]. Thus,
even the influence of noise with standard deviationσ = 0.1
can be regarded as a relatively strong influence on the
considered system. This fact is stressed by Fig. 1 for one
example simulation witĥx0 = 0.4, where the deviations of
the state- and control trajectories can be seen easily.

In the following, Jσ=i denotes the approximated value
function for the initial horizon defined by (29) forγ = 1. The
system is affected by noise with standard deviationσ. There-
fore, Jσ=0 denotes the value function for the deterministic
system, that is (29) without the additional term depending
on the noise influence. Forσ > 0 the arising costJ0(x̂0)
of the simulation changes with each run. A Monte-Carlo
simulation provides an approximate upper boundJMC

σ=i of
the true value function depending onσ = i by calculating
the arithmetic mean of all arisen costs starting fromx̂0 ∈ X .

Remark 6:After 3000 runs, the result of the Monte-Carlo
simulation is assumed to provide a sufficiently good estimate
of the true value function (under deterministic control). This
assumption is based on the uniqueness of the solution to the
LQ-problem and the employment of the continuation method,
which keeps the solution in the correct minimum.

In some practical applications, only the knowledge of the
true value function is desired, instead of the optimal control
leading to the value function. Thus, in Fig. 2 the Monte-Carlo
estimateJMC

σ=i , the approximated value functionJσ=i given
by (29), and the deterministic value functionJσ=0, which
would result from the negligence of the noise in the system
function (27), are compared. To calculate the Monte-Carlo
estimate, a multitude of simulations is necessary in contrast
to the value function approximations in Fig. 2, which can
be calculated directly. Fig. 2(a) shows thatJσ=0.05 is very
close toJMC

σ=0.05. On the other hand,Jσ=0 would also be
an acceptable approximation of the value function. Forσ =
0.1, the approximation and the Monte-Carlo estimate almost
coincide yet, in contrast toJσ=0 as depicted in Fig. 2(b).
Therefore, the proposed algorithm yields significantly better
approximations ofJMC

σ=0.1. Since the influence of higher-
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Fig. 2. Estimated true value function and its approximations for a five-step horizon and different noise influences.

TABLE I

QUALITY OF THE APPROXIMATIONS FOR DIFFERENT NOISE INFLUENCES

d(Jσ=0.05, JMC
σ=0.05) d(Jσ=0, JMC

σ=0.05) d(Jσ=0.1, JMC
σ=0.1) d(Jσ=0, JMC

σ=0.1) d(Jσ=0.2, JMC
σ=0.2) d(Jσ=0, JMC

σ=0.2)

mean 0.0015 0.0404 0.0098 0.1533 0.1426 0.5096

max 0.0041 0.0430 0.0190 0.1671 0.1584 0.5454

order derivatives in the Taylor series expansion of the value
function increases with increasing standard deviation, the
error of the proposed approximation also increases in cases,
where these derivatives do not vanish, which is stressed by
Fig. 2(c). But even in this case, the employment ofJσ=0.2 is
in fact preferable to the employment ofJσ=0 to approximate
JMC

σ=0.2. Table I summarizes the quality of the approximations
Jσ=0 andJσ=i of JMC

σ=i , i ∈ S, where the distance measured
is defined pointwise, that is for all̂x0 ∈ X

d(f1, f2) := ‖f1(x̂0)− f2(x̂0)‖2
for two functionsf1, f2. Furthermore, the structural error for
increasingσ due to (4) is revealed. Taking everything into
account, the proposed approximation is preferable to the full
disregard of the noise influence in the considered example.

VI. CONCLUSIONS ANDFUTURE WORK

In this work, an approach to finite-horizon state-feedback
control of nonlinear, stochastic, discrete-time systems has
been proposed. Employing the idea of dynamic program-
ming, the value function has been approximated by means
of Taylor series expansion up to second-order derivatives.
This approximation contains additional terms, which are a
contribution to the influence of noise. Moreover, a minimum
principle has been applied to the stochastic system. Similar to
the deterministic case, a necessary condition has been derived
to obtain the desired optimal state-feedback control. Employ-
ing these results, a two-point boundary-value problem has
been formulated that was solved by means of a continuation
method. This continuation method initially solves the LQ-
problem and traces the solution while the linear system

is being transformed into the desired nonlinear system.
A nonlinear system has been simulated, which employs
the proposed approach. The true value function has been
estimated by means of a Monte-Carlo algorithm. In case of
the considered example, the estimated value function and the
approximated value function almost coincide, even in case
of relatively strong noise. Moreover, the results reveal that
the proposed approximation is superior to an approximation,
which does not consider any influence of noise.

Future work will be aimed at extended incorporation of
the stochastic behavior of the system into determination of
the optimal control sequence.
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