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Finite-Horizon Robust Kalman Filter Design
Minyue Fu, Senior Member, IEEE, Carlos E. de Souza, Senior Member, IEEE, and Zhi-Quan (Tom) Luo, Member, IEEE

Abstract—In this paper, we study the problem of finite-horizon
Kalman filtering for systems involving a norm-bounded uncertain
block. A new technique is presented for robust Kalman filter de-
sign. This technique involves using multiple scaling parameters
that can be optimized by solving a semidefinite program. The use
of optimized scaling parameters leads to an improved design. A re-
cursive design method that can be applied to real-time applications
is also proposed.

Index Terms—Adaptive filtering, Kalman filtering, robust
filtering, robust signal processing.

I. INTRODUCTION

F
INITE-horizon Kalman filters, including recursive

least-squares filters as a special case, are widely used in

signal processing applications. Compared with infinite-horizon

Kalman filters, the finite-horizon ones can offer a better

transient performance, which is an important property for

applications where signals are nonstationary.

One of the problems with Kalman filters, which has been well

recognized now, is that they can be sensitive to system data, or in

other words, they may lack robustness. A typical phenomenon

is that the performance of the filter, although being optimal for

a “nominal” system, may deteriorate very quickly as the system

data drift; see, e.g., [4]. This is, of course, not acceptable for

applications where a good system model is hard to obtain or

the system drifts. Motivated by this problem, a number of pa-

pers have attempted to generalize the classical Kalman filter to

systems involving a norm-bounded uncertain block; see [2]–[6].

Note that norm-bounded blocks are used to represent inaccura-

cies in the system model. The resulting filters are often called

robust Kalman filters.

The design of robust Kalman filters faces a major obstacle in

comparison with the classical Kalman filters. There are two pre-

vailing properties possessed by classical finite-horizon Kalman

filters. First, an optimal filter at time leads to an optimal filter

at . That is, an optimal filter at produces a minimum state

estimation error at (in the variance sense), which is the best

initial condition for the filter design at . Second, the op-

timal filter for state estimation is also optimal for estimation of

any other signal, provided it is a linear function of the state. Un-

fortunately, neither of the two properties carries through when

Manuscript received May 4, 1999; revised May 14, 2001. The associate editor
coordinating the review of this paper and approving it for publication was Dr.
Joseph M. Francos.

M. Fu is with the Department of Electrical and Computer Engineering,
the University of Newcastle, Callaghan, Australia (e-mail: eemf@ee.new-
castle.edu.au).

C. E. de Souza is with the Department of Systems and Control, Laboratório
Nacional de Computação Científica—LNCC, Petrópolis, Brazil.

Z.-Q. Luo is with the Department of Electrical and Computer Engineering,
MacMaster University, Hamilton, ON L8S 4K1 Canada.

Publisher Item Identifier S 1053-587X(01)07068-4.

the system involves uncertainties. More precisely, a filter that

produces a small state estimation error at time may worsen the

state estimation at time . Similarly, a filter that minimizes

the state estimation error may not be optimal for estimation of

the signal of interest, even when it is a linear combination of the

state.

A commonly used technique for robust Kalman filter design

is to apply the so-called S-Procedure, which replaces the un-

certainty block with a scaling parameter. This yields an upper

bound for the covariance of the estimation error. Two types of

scaling parameters have been used: constant and time-varying.

A constant scaling parameter ( ) is used in [3], [4], and [6] and

is most suitable for infinite-horizon or stationary filtering prob-

lems. One serious problem with using a constant scaling pa-

rameter is that the entailed conservatism can aggregate quickly

as time evolves and may lead to a very poor estimator. Time-

varying scaling parameters ( ) are more flexible, and if they are

carefully chosen, the amount of conservatism can be reduced.

Two papers have used time-varying scaling parameters. In [5],

a simple formula is given, but the scaling parameter is not opti-

mized in any way. In [2], the scaling parameter is chosen using

a semidefinite program. However, as we will reveal later, the

scaling parameter obtained at time using [2] may lead to a poor

estimation at future times. In addition, the semidefinite program

to be solved in [2] is quite cumbersome.

In this paper, we intend to carry out some deeper study on

finite-horizon Kalman filtering for systems involving a norm-

bounded uncertain block. Our focus will be on how to choose

scaling parameters. A summary of our results is given as fol-

lows.

• We show that optimal scaling parameters for time may

lead to poor estimation at future times. Subsequently, two

types of scaling parameters are suggested: one optimal

for time and one used for the future. In fact, at each

time , all the scaling parameters need to be

reoptimized.

• The design of the estimator has the following separation

properties.

— The covariance of the estimation error at de-

pends only on the scaling parameters and

the system data and not on other parameters in the

filter. Thus, the scaling parameters can be optimized

first. In particular, we note that they depend on the

signal to be estimated.

— Once the scaling parameters are determined, an op-

timal filter can be generated using an algebraic for-

mula. In particular, we note that the optimal filter does

not explicitly depend on the signal to be estimated. Im-

plicit dependence happens only through the scaling pa-

rameters.

1053–587X/01$10.00 © 2001 IEEE
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• We show that optimal scaling parameters can be computed

using a semidefinite program. The size of the program is

moderate and grows at the rate . An suboptimal scheme is

also given that requires a constant amount of computation

at each .

II. COVARIANCE ANALYSIS

Consider the following uncertain system:

(2.1)

where is the state, is a linear combination of

; , , , and

are given matrices with full row rank,

represents norm-bounded time-varying uncertainty, i.e.,

(2.2)

and and are zero-mean and independent and satisfy the

following second-order statistics:

if

otherwise
(2.3)

Without loss of generality, for all . To assure that the

order of the system is not degenerate, we further assume

rank (2.4)

Denote by and the covariance matrices

of and , respectively. The (worst-case) covariance analysis

problem is as follows: Given , determine the worst-case

, i.e.,

(2.5)

where is any given linear function of . In particular, it is

common to choose trace .

We first introduce the so-called S-Procedure (see, e.g., [1]).

Lemma 2.1: Given , , and

with , the following inequality holds:

(2.6)

if and only if there exists such that

(2.7)

Next, we give a solution to the covariance analysis problem

for the case .

Theorem 2.1: Define

(2.8)

where

(2.9)

Then

(2.10)

In addition

(2.11)

and if is a row vector. Further, the optimal for

can be found by solving the following semidefinite program:

s.t.

(2.12)

Proof: We first consider the general case where may

not be a row vector. Obviously

It follows that

s.t.

Using the S-Procedure (Lemma 2.1), the above is equivalent to

(2.12). The equivalence between (2.12) and (2.11) follows from

Schur’s complements.

For the case where is a row vector

Given any , we have iff

for all . Using the S-Procedure again, the above holds

iff there exists some such that

(2.13)

Obviously

subject to (2.13). Writing for some ,

it is easy to see the optimization problem above is equivalent to

(2.12).

To show (2.10), we first note that above is an upper bound

for . For each , the optimal equals . Hence,
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. Next, follows from , (2.4),

and a rewriting of (2.8) as follows:

diag

The role of the scaling parameter is to identify the

worst-case .

Returning to the problem in (2.5) for where more than

one terms are involved, it turns out that they can be replaced

by additional scaling parameters to compute . This is

detailed as follows.

Theorem 2.2: Denote and define

(2.14)

for , where

(2.15)

with

(2.16)

In addition, define

(2.17)

Then

(2.18)

Next, an upper bound for is given by

(2.19)

Further, the optimum above can be found by solving the fol-

lowing semi-definite program:

s.t.

(2.20)

where and are defined recursively as

diag

.

(2.21)

Proof: The problem in (2.5) is equivalent to

s.t. (2.22)

Let

(2.23)

and

(2.24)

Then

It follows that iff

(2.25)

Using the above and the S-Procedure (Lemma 2.1), (2.25) holds

for all iff

(2.26)

for some , where

Then, use Schur’s complements to convert the above into

and

(2.27)

and we return to a form similar to (2.25). In general, the optimal

depends on , but if we assume is constant, the

process above can be done recursively, and it will eventually

give (2.20). The reason for (2.20) to give an upper bound only

is because are assumed to be a constant in the recursion.

To show the equivalence between (2.20) and (2.19), we note

that the optimal for (2.20) is

Thus, it suffices to show by induction that

This is certainly true for . Suppose that it is true for some

; then
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Finally, for all because .

Since is arbitrary, we must have for all

. In addition, follows from and

(2.4), as shown in the proof of Theorem 2.1.

Remark 2.1: Theorem 2.2 suggests that needs to be recom-

puted as changes. This is indeed the case. In fact, we will

show in Section VI that an optimal at a given time may not

be optimal at a different time. Because of this property, we will

denote the optimal at time by , when-

ever necessary.

Remark 2.2: In Theorem 2.2, we have assumed nonsingu-

larity of . If is singular, we can always decompose it into

for some and . With these and , the re-

cursion in (2.21) will still be valid.

III. ROBUST FILTER DESIGN: PROBLEM STATEMENT

We extend the system (2.1) to the following:

(3.28)

where is a measured output, ,

, is a zero-mean measurement noise, which is indepen-

dent of , and with statistics

if

otherwise.
(3.29)

Other matrices are defined accordingly. In the design problem,

is a linear combination of to be estimated. Similar to (2.4),

it is assumed that

rank (3.30)

We further assume that have full row rank for all .

We consider an th-order robust linear filter of the following

form:

(3.31)

Note that the use of the same and does not lose

any generality. More precisely, it can be easily shown that any

th-order linear time-invariant estimator for with input

and zero initial state can have a state-space realization in the

form of (3.31).

Given the filter above, the augmented system involving

and is given by

(3.32)

where is the estimation error, and

We will denote by , and the covariance matrices

of , , and .

Similar to the previous section, scaling parameters will

be used to replace the uncertainty block , which yields

parameterized covariance matrices , ,

and that serve as the upper bounds for ,

and , respectively. If this is done recursively,

i.e., are used, then these upper bounds depend

on all these scaling parameters. In this case, we will denote

these upper bounds by , , and ,

respectively.

With the discussion above, we propose a number of technical

problems as follows:

P1) Given and , find the optimal filter at (i.e.,

and ) such that is minimized.

P2) Given , find optimal , and such that

is minimized.

P3) Given , , find optimal and the optimal filter at

all , such that is mini-

mized.

Obviously, our aim is to solve P3, whereas P1 and P2 are imme-

diate steps.

IV. ROBUST FILTER DESIGN: SOLUTIONS

Solutions to the three problems P1–P3 are given in this sec-

tion.

Problem P1:

Theorem 3.1: Suppose

for some

(4.33)

(which holds at ), and , where

. Then, the optimal solution to Problem 1

is given as follows:

(4.34)

(4.35)

(4.36)
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where

(4.37)

(4.38)

In particular, the optimal filter is independent of (or the

signal to be estimated). Further, the optimal filter given above

preserves the structure in (4.33), i.e.,

(4.39)

with

(4.40)

and

(4.41)

where

(4.42)

(4.43)

Finally, we have

(4.44)

Proof: See Appendix A.

Problem P2:

Theorem 4.2: Under (4.33), the optimal solution to Problem

2 is given as in Theorem 4.1 with the optimal solving the

following semidefinite program:

s.t.

(4.45)

where is given in (4.38) with

(4.46)

Proof: See Appendix B.

Problem P3: Before we give the solution to P3, several key

observations about Theorem 4.2 are needed.

• First, only , rather than the whole , is directly re-

quired for the filter design at time . However, the term

is used in constraining the range for .

• The optimal is solved independently of the optimal

and , although the latter depends on .

• The optimal in (4.45) is indeed the optimal .

Further, if is replaced with any of its upper bound,

the resulting optimal will be worsened.

These observations, together with the results in Section II,

lead us to the main result of the paper.

Theorem 4.3: Let and . Denote

Define . Let and be given

as in (4.37), (4.38) and (4.40)–(4.43) for , except

that , and are replaced by , and

, respectively. Then, an upper bound for is given

by

(4.47)

where

(4.48)

In addition, define

diag

diag

(4.49)

Note that is affine in . Then, the optimal can be

found by solving the following semi-definite program:

s.t.

(4.50)

Once the optimal is found, the optimal filter at time is given

as in Theorem 4.1, with .
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Proof: See Appendix C.

Remark 4.1: Note that the optimal for each may be

different. Using a fixed may lead to conservative designs,

but the optimal and does not explicitly depend on past

filters, i.e., they depend on the optimal and the system data at

.

V. RECURSIVE ROBUST FILTER DESIGN

There is one unpleasant feature about the solution in Theorem

4.3, that is, the size of the semidefinite program in (4.50) grows

linearly in . To avoid this, we propose a suboptimal solution,

i.e., a recursive method that optimizes only a fixed number of

most recent scaling parameters. The motivation for this approx-

imate solution stems from a simple fact about Kalman filtering

that the contribution of the initial covariance to the estima-

tion error at time decays as time evolves, provided that the

augmented system (3.32) is asymptotically stable. The recursive

method involves solving a semidefinite program of a constant

size. Therefore, it is suitable for real-time applications where

the information of the system dynamics (i.e., , etc.) may

not be available a priori.

The recursive algorithm given below is simply modified from

Theorem 4.3.

Step 1) Let be the window size for recursion .

For , apply (4.49) and (4.50).

Step 2) For , still apply (4.49) and (4.50), but re-

place the constraint

by and reini-

tialize and ,

where is the optimal determined

at .

Remark 5.1: In general, all the matrices and ,

need to be recomputed at each iteration

. This seems to require amount of computation. We

point out that it is possible to update and using

only a constant amount of computation, but this would require

some messy notation and hence, will not be done here. How-

ever, for stationary systems where , , , ,

, and are constants (but can still be time-varying),

the update of and is specially simple. This is

because would remain constant and that would

have only one new element related to .

VI. EXAMPLE

To illustrate the results in this paper, we consider the fol-

lowing example, which has been used as a “benchmark” in [2],

[5], [6]

(6.51)

where is the uncertainty. We assume that the initial

state covariance matrix .

To match the system description in (3.28), the uncertain term

is represented by the matrices

(6.52)

Stationary filters are designed in [2], [5], and [6] to compare

with the so-called “nominal” Kalman filter where the uncer-

tainty is ignored. An infinite-horizon filter is used in [6] with

guaranteed stability, which gives a great improvement over the

nominal design. The design in [5] is based on finite horizon.

In our setting, this design is similar to the recursive case with

window size equal to one, except that the scaling parameter is

preselected. The performance turns out to be superior to [6]. The

design in [2] is similar to [5], except that the scaling parameter

is optimized at each iteration using a semidefinite programming

technique, yielding some small improvement over [5].

Design results using our new methods are given as follows.

1) (Design 1) For recursive design with window size equal

to one, our design leads to a performance similar to [2],

which is not surprising. Finite-horizon designs have the

inherent instability problem, but this can usually be fixed

by adding additional cost to the performance function.

2) (Designs 2 and 3) By increasing the window size, both

the performance and stability can be improved dramati-

cally with the tradeoff of more computation for the filter

design.

Design 1: Recursive Design with : First, we design a

filter using the given system data. The resulting filter turns out to

be unstable. This demonstrates the inherent instability of finite-

horizon designs. A main cause of instability is that the optimal

may be such that it minimizes the cost function at but

drives too large, thus worsening the future costs. This

problem has been recognized by other researchers. For example,

[5] solves this problem by using a fixed (conservative) scaling

parameter, whereas in [2], the covariance matrix is required

to be bounded.

Alternatively, we treat the aforementioned problem by re-

stricting the range of the scaling parameters as follows:

(6.53)

for some . We also take an additional measure for

improving stability by adding a term to the performance cost.

Indeed, we take

(6.54)

and the performance cost is trace . Effectively,

the new term prevents from getting too large, thus

helping future costs. It is observed in the simulations that in-

creasing can dramatically improve the stability and the steady-
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Fig. 1. Performances for recursive robust filter designs. Design 1: Top curve;
Design 2: Middle curve; Design 3: Bottom curve.

Fig. 2. Scaling parameters for recursive robust filter designs. Design
1: � —Bottom curve; Design 2: � —Third curve from the top;
� —Second curve from the bottom; Design 3: � ; � —Two top
curves; � —Third curve from the bottom.

state performance with a minor tradeoff of the initial perfor-

mance.

To demonstrate various recursive designs, we select

and . The corresponding filter is stable and converges to

a stationary one as , and it is given by (3.28) with

(6.55)

The steady-state scaling parameter . The results

are shown in Figs. 1 and 2 as well as in Table I.

Design 2: Recursive Design with : Recall that with

, two scaling parameters and are involved

at each . The first one is for estimating from ,

and the second one is used to estimate and to design

the filter.

TABLE I
STEADY-STATE PERFORMANCE COMPARISON

For the same fix of in (6.54), the steady-state filter has

(6.56)

The steady-state scaling parameters are and

. The results are also shown in Figs. 1 and 2

as well as in Table I. Note that this filter gives a much better

performance.

Design 3: Recursive Design with : The filter for

and the same fix of is also stable and has steady-state

matrices

(6.57)

Now, the scaling parameters converge to ,

, . Once again, results are

given in the same figures and table. However, the improvement

in performance is virtually invisible. This means that is

sufficient for this example.

Remark 6.1: We would like to point out one interesting fea-

ture of our design. That is, for recursive designs without a rela-

tively small window size, it is often quicker to compute the op-

timal scaling parameters using (4.47) rather than the semi-defi-

nite program (4.50). This is because (4.47) involves only a few

scaling parameters and that the cost function is convex in . In

fact, all the designs in this section are done using (4.47).

Remark 6.2: We suggested earlier that the motivation for re-

optimizing the scaling parameters is that their

previous optimal values may not lead to an optimal solution at

. This fact is implicitly supported by Designs 2 and 3, where

(the optimal at ) and (the optimal

at ) are clearly different.

VII. CONCLUDING REMARKS

In this paper, we have proposed a new design technique for

finite-horizon robust Kalman filters. This technique allows us

to effectively treat systems with norm-bounded uncertainty

blocks. The uncertainties are dealt with using the so-called

S-Procedure, which yields a set of scaling parameters to

optimize. The corresponding optimization problem is convex

and can be solved either directly or via semidefinite program. A

recursive design method that is mostly suitable to applications

with nonstationary processes or signals is also presented. The
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proposed technique gives less conservative designs in compar-

ison with existing techniques for robust Kalman filtering. This

property has been demonstrated using an example.

APPENDIX A

PROOF OF THEOREM 4.1

Let (4.33) hold. We first show that the optimal solution to

Problem 1 is given by (4.34)–(4.38). Following Theorem 2.1,

we consider the upper bound for given by

(A.58)

where

(A.59)

with

(A.60)

Note that

(A.61)

It follows from (A.58) that

(A.62)

Differentiating (A.62) with respect to and and setting the

derivatives to zeros, we obtain

(A.63)

and

(A.64)

Next, we want to compute optimal from (A.63). To start

with, we verify that

(A.65)

and

(A.66)

where

(A.67)

Substituting (4.34) and (A.65)–(A.66) into (A.63) yields

(A.68)

or equivalently

(A.69)

To show that (A.69) agrees with (4.35), we note that

(A.70)

It follows that

(A.71)

with given by (4.47). This implies

(A.72)

Subsequently

(A.73)

Hence, (A.69) is identical to (4.35).

Now we return to computing from (A.69). Using (A.63)

and (4.35), we rewrite (A.69) as

(A.74)

To simplify the above, we verify that

(A.75)

and

(A.76)
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From (A.73) and (A.75)–(A.76), we get

(A.77)

where is given in (4.38). Subsequently, (A.74) becomes

(A.78)

which gives the optimal solution for in (4.36). Substituting

the optimal and into (A.62), we get (4.40).

The property in (4.39) is shown as follows:

Equation (4.41) is verified as follows:

Finally, we focus on (4.44). Let .

From (A.61), . From Theorem 2.1, we have

. Hence,

and . To show , we apply the

Schur complement to (4.40), i.e., iff

which can be rewritten as

diag

which is guaranteed due to and (3.30).

APPENDIX B

PROOF OF THEOREM 4.2

Rewriting (4.40), we have

where

The optimal is obtained by

s.t.

Using the Schur complement, the constraint

is equivalent to

which is the same as the first constraint in (4.45). Thus, the

theorem has been proved.

APPENDIX C

PROOF OF THEOREM 4.3

The first part of the theorem [(4.47)] follows from Theorem

4.1. To prove the second part [(4.50)], we first claim that it suf-

fices to show

(C.79)

Indeed, if (C.79) holds, it follows from the Schur complement

that

(C.80)

Subsequently, the optimal in (4.50) is achieved at

To show (C.79), we apply reduction. Obviously, (C.79) holds

for by definition. Suppose it holds for some ; then

(C.81)

where

We have
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(C.82)

(C.83)

Substituting (C.82) and (C.83) into (C.81), straightforward cal-

culations yield

Further

(C.84)

Subsequently

(C.85)

Thus, (C.79) is valid for all .
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