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Abstract

In this paper we present an overview of the possibilities of the finite increment calculus

(FIC) approach for deriving computational methods in mechanics with improved

numerical properties for stability and accuracy. The basic concepts of the FIC procedure

are presented in its application to problems of advection-diffusion-reaction, fluid

mechanics and fluid-structure interaction solved with the finite element method (FEM).

Examples of the good features of the FIC/FEM technique for solving some of these

problems are given. A brief outline of the possibilities of the FIC/FEM approach for error

estimation and mesh adaptivity is given.

Keywords: Finite increment calculus, Finite calculus, FIC, Finite element method,

Computational mechanics

Background

The finite increment calculus (FIC) (sometimes called finite calculus, in short) was pro-

posed by Oñate [1] as a conceptual framework for deriving stabilized numerical methods

[mainly the finite element method (FEM)] for solving advective–diffusive transport and

fluid compressible flow problems in mechanics for situations where numerical methods

typically fail (i.e., high Peclet/Reynolds numbers and incompressible situations) [2,3].

The essence of the FIC approach lays in solving the governing differential equations

in mechanics written in a modified form, using any discretization method such as the

Galerkin finite element (FE)method, any standard finite difference (FD) scheme, the finite

volume (FV) method, meshless methods, etc. The FIC modified governing equations are

obtained by writing the equations for balance of heat, momentumandmass in a space-time

domain of finite incremental size, and not in a domain of infinitesimal size, as it is usually

done.

Accounting for the finiteness of the balance space-time domain introduces naturally

additional terms in the classical differential equations of continuum mechanics, which

now become a function of the balance domain dimensions. The merit of the modified

governing equations derived via FIC is that they are a natural starting point for deriving

stabilized numerical schemes. Moreover, the different stabilized FE, FD and FV methods

typically used in practice can be recovered using FIC.
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The FIC technique has been used in conjunction with the finite element method (FEM)

for deriving stabilized FIC/FEM procedures for a wide range of problems in advective–

diffusive-reactive transport, fluid mechanics, incompressible solids and fluid-structure

interaction (FSI) situations, among others [1,4–28]. The FIC approach has also been used

in conjunction with the meshless finite point method for solving some of these problems

[13,29–31].

The layout of the paper is the following. In the next section the main concepts of the

FICmethod are introduced. Details of the FIC approach for advection–diffusion-reaction

problems solved with the FEM are presented. Then the possibilities of the FIC/FEM

technique in fluid and solid mechanics and FSI problems solved with the particle finite

element method (PFEM) are outlined. Examples of applications are given for some of the

problems considered. Finally, a brief outline of the possibilities of the FIC/FEM approach

for error estimation and mesh adaptivity is given.

Basic ideas of the FIC approach

Let us consider a steady-state advection–diffusion problem in a 1D domain � of length

L. The equation of balance of fluxes in a subdomain of size d belonging to � (Fig. 1) is

written as

qA − qB = 0 (1)

where qA and qB are the incoming and outgoing fluxes at pointsA and B, respectively. The

flux q includes both the advective and diffusive terms; i.e., q = ρcvφ −k dφ

dx
, where φ is the

transported variable (i.e., the temperature in a thermal problem), v is the velocity ρ, c and

k the density, the specific flux parameter and the diffusitivity of the material, respectively.

Let us express now the fluxes qA and qB in terms of the flux at an arbitrary point C

within the balance domain (Fig. 1). Expanding qA and qB in Taylor series around point C

up to second order terms gives

qA = qC − d1
dq

dx
|C +

d21
2

d2q

dx2
|C + O(d31 ), qB = qC + d2

dq

dx
|C +

d22
2

d2q

dx2
|C + O(d32 )

(2)

Substituting Eq. (2) into Eq. (1) gives after simplification and neglecting higher order

terms

dq

dx
−

h

2

d2q

dx2
= 0 (3)

where h = d1 − d2 and all the derivatives are computed at the arbitrary point C .

Fig. 1 Equilibrium of fluxes in a space balance domain of finite size
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Standard calculus theory assumes that the balance domain d is of infinitesimal size.

Hence, the underlined term in Eq. (3) can be neglected and the resulting flux balance

equation is simply
dq
dx

= 0. In FICwewill relax this assumption and allow the space balance

domain to have a finite size. The new balance Eq. (3) incorporates the underlined term

which introduces the characteristic length h. Obviously, accounting for higher order terms

in the Taylor expansions of Eq. (2) would lead to additional terms in Eq. (3) incorporating

higher powers of h.

Distance h in Eq. (3) can be interpreted as a free parameter depending on the location

of point C within the balance domain. Note that −d ≤ h ≤ d and, hence, h can take

a negative value. At the discrete solution level the domain d should be replaced by the

balance domain around a node. This gives for an equal size discretization −le ≤ h ≤ le

where le is the element or cell dimension. The fact that Eq. (3) is the exact flux balance

equation (up to secondorder terms) for any1Ddomainof finite size and that thepositionof

point C is arbitrary, can be used to derive numerical schemes with enhanced properties.

This goal can be reached by computing the characteristic length parameter h using an

adequate “optimality” condition; for instance, in the FEM context we can look for the

elemental or nodal value of h that ensures a prescribed (small) error in the numerical

solution [1,10,32]. In some cases, the optimal value of h for each element leading to an

exact nodal solution can be found [1,6,21,28,32].

Applications to the 1D convection–diffusion problems

Consider, for instance, Eq. (3) applied to the 1D advection–diffusion problem in a 1D

domain of length L. Neglecting the third order derivatives, Eq. (3) can be rewritten in

terms of φ as

− v
dφ

dx
+

(

k +
ρcvh

2

)

d2φ

dx2
= 0; 0 ≤ x ≤ L (4)

We see that the FIC method introduces naturally an additional diffusion term in the

standard advection–diffusion equation. This is the basis of the popular “artificial diffusion”

procedure [1–3] where the characteristic length h is expressed as a function of the cell

or element dimension. The critical value of h can be computed by ensuring that the

solution has a physically meaning (i.e., φi ≥ 0 for the Dirichlet problem with non negative

prescribed values of φ at x = 0 and x = L). For an equal size FEM discretization this

gives h ≥

(

1 − 1
γ

)

le, where γ = ρc vl
e

2k
is the element Peclet number. The inequality

applies for γ > 0 and it should be reversed for γ < 0. Also h is taken to be zero for

|γ | < 1. The optimal value of h for all the elements leading to exact nodal values can also

be found for this simple case as h =

(

coth γ − 1
γ

)

le [1–3]. The same results are obtained

using the FDmethod with a central difference scheme, where le is now the cell dimension

[1,3].

Equation (3) can be extended to account for source terms. The FIC governing equation

can then be written in compact form as

r −
h

2

dr

dx
= 0; r := ρcv

dφ

dx
−

d

dx

(

k
dφ

dx

)

− Q (5)

where Q is the external source.
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Boundary conditions

The FIC governing equations are completed with the standard Dirichlet condition pre-

scribing the value of φ at the boundary Ŵφ (i.e., φ = φp = 0 at Ŵφ).

For consistency a FIC form of the Neumann boundary condition should be used. This

canbe obtainedby invoking balance of fluxes in a domain of finite size next to the boundary

Ŵq . The FICNeumann boundary condition when the external (diffusive) flux is prescribed

to a value qp is [1]

k
dφ

dx
+ qp +

h

2
r = 0 at Ŵq (6)

Note that for h = 0 the standard Neumann boundary condition for prescribed diffusive

flux is obtained.

We emphasize that the relevant feature of the FIC procedure is that the underlined

terms in Eqs. (5) and (6) introduce the necessary stabilization in the discrete solution

using whatever numerical scheme.

The FIC method in space-time

The time dimension can be simply accounted for in the FIC method by considering the

balance equation in a space-time slab domain. Quite generally the FIC governing equation

over the analysis domain � can be written for any problem in mechanics as [1]

ri −
hij

2

∂ri

∂xj
+ sg

δ

2

∂ri

∂t
= 0 in �,

i = 1, nb

j = 1, nd
(7)

where ri is the ith standard differential equation of the infinitesimal theory, hij are char-

acteristic length parameters for the ith balance equations and the jth space direction, δ is

a finite time increment parameter and t the time; nb and nd are respectively the number

of balance equations and the number of space dimensions of the problem. Clearly for the

transient case the initial value of the solution must be specified.

In Eq. (7) sg is a sign parameter that can take the values +1 or −1. The value of sg leads

to FIC time integration schemes with distinct numerical properties [33].

The usual sum convention for repeated indexes is used in Eq. (7) and in the following,

unless otherwise specified.

For the transient advection-diffusion problem, Eq. (7) is particularized as

r −
hj

2

∂r

∂xj
+ sg

δ

2

∂r

∂t
= 0 with r := ρc

(

∂φ

∂t
+ vj

∂φ

∂xj

)

−
d

dxj

(

k
dφ

dxj

)

− Q

j = 1, nd (8)

Applications of the space-time FIC method to the transient solution of advection–

diffusion problems with the FEM can be found in [11].

A conceptual interpretation of FIC

Let us consider the solution of a physical problem, such as obtaining the steady state

distributionof the temperatureφ in a domain�, governedby adifferential equation r(φ) =

0 in � with the corresponding boundary conditions. The “exact” (analytical) solution of

the problem is a function giving the sought distribution of the temperature φ for any value

of the geometrical and physical parameters of the problem. Since the analytical solution

is difficult to find (practically impossible for real situations), an approximate numerical

solution is found φ ≃ φ̂ by solving the problem r̂ = 0, with r̂ = r(φ̂), using a particular
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discretization method (i.e. the FE method) leading to the temperature distribution in

� for specific values of the geometrical and physical parameters. The accuracy of the

numerical solution depends on the discretization parameters, such as the number of

elements and the particular FEmethod chosen. Figure 2 shows a schematic representation

of the distributions of φ̂ along a line for different FE discretizationsM1,M2, . . . ,Mn where

M1 andMn are the coarser and finer meshes, respectively. Clearly for n sufficiently large,

a good approximation of φ to the “exact” solution will be obtained. Also, for M∞ the

numerical solution φ̂ will coincide with the exact one φ at all points in �. Indeed in some

problems the M∞ solution can be found at the nodes by a “clever” choice of the FIC

parameters in the discretized problem [1,6,10,21,28,32].

The problem arises when for some (typically coarse) discretizations the numerical solu-

tion provides non physical or very inaccurate values of φ̂. The numerical method is then

said to be unstable. A situation of this kind is represented by curves M1 and M2 of the

left hand side of Fig. 2. These unstabilities disappear by an appropriate mesh refinement

(curvesM3,M4 , . . .) at the obvious increase of the computational cost.

In the FIC formulation the starting point are the modified differential equations of the

problem in � and the corresponding FIC Neumann boundary condition as previously

described. The FIC governing equations can not be used to find an analytical solution,

φ(x), for the physical problem. However, the numerical solution of the FIC equations can

Fig. 2 Schematic representation of the numerical solution of a physical problem using standard infinitesimal

calculus and the finite increment calculus (FIC) method
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be readily found. What is interesting and useful is that, by adequately choosing the values

of the characteristic length parameters, the numerical solution of the FIC equations will

be always stable for any discretization chosen.

This process is schematically represented in Fig. 2 where it is shown that the numerical

oscillations for the coarser discretizations M1 and M2 disappear when using the FIC

procedure.

In summary the FIC approach allows us to obtain a better numerical solution for a given

discretization. Indeed, as for the standard infinitesimal case, the FIC numerical solution

forM∞ will yield the (typically unreachable) exact analytical solution and this ensures the

consistency of the method.

The FIC method has been classified in [6] as a particular case of “modified equations

methods” where the standard differential equations are first augmented using physical

concepts and then discretized using a numerical technique. An interpretation of the

FIC/FEM equations as a residual correction method is presented in [16].

FIC/FEM solution of advection–diffusion-reaction problems

The FIC form of the advection–diffusion-reaction equation is written (neglecting the FIC

term in time) as [21,28]

r −
hj

2

∂r

∂xj
= 0, r := ρc

(

∂φ

∂t
+ vj

∂φ

∂xj

)

−
∂

∂xj

(

k
∂φ

∂xj

)

+ sφ − Q, j = 1, nd (9)

The newphysical parameter in Eq. (9) is the reaction parameter s (s > 0 is the absorption

or dissipation parameter and s < 0 is the production parameter).

The boundary conditions at the Dirichlet and Neumann boundary conditions are pre-

scribed as explained in a previous section. Recall that the FIC form of the Neumann

boundary conditions as defined in Eq. (6) should be used for consistency of the FIC pro-

cedure.

Equation (9) solves the following particular problems:

(i) Advection–diffusion (s = 0)

(ii) Helmholtz (v = 0, s < 0)

(iii) Advection-reaction (k = 0)

(iv) Diffusion-reaction (v = 0)

Finite element discretization

A finite element interpolation of the unknown φ can be written as

φ ≃ φ̂ =

N
∑

i=1

Niφ̂i(t) (10)

where Ni(x) are the space shape functions and φ̂i are the nodal values of the approximate

function φ̂ and N is the number of nodes in the mesh [1–3].

Application of theGalerkin FEmethod in space to Eqs. (9) and (6) gives, after integrating

by parts the term∇∇∇r (and neglecting the space derivatives of the characteristic lengths hj)
∫

�

Ni r̂d� +

∫

Ŵq

Ni(n
T
D∇∇∇φ̂ + q̄p)dŴ +

∑

e

1

2

∫

�e
h
T∇∇∇Ni r̂d� = 0 (11)

In Eq. (11) r̂ = r(φ̂) is the residual of the FE approximation of the infinitesimal governing

equation, D is the standard diffusivity matrix (D = kI3 for 3D isotropic problems where
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I3 is the unit matrix), n is the unit vector normal to the boundary, h = [h1, h2, h3]
T is the

characteristic length vector and �e is the element domain.

The last integral in Eq. (11) has been expressed as a sum of the element contributions

to allow for interelement discontinuities in the term∇∇∇ r̂.

Note that the residual terms have disappeared at the Neumann boundary integral in

Eq. (11). This is due to taking into account the FIC term in Eq. (6).

Integrating by parts the diffusive terms in the first integral of Eq. (11) gives
∫

�

Ni

[

ρc

(

∂φ̂

∂t
+ v

T∇φ̂

)

+ ∇∇∇TNiD∇∇∇φ̂ + sφ̂

]

d� +
∑

e

1

2

∫

�e
h
T∇∇∇Ni r̂d�

−

∫

�

NiQd� +

∫

Ŵq

Niq̄
pdŴ = 0 (12)

where v = [v1, v2, v3]
T is the velocity vector. In matrix form

Cȧ + Ka = f with a = [φ̂1, φ̂2, · · · , φ̂N ]
T and ȧ :=

∂

∂t
a (13)

Matrices K,M and vector f are assembled from the element contributions given by

K e
ij =

∫

�e
[Ni

(

v
T +

s

2
h
T
)

∇∇∇Nj + ∇∇∇TNi(D +
1

2
hv

T )∇∇∇Nj]d�

−
1

2

∫

�e
h
T∇∇∇Ni∇∇∇(D∇∇∇Nj)d� (14)

Me
ij =

∫

�e
ρcNi

(

Nj +
1

2
h
T∇∇∇Nj

)

d�;

f ei =

∫

�e
[Ni +

1

2
h
T∇∇∇Ni]Qd� −

∫

Ŵe
q

Niq̄
pdŴ (15)

The FIC/FEM formulation presented above yields an additional diffusivity matrix and

an additional “pseudo” velocity vector given by 1
2hv

T and s
2h, respectively. Also the second

integral of Eq. (14) vanishes for linear FEM approximations. The same happens with the

second term of the first integral of fi in Eq. (15) when Ni is linear and Q is constant. The

evaluation of these integrals is mandatory in any other case.

This FIC/FEM formulation yields stabilized numerical solutions for the advection–

diffusion-reaction equation for a wide range of the physical parameters.

For instance, FIC/FEM solutions for 1D and 2D steady-state advection–diffusion-

absorption problems have been respectively obtained by Oñate et al. [21,22] using a

non-linear expression for the stabilization parameters. Nodally, exact FIC/FEM solutions

for the 1Ddiffusion–absorption case and theHelmholz equation using a single (linear) sta-

bilization parameter were reported by Felippa and Oñate [6] using a variational approach.

Oñate, Miquel and Nadukandi [28] have recently presented a general FIC/FEM frame-

work for accurately solving the steady-state and transient 1Dadvection–diffusion-reaction

equation using two (linear) stabilization parameters.

Figure 3 shows FIC/FEM results for two advection–diffusion-absorption problems

solved with 2-noded linear elements. Exact nodal values are found [21,28].

Figure 4 shows the FIC/FEM solution for two Helmholtz problems using 2-noded ele-

ments. Again nodally exact results are found [6,28].

A FIC/FEM technique for the transient diffusion equation

The solution of transient problems inmechanics using large time steps has been attempted

by different researchers. One example, is the LATIN method proposed by Ladevèze
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a

b

Fig. 3 1D advection–diffusion–absorption problem (Q = 0). Exact and FIC–FEM results for a uniform mesh

of eight 2-noded elements of length le . a γ = 1, ω = 5; b γ = 2, ω = 2
(

γ =
ρcule

2k
, w = s(le )2

k

)

[21,28]

et al. [34,35]. This is a general nonincremental iterative non linear solution scheme for

time-dependent problems in mechanics which works globally over the entire time-space

domain.

Idelsohn et al. [36,37] have proposed a Lagrangian numerical procedure for solving

convective-diffusive transport and fluid-flow problems using large time steps.

The FIC approach can also be used for deriving numerical schemes for solving the

transient diffusion problem with enhanced features regarding the stability and accuracy

of the solution in time. The so-called FIC-time procedure can be summarized as follows.

The starting point is the FICgoverning equation in time for the standarddiffusionproblem

written as

r + sg
δ

2

∂r

∂t
= 0 with r := ρc

∂φ

∂t
−

∂

∂xj

(

k
∂φ

∂xj

)

− Q = 0 (16)

where δ is a characteristic time parameter, as mentioned earlier. Typically δ is chosen as

a proportion of the time step chosen for the transient numerical solution.

Discretization of Eq. (16) using the Galerkin FEM yields a system of algebraic equations

of the form
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a

b

Fig. 4 1D Helmholtz problem (Q = 0). Exact and FIC–FEM results for a uniform mesh of eight 2-noded

elements of length le . a γ = 0, ω = −5; b γ = 0, ω = −100
(

γ =
ρcule

2k
, w = s(le )2

k

)

[6,28]

sg
δ

2
Cä +

(

C + sg
δ

2
K

)

ȧ + Ka = f + sg
δ

2
ḟ (17)

Equation (17) is the starting point for deriving a family of new FIC-time integration

schemes for the transient diffusion equation. By adequately choosing the characteristic

time parameter δ and the sign parameter sg , the following time integration schemes with

improved numerical features can be found [33]:

– Stable explicit solution schemes allowing larger time steps.

– Accurate implicit solution schemes allowing larger time steps.

In conclusion, the FIC-time procedure opens a range of possibilities for deriving new

improved time integration schemes for solving transient diffusive transport problems

with the FEM. The method is also applicable to the FEM solution of Lagrangian flows

with larger time steps than using standard time integration schemes.

The FIC approach in fluidmechanics

The FIC equations for the balance of momentum in fluid mechanics are obtained by

expressing the equilibrium of forces along each space direction in a domain of finite size
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finite. Following a procedure analogous to that explained in the previous section for the

1D advection–diffusion problem, the momentum balance equation along the ith space

direction can be written as

∑

fid� =
∂

∂t

∫

�

ρvid� +

∫

Ŵ

(ρvi)v
T
n dŴ i = 1, nd (18)

where the different terms in the right-hand-side have been defined earlier and fi includes

the forces due to the stresses acting on the boundary Ŵ of the balance domain � and the

body forces bi. Figure 5 shows a typical 2D FIC domain for the balance of momentum

along the x1 direction. Similar domains are used for the other space directions.

The next step in to express the values of the momentum and force terms at the corner

points of the balance domain in terms of those at a reference point within the balance

domain using higher order Taylor expansions in the space directions. Retaining second

order terms in the expansions, yields the FIC momentum equations in fluid mechanics as

[1,12]

r̄mi −
1

2
hij

∂ r̄mi

∂xj
= 0 i, j = 1, nd (19)

where hij are the sizes of the balance domain (Fig 5). For the standard Eulerian formulation

in fluid mechanics [2,3]

r̄mi := ρ

[

∂vi

∂t
+

∂

∂xj
(vivj)

]

−
∂σij

∂xj
− bi (20)

with σij = sij − pδij , where p is the pressure, δij is the Dirac delta and sij are the viscous

deviatoric stresses related to the strain rates εij and the velocities vi as

sij = 2μ

(

εij − δij
1

3

∂vk

∂xk

)

where εij =
1

2

(

∂vi

∂xj
+

∂vj

∂xi

)

(21)

Note that distance h12 is arbitrary when writing the balance of momentum along the x1

direction. The same applies for the distance h21 when deriving the balance equation along

the x2 direction. Thus, in general, h12 �= h21.

Fig. 5 Finite domain where balance of momentum is imposed along the horizontal direction
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Mass balance equation

The FIC mass balance equation is obtained by invoking the balance of mass in the finite

size domain of Fig. 6
∫

Ŵ

ρvTndŴ = 0 (22)

Expanding the values of ρvi at the corner points in terms of the value at the corner point

A gives the FIC mass balance equation as [1,12]

εv −
1

2
hj

∂εv

∂xj
= 0 j = 1, nd with εv =

∂vi

∂xi
(23)

A matrix form of the characteristic distances is not obtained in this case as Eq. (22)

expresses the conservation of mass (which is a scalar quantity) in the domain ABCD of

Fig. 6 with dimensions h1 and h2. Distances h1 and h2 are in general different from the hij

defining the FICdomainwhere balance ofmomentum is enforced for each space direction.

In practice it is typically assumed that h1 = h11 and h2 = h22 for simplicity. The advantage

of choosing the hi distances independently of the hij ones can be explored in the search

of numerical schemes with enhanced properties for computational fluid mechanics.

Boundary conditions

TheFICNeumannboundary conditions areobtainedby expressing thebalanceofmomen-

tum in a domain of finite size adjacent to a boundary Ŵt where the surface tractions ti act.

After some algebra we obtain [1,12]

njσij − ti +
1

2
hijnjrmi = 0 on Ŵt j = 1, nd , no sum in i (24a)

In Eq. (24a) the hij distances define the domain where equilibrium of boundary tractions

is established. The boundary condition on the Dirichlet boundary Ŵv is the standard one:

vj − v
p
j = 0 on Ŵu (24b)

In the discretized problem the characteristic distances hij and hi become of the order

of the typical element dimension. The standard differential equations of momentum and

mass balance in fluid mechanics are recovered by making these distances equal to zero.

Fig. 6 FIC domain where balance of mass is enforced
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Eqs. (19), (23) and (24) are the starting point for deriving stabilized FEM for solving the

incompressible Navier-Stokes equations. The underlined FIC terms in Eqs. (19) and (24a)

suffice for overcoming the numerical instabilities occurring for high Reynolds numbers,

whereas the underlined terms in Eq. (23) take care of the eventual instabilities due to the

incompressibility constraint.

The discretized system of finite element equations can be obtained by interpolating the

velocities and the pressure in terms of nodal values using a mixed FEM formulation and

then applying the Galerkin method to the FIC governing equations.

An important feature of the FIC/FEM formulation is that it leads to a stabilized set

of equations when using equal order FEM interpolations for the velocity and pressure

variables [1,12].

Applications to the FIC/FEM procedure in fluid mechanics

The FIC/FEMprocedure has been successfully applied for solving theNavier-Stokes equa-

tions for incompressible flowproblems using the standard Eulerian formulation presented

above [12,19,38,39]. A mixed FEM with a linear interpolation for the velocities and the

pressure was used in both cases. FIC/FEM formulations for Stokes flows were reported

in [26,40]. Applications of the FIC/FEM technique to fluid-structure interaction (FSI)

problems were reported in [14] (for Eulerian flows) and in [41–44] (for Lagrangian flows).

The FIC/FEM procedure has been also applied to viscous and inviscid compressible flows

as reported in [7–9].

Oñate, Valls and García [23,24] showed that the stabilization terms introduced by the

FIC approach in the momentum equation for Eulerian flows provide enough stability

for solving high Reynolds number flows with the FEM without the need of resorting to a

turbulence model. This important feature of the FIC method has been recently extended

and exploited by Cotela [4] and Cotela, Oñate and Rossi [5] for the FIC/FEM analysis of

a range of incompressible turbulent flow problems.

Figure 7 presents a 3D simulation of unsteady incompressible flow around a cylinder at a

Reynolds number of 10,000. The diameter of the cylinder is 2 units and its length is 8 units.

The computation domain extends 15 units upstream, 60 units downstream, and 30 units

in the cross flow direction (Fig. 7a). The boundary conditions consist of uniform inflow

velocity set to 1.0, zero-normal-velocity and zero-shear-stress at the lateral boundaries,

traction-free conditions at the outflow boundary and no-slip at the cylinder surface.

The FIC/FEMcomputation used a structuredmesh of some 5millions linear tetrahedral

elements. The thickness of the layer of elements around the cylinder is 0.001. The time

step was set to 0.025 s. The time-averaged drag coefficient computed is 1.07 and compares

well with the experimental value of 1.12. The Strouhal number computed is 2.02 and also

agrees with experimental measurements.

Figures 7c1 show the isosurfaces of the vorticity vector modulus for three different

vorticity values. Figure 7c2 shows streamlines behind the cylinder within the recirculation

area. Details of this problem can be found in [23].

A particle finite element method via FIC

The FIC approach has also been used for deriving a Lagrangian Particle Finite Element

Method (PFEM, http://www.cimne.com/pfem) that has proven to be useful for solving a

variety of problems in fluid mechanics and fluid-structure interaction. The PFEM blends

http://www.cimne.com/pfem
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Fig. 7 a Computational domain for 3D flow past a cylinder. b Details of the mesh used for the computations.

(c1) Vorticity vector modulus w isosurfaces: w = 0.1, 0.2, 0.3; w = 0.2; (c2) Streamlines at time t = 50 [23]

concepts from Lagrangian particle-based techniques and the FEM. In the PFEM the

Lagrangian equations of motion for the fluid and solid domains that interact with each

other are solved on a finite element mesh which is regenerated at each time step using

the information from the nodes that are treated as virtual particles [41]. The physical

parameters of the problem are transferred from the nodes to the elements and viceversa

at each time step. For the numerical analysis of Lagrangian flows the infinitesimal form

of the momentum equations is used. However, the FIC approach is required for stabi-

lizing the mass conservationequation in the fluid, which allows using linear elements for

interpolating the velocities and the pressure [41].

The good performance of the FIC/PFEM formulation in terms of mass conservation

and accuracy for analysis of Lagrangian flows and FSI problems are reported in [44].

Figures 8, 9, 10 and 11 show examples of application of the PFEM to FSI problems.

Figures 8 and9 respectively show the studyof the effect ofwaves impactingon abreakwater

and the erosion and failure of a soil mass adjacent to the shore due to the action of the

waves. Figure 10 shows the impact of a landslide on four houses. Finally, Fig. 11 displays

the motion of cars and other objects and debrie particles passing over a vertical wall on a

tsunamiflow.Other applicationsof theFIC/PFEMformulation are reported in [38,41–44].

Fig. 8 Study of breaking waves on the edge of a breakwater structure formed by concrete blocks using the

particle finite element method (PFEM, http://www.cimne.com/pfem)

http://www.cimne.com/pfem
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Fig. 9 PFEM analysis of the erosion in a soil mass next to the shore front due to sea waves and the

subsequent falling into the sea of a lorry

Fig. 10 PFEM simulation of a landslide falling on four houses

A FIC/FEM formulation for solid mechanics

Application of the FICmethod to the equations of equilibriumof forces in solidmechanics

leads to the following modified governing equations (for the static case)

ri −
hij

2

∂ri

∂xj
= 0 i, j = 1, nd with ri :=

∂σij

∂xj
+ bi (25)
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Fig. 11 Dragging of cars and large and small objects and particles passing over a vertical wall in the

Fukushima tsunami (Japan). a The actual problem. b Numerical results obtained with the PFEM

The deviatoric stress-strain and the strain-displacement relationships have identical

form to Eq. (21), respectively substituting the viscosity μ by the shear modulus G and the

velocities vi by the displacements ui.

The FIC method can also be applied to derive a modified equation relating the pressure

and the volumetric strain change over a finite size domain as [16,18]

(

1

K
p − εv

)

−
hj

2

∂

∂xj

(

1

K
p − εv

)

= 0 , j = 1, nd (26)

where K is the volumetric elastic modulus and εv =
∂ui
∂xi

. For an incompressible material

K → ∞ and in this case Eq. (26) recovers a form analogous to that of the stabilized mass

balance equation in fluid mechanics (Eq. (23)).

The underlined terms in Eqs. (25) and (26) result from the FIC assumptions and, as

usual, hij and hk are the characteristic length parameters. The governing equations are

completed with the adequate boundary conditions. Once more, for consistency, the Neu-

mann boundary conditions should incorporate a FIC stabilization term as in Eq. (24a)

[16,18].

The FIC formulation in conjunction with the FEM has been successfully applied to the

static anddynamic solutionof quasi-incompressible and full incompressible solids using 3-
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noded triangles and 4-noded quadrilaterals and tetrahedra with equal order interpolation

for the displacements and the pressure [16,18,45].

Error estimation andmesh adaption procedures via FIC

The FIC approach can also be used for deriving a procedure for estimating the error in

the numerical solution. The FIC contributions to the discretized form of the modified

governing equations can be interpreted as a residual error term that depends on the

element size and that tends to zero for very fine meshes and, indeed, it vanishes for the

exact solution.

The application of the FIC technique to the estimation of the numerical error can be

viewed as a particular class of the so-called residual-based error estimation procedures

widely used in computational mechanics [46]. The fact that the residual error estimation

terms emerge naturally in the FIC formulation is a distinct feature of the method.

Oñate et al. [20] have used the FIC method for formulating a residual-based error esti-

mation technique and the corresponding mesh adaption scheme for analysis of incom-

pressible flows with the FEM.

Concluding remarks

The acceptance that the space-time domain where the balance equations are established

inmechanics has a finite size leads to amodified set of FIC governing differential equations

that incorporate the space and time dimensions of the balance domain. The FIC governing

equations can be taken as the starting point for deriving a wide range of finite element

methods and other numerical techniques with improved features in terms of stability and

accuracy for solving steady-state and transient problems of advective–diffusive-reactive

transport, fluid dynamics and incompressible solids, among many others.
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