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We solve the Skorokhod embedding problem (SEP) for a general time-homogeneous diffusion X: given
a distribution ρ, we construct a stopping time τ such that the stopped process Xτ has the distribution ρ.
Our solution method makes use of martingale representations (in a similar way to Bass (In Seminar on
Probability XVII. Lecture Notes in Math. 784 (1983) 221–224 Springer) who solves the SEP for Brownian
motion) and draws on law uniqueness of weak solutions of SDEs.

Then we ask if there exist solutions of the SEP which are respectively finite almost surely, integrable or
bounded, and when does our proposed construction have these properties. We provide conditions that guar-
antee existence of finite time solutions. Then, we fully characterize the distributions that can be embedded
with integrable stopping times. Finally, we derive necessary, respectively sufficient, conditions under which
there exists a bounded embedding.

Keywords: bounded time embedding; Skorokhod’s embedding theorem

Introduction

Let X be a one-dimensional time-homogeneous diffusion, and let ρ be a probability measure
on R. The Skorokhod embedding problem (SEP) for ρ in X is to find a stopping time τ such
that Xτ ∼ ρ. Our main goals in this article are firstly to construct a solution of the Skorokhod
embedding problem, and secondly to discuss when does there exist a solution which is finite,
integrable or bounded in time, and when does our construction have these properties.

Our construction is based on the observation that we can remove the drift of the time-
homogeneous diffusion by changing the space variable via a scale function. We can thus simplify
the embedding problem to the case where X is a local martingale diffusion. We then consider
a random variable that has the distribution we want to embed and that can be represented as
a Brownian martingale N on the time interval [0,1]. Further, we set up an ODE that uniquely
determines a time-change along every path of X. We then show, by drawing on a result of unique-
ness in law for weak solutions of SDEs, that the time-changed diffusion has the same distribution
as the martingale N . Thus the time-change provides a solution of the SEP.

Our solution is a generalization of Bass’s solution of the SEP for Brownian motion (see [3]).
Bass also starts with the martingale representation of a random variable with the given distri-
bution. By changing the martingale’s clock, he obtains a Brownian motion and an associated
embedding stopping time. The time-change is governed by an ODE, a special case of our ODE,
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which establishes an analytic link between Brownian paths and the embedding stopping time.
This link yields embedding stopping times for arbitrary Brownian motions.

Now consider properties of solutions of the SEP. As is well known from the literature, whether
a distribution is embeddable into the diffusion X depends on the relation between the support of
the distribution and the state space of X and the relation between the initial value X0 and the
first moment of the distribution. We include in our analysis a general discussion of sufficient
and necessary conditions for the existence of finite embedding stopping times, with particular
reference to our proposed construction.

Next, we fully determine the collection of distributions that can be embedded in X with inte-
grable stopping times. The associated conditions involve an integrability condition on the target
distribution which makes use of a function that also appears in Feller’s test for explosions (see,
e.g., [10]).

Finally, we address the question of whether a distribution can be embedded in bounded time.
Recall that the Root solution ([18]) of the SEP has the property that it minimises E[(τ − t)+]
uniformly in t . The Root solution τR is of the form τR = inf{t : (Xt , t) ∈ Rρ} where Rρ is a
‘barrier’; in particular Rρ = {(x, t) : t ≥ βρ(x)} ⊆ R × R+ for some suitably regular function
βρ depending on the target law. Hence, a necessary and sufficient condition for there to be an
embedding τ with τ ≤ T is that βρ(·) ≤ T . However, the Root barrier is non-constructive and
difficult to analyse (though for some recent progress in this direction see Cox and Wang [7] and
Oberhauser and Dos Reis [13]). For this reason, instead of searching for a single set of necessary
and sufficient conditions we limit ourselves to finding separate sets of necessary conditions and
sufficient conditions.

Our original motivation in developing a solution of the SEP for diffusions was to study
bounded stopping times with the aim of providing simple sufficient conditions for the existence
of a bounded embedding. The boundedness (finiteness) of an embedding is an important property
of the embedding used to solve the gambling in contests problem of Seel and Strack [19], and is
also relevant in the model-independent pricing of variance swaps, see Carr and Lee [4], Hobson
[9] and Cox and Wang [7].

Consider for a moment the case where X is a real-valued Brownian motion, null at 0. Then
it is possible to embed any target probability measure ρ in X. Moreover, ρ can be embedded
in integrable time if and only if ρ is centred and in L2, and then E[τ ] = ∫

x2ρ(dx). The case
of embeddings in bounded time is more subtle. Clearly a necessary condition for there to exist
an embedding τ of ρ in X such that τ ≤ 1 is that ρ is smaller that μG in convex order, where
μG is the law of a standard Gaussian. But this is not sufficient. Let μ±a be the uniform measure
on {−a,+a}. Then μ±a is smaller than μG in convex order if and only if a ≤ √

2/π. But any
embedding τ of μ±a has τ ≥ min{u : |Bu| ≥ a}, and thus does not satisfy τ ≤ T for any T . Hence,
we would like to find sufficient conditions on ρ such that there exists τ ≤ T with Xτ ∼ ρ. The
case where X is Brownian motion, possibly with drift, was considered in Ankirchner and Strack
[1]. Here we consider general time-homogeneous diffusions.

The paper is organized as follows. In Section 1, we describe our solution method of the SEP for
a diffusion without drift. In this section, we assume that the initial value of the diffusion coincides
with the first moment of the distribution to embed (the centred case). In the following Section 2,
we briefly explain how to construct solutions if the first moment does not match the initial value
(the non-centred case). In Section 3, we collect some general conditions which guarantee that a
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distribution can be embedded into X in finite time. We then consider integrable embeddings in
Section 4. Distinguishing between the centred and non-centred case, we provide sufficient and
necessary conditions for the existence of integrable solutions of the SEP. Section 5 discusses
bounded embeddings. In Section 6, we explain how one can reduce the SEP for diffusions with
drift to the case without drift. Finally, in Section 7 we illustrate our results with some examples.

1. The martingale case

We will argue in Section 6 below that the problem of interest can be reduced to the case in which
the process is a continuous local martingale. In this section, we describe a generalisation of the
Bass [3] solution of the SEP. The Bass solution is an embedding of ν in Brownian motion: we
consider embeddings in a local martingale diffusion which may be thought of as time-changed
Brownian motion.

Consider the time-homogeneous local martingale diffusion M , where M solves

dMs = η(Ms)dWs, with M0 = m; (1)

here m ∈ R and η :R → R+ is Borel-measurable. We assume that the set of points x ∈ R with
η(x) = 0 coincides with the set of points where 1

η
is not locally square integrable. Then a result

by Engelbert and Schmidt implies that the SDE (1) possesses a weak solution that is unique in
law (see, e.g., Theorem 5.5.4 in [10]). We define l = sup{x ≤ m | η(x) = 0} and r = inf{x ≥ m |
η(x) = 0} so that −∞ ≤ l ≤ r ≤ ∞ (to exclude trivialities we assume l < m < r) and for x ∈R,

q(x) =
∫ x

m

dy

∫ y

m

2

η2(z)
dz. (2)

By our assumption on η, q is infinite on (−∞, l) and (r,∞).

Remark 1. By Feller’s test, P[infs≤t Ms ≤ l] = 0 for one, and then every, t > 0 if and only if
q(l+) = limx↓l q(x) = ∞. Similarly, P[sups≤t Ms ≥ r] = 0 if and only if q(r−) = ∞ (see, e.g.,
Theorem 5.5.29 in [10]). Further, by results of Kotani [11], the local martingale M is a martingale
provided either −∞ < l or

∫
−∞ |x|η(x)−2 dx = ∞ and either r < ∞ or

∫ ∞
xη(x)−2 dx = ∞.

Note that our assumption that 1
η

is not locally square integrable at l and r implies that l and
r are absorbing boundaries if they can be reached in finite time. Then without loss of generality
we may assume that η = 0 on (−∞, l) and (r,∞) and η is positive on (l, r).

We want to embed a non-Dirac probability measure ν with
∫

x dν(x) = m. Let v =
inf{supp(ν)} and v = sup{supp(ν)} be the extremes of the support of ν, and let F be the dis-
tribution function associated to the target law ν. Moreover, let � :R → [0,1] be the cumula-
tive distribution function of the normal distribution and ϕ = �′ its density. Define the function
h = F−1 ◦ �. Let (W̃t )t≥0 be a Brownian motion on a filtration F̃ = (F̃t )t≥0. Notice that h(W̃1)

has the distribution ν. In particular, h(W̃1) is integrable and E[h(W̃1)] = m.
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We define the F̃-martingale Nt = E[h(W̃1) | F̃t ] for t ∈ [0,1]. Notice that N0 = m, N1 has
distribution ν and Nt = b(t, W̃t ), where

b(t, x) =
∫
R

h(y)ϕ1−t (x − y)dy = (ϕ1−t 	 h)(x),

and ϕv is the density of the normal distribution with variance v.
Since ν is not a Dirac measure we have that h is increasing somewhere, and hence, for all

t ∈ [0,1), the mapping x → b(t, x) is strictly increasing. Thus, we can define the inverse function
B : [0,1] ×R → R implicitly by

b
(
t,B(t, x)

) = x, for all t ∈ [0,1), x ∈R; (3)

moreover we set B(1, x) = h−1(x). The process N solves the SDE

dNt = bx

(
t,B(t,Nt )

)
dW̃t , N0 =

∫
x dν(x) = m. (4)

Define

λ(t, y) = bx(t, y)

η(b(t, y))
, �(t, y) = λ

(
t,B(t, y)

) = bx(t,B(t, y))

η(y)
. (5)

The candidate embedding which we want to discuss is δ(1) where δ solves

δ′(t) = �(t,Mδ(t))
2 = bx(t,B(t,Mδ(t)))

2

η(Mδ(t))2
, δ(0) = 0. (6)

Note that δ is increasing so that if δ is defined on [0,1) then we can set δ(1) = limt↑1 δ(t).

Theorem 1. If the ODE (6) has a solution on [0,1) for almost all paths of M , then δ(1) embeds
F into M , that is, the law of Mδ(1) is ν.

Proof. Let Yt = Mδ(t) for all t ∈ [0,1). By interchanging the time-change and integration, see,
for example, Proposition V.1.5 in [15], we get

Yt − m =
∫ δ(t)

0
η(Ms)dWs =

∫ t

0
η(Mδ(s))dWδ(s) =

∫ t

0
η(Ys)dWδ(s).

Let Zt = ∫ t

0
1√
δ′(s) dWδ(s), for t ∈ [0,1]. Notice that 〈Z,Z〉t = ∫ t

0
1

δ′(s) dδ(s) = t (Proposition
V.1.5 in [15]) and then by Lévy’s characterization theorem, Z is a Brownian motion on [0,1].
Next, observe that

Yt − m =
∫ t

0
η(Ys)

√
δ′(s)dZs =

∫ t

0
η(Ys)�(s,Mδ(s))dZs

(7)

=
∫ t

0
bx

(
s,B(s,Ys)

)
dZs,
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which shows that Y solves the SDE (4) with W replaced by Z; in other words (Y,Z) is a weak
solution of (4).

It follows directly from Lemma 2(a) in Bass [3] that bx(t,B(t, x)) is Lipschitz continuous in
x, uniformly in t , on compact subsets of [0,1) × R. Therefore, the SDE (4) has at most one
strong solution on [0,1) and hence (4) is pathwise unique, from which it follows (see, e.g.,
Section 5.3 in [10]) that solutions of (4) are unique in law. Hence, for t < 1, Yt = Mδ(t) has the
same distribution as Nt , and in the limit t tends to 1 we have N1 and hence Y1 has law ν. �

Remark 2. Notice that the assumption that
∫

xν(dx) = m is crucial for the conclusion of The-
orem 1. Indeed, if

∫
xν(dx) �= m, then Y and N solve the same SDE, but with different initial

conditions. Hence, one cannot derive that Y1 has the same distribution as N1.

We next aim at showing that δ(1) is a stopping time with respect to F
M = (FM

t )t≥0, the
smallest filtration containing the filtration generated by the martingale M and satisfying the usual
conditions. To this end we consider, as in [3], the ODE satisfied by the inverse of δ(t). The ODE
for the inverse is Lipschitz continuous and hence guarantees that Picard iterations converge to a
unique solution.

Lemma 1. Let M be a path of the solution of (1). Then (6) has a solution on [0,1) if and only if
there exists a ∈R+ ∪ {∞} such that the ODE

′(s) = η(Ms)
2

bx((s),B((s),Ms))2
(8)

has a solution on [0, a) with lims↑a (s) = 1.

Proof. Assume that there exists a solution of (6) on [0,1). Set a = δ(1) and define (s) =
δ−1(s) for all s ∈ [0, a]. Then a straightforward calculation shows that  satisfies (8).

The reverse direction can be shown similarly. �

Remark 3. If η = 1, then the ODE (8) is the ODE (1) of Bass’ paper [3].

Lemma 2. Suppose the ODE (6) has a solution on [0,1) for almost all paths of M . Then δ(t) is
an F

M -stopping time, for all t ∈ [0,1].

Proof. Let C be a compact subset of [0,1) ×R+. By Lemma 2 of Bass [3], bx(t, x) and B(t, x)

are Lipschitz continuous on C. Moreover, on C the function bx is bounded away from zero and
bounded from above. This implies that 1

bx(t,B(t,x))2 is Lipschitz continuous on C, too.

Define the mapping γ : (t, y) → η(Mt )
2

bx(y,B(y,Mt ))2 . Now let D be a compact subset of R+ × [0,1).

Then there exists an L ∈R+ such that for all (t, y) and (t, ỹ) ∈ D we have∣∣γ (t, y) − γ (t, ỹ)
∣∣ ≤ Lη(Mt)

2|y − ỹ|,
that is, γ is Lipschitz continuous in the second argument.
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We define the Picard iterations 0(t) = 0 and for n ≥ 0,

n+1(t) = 1 ∧
∫ t

0

η(Ms)
2

bx(n(s),B(n(s),Ms))2
ds.

We have that n(t) = 1 after the first time where n attains 1. The assumptions on η guarantee
that

∫ s

0 η(Mt)
2 dt is finite, a.s. for each s < a (see, e.g., Section 5.5 in [10]). By standard argu-

ments, one can now show that n(t) converges to a limit (t) on [0, a), where (a) = 1 for all
t ≥ a. In particular, (t) is FM

t -measurable; moreover (t) solves the ODE (8) on [0, a).
Now let t ∈ [0,1) and u ∈R+. Observe that

{
δ(t) ≤ u

} = {
(u) ≥ t

}
.

The RHS is FM
u -measurable, which implies that δ(t) is an (FM

t )-stopping time. The limit δ(1) =
limt↑1 δ(t) is also an (FM

t )-stopping time. �

Lemma 3. There exists a solution of (6) on [0,1) for almost all paths of M if and only
if

∫ T

0 �(t,Nt )
2 dt < ∞, a.s. for all T < 1. In this case, δ(1) has the same distribution as∫ 1

0 �(t,Nt )
2 dt .

Proof. For all n ∈ N let ξn = 1 ∧ inf{t ≥ 0 | ∫ t

0 �(s,Mδ(s))
2 ds ≥ n} and ζn = 1 ∧ inf{t ≥ 0 |∫ t

0 �(s,Ns)
2 ds ≥ n}. By appealing to uniqueness in law of solutions of (4) one can show, as in

the proof of Theorem 1, that (Mδ(t))0≤t≤ξn and (Nt )0≤t≤ζn have the same distribution. Moreover,
ξn and ζn have the same distribution, and therefore, limn P[ξn = 1] = 1 if and only if limn P[ζn =
1] = 1. �

Recall (Monroe [12]) that a solution σ of the SEP for ν in M is minimal if whenever τ is a
solution of the SEP for ν in M such that τ ≤ σ then τ = σ almost surely. The following result
shows that δ(1) is minimal, provided it exists. In particular, the Bass embedding [3] is minimal.

Proposition 1. Suppose
∫ t

0 �(s,Ns)
2 ds < ∞ almost surely, for every t < 1, or equivalently

δ(t) < ∞ almost surely for each t < 1. Then δ(1) is a minimal embedding of ν in M .

Proof. We have (Nt )0≤t≤1 = (Et [h(W̃1])0≤t≤1 is uniformly integrable (UI). Since, by construc-

tion Y
L= N , it follows that (Yt )0≤t≤1 is UI. But Yt ≡ Mδ(t) and Ms = WAs for some time-change

A and some Brownian motion W and hence (WA◦δ(s))0≤s≤1 = (Ws∧(A◦δ)(1))s≥0 is UI. Monroe
[12, Theorem 3] proves that in the Brownian case, if τ is an embedding of ν in a Brownian mo-
tion W and if W0 = ∫

xν(dx) then τ is minimal if and only if (Wt∧τ )t≥0 is UI. Hence, Aδ(1) is
minimal for ν in W . Since A is increasing we can conclude that δ(1) is minimal for ν in M . �

Theorem 2. Suppose supp(ν) ⊆ [l, r]. Recall M0 = m and suppose ν ∈ L1 and
∫

xν(dx) = m.
Then δ(1) exists and is a minimal embedding of ν in M .
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Proof. For t < 1, Nt ∈ (v, v) ⊆ (�, r) and since 1
η

is locally square integrable
∫ t

0 �(s,Ns)
2 ds =∫ t

0
bx(s,B(s,Ns))

2

η(Ns)2 ds < ∞ almost surely. Hence, δ(t) exists and is finite for each t < 1 and Mδ(1)

has law ν. �

Suppose ν places mass outside [�, r]. Then it is clear that it is not possible to embed ν in M

using any embedding. To see that this holds true for δ(1), suppose v > r . Then for each t < 1
we have b(t, ·) :R → (v, v) and there exists a continuous function y(t) such that b(t, y) > r for
y > y(t). Then,

∫ T

0 λ(t, W̃t )
2 dt = ∞ for all T < 1 such that sup0<s<T W̃s − y(s) > 0. Since

the set sup0<s<1 W̃s − y(s) > 0 has positive probability, δ explodes before time 1 with positive
probability also.

Standing Assumption 1. Henceforth, we will assume that ν places no mass outside [�, r].

Recall that we have assumed that we are given a diffusion with M0 = m, and that the target
measure ν satisfies ν ∈ L1 and m = ∫

xν(dx). We call this the centred case. In the next section,
we consider what happens if we relax this assumption.

In the case where ν ∈ L1 but m �= ∫
xν(dx), we introduce an embedding δ∗ which involves

running the martingale M until it first hits
∫

xν(dx) and then using the stopping time δ(1) defined
above, but for M started at

∫
xν(dx).

Then in subsequent sections we will ask, when does there exist a finite (respectively {inte-
grable, bounded}) embedding, and when does δ(1) or more generally δ∗ have this property.

2. The non-centred case

In this section, we do not assume that ν ∈ L1 and that m = ∫
xν(dx).

When at least one of
∫
−∞ |x|ν(dx) and

∫ ∞
xν(dx) is finite we write ν∗ = ∫

xν(dx) ∈ R̄. Note
that we assume that ν has support in the state space of M .

Proposition 2 (Pedersen and Peskir [14], Cox and Hobson [5]). Suppose −∞ < l < m <

r < ∞. Then for there to be an embedding of ν in M we must have that
∫

xν(dx) = m. In this
case M is a uniformly integrable martingale.

Suppose −∞ = l < m < r < ∞. Then there exists an embedding of ν in M if and only if
ν∗ ≥ m. Conversely, if −∞ < l < m < r = ∞ there exists an embedding of ν in M if and only if
ν∗ ≤ m.

Finally, suppose −∞ = l < m < r = ∞. Then we can embed any distribution ν in M .

Proof. In the bounded case, the fact that M is a bounded local martingale gives that it is a UI-
martingale, and hence

∫
xν(dx) = E[Mτ ] = M0 = m.

For the second case, the upper bound on the state space means that M is a submartingale
so that the condition m ≤ ν∗ is necessary. Then provided ν ∈ L1 we can run M until it first
reaches ν∗ ∈ [m,∞). Note that M hits ν∗ in finite time by the argument in Karatzas, Shreve
[10], Section 5.5 C. Then we can embed ν using the local martingale M started from ν∗ (using,
for example, the time δ(1) defined above, or the Azéma–Yor construction as in Pedersen and
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Peskir [14]). If ν∗ is infinite, then we need a different construction, see, for example, Cox and
Hobson [5].

For the final case, any distribution can be embedded in M . If ν ∈ L1 then we can run M until it
hits ν∗ and then consider an embedding for the local martingale started at the mean of the target
distribution. If ν /∈ L1, then we can use the construction in [5], but not the one in this paper. �

Let HM
z be the first hitting time of z by M , and more generally let HX

x be the first hitting
time of x by a stochastic process X. Suppose μ ∈ L1 and let δν∗(1) be the stopping time δ(1)

constructed in the previous section to embed ν in the time-homogeneous diffusion started at
M0 = ν∗. Then let δ∗ = HM

ν∗ + δν∗(1). By the results of the proposition, provided ν ∈ L1 and
both ν∗ ≤ m if r < ∞ and ν∗ ≥ m if l > −∞, then δ∗ is an embedding of ν.

3. Finite embeddings

3.1. The centred case

Suppose ν ∈ L1 and m = ∫
xν(dx).

Proposition 3.

(i) If � > −∞, M does not hit � in finite time and ν({l}) > 0 or if r < ∞, M does not hit r in
finite time and ν({r}) > 0, then any embedding of ν has τ = ∞ with positive probability.

(ii) Otherwise, either � = −∞, or M does not hit � in finite time and ν({�}) = 0 or M can hit
� in finite time and either r = ∞, or M does not hit r in finite time and ν({r}) = 0 or M

can hit r in finite time. Then if τ is an embedding of ν we have that τ̄ = τ ∧ HM
� ∧ HM

r is
also an embedding of ν and τ̄ is finite almost surely.

Proof. (i) Suppose τ is any embedding of ν in M . Then τ = ∞ on the set where Mτ ∈ {�, r}.
Moreover, this set has positive probability by assumption.

(ii) If τ is an embedding of ν, then Mt∧τ converges almost surely, even on the set τ = ∞.
However, if (� = −∞, r = ∞) then by the Rogozin trichotomy (see [17]), −∞ = lim infMt <

lim supMt = ∞ and (Mt)t≥0 does not converge. Hence, we must have τ < ∞.
Otherwise, one or both of {�, r} is finite. Then M converges and so if τ = ∞ then either

Mτ = � or Mτ = r .
If � or r is finite but M hits neither � nor r in finite time, then τ = ∞ is excluded outside a set

of measure zero by the hypothesis that ν({�}) = 0 and ν({r}) = 0. Hence, τ < ∞ almost surely.
Finally, if M can hit either � or r in finite time then it will do so and τ̄ = HM

� ∧ HM
r < ∞.

�

Corollary 1. If there exists an embedding τ of ν in M which is finite almost surely then δ(1) is
finite almost surely.

Proof. If there is a finite embedding, then we must be in case (ii) of the proposition. Then
δ(1) ∧ HM

� ∧ HM
r is finite almost surely. But also δ(1) ≤ HM

� ∧ HM
r so that δ(1) < ∞ almost

surely. �



Finite, integrable and bounded time embeddings for diffusions 1075

3.2. The non-centred case

Suppose ν and m are such that an embedding exists (recall Proposition 2). Necessarily we must
have that at least one of � and r is infinite.

Suppose ν ∈ L1 so that ν∗ and δ∗ are well defined. Then since HM
ν∗ is finite almost surely, we

have that δ∗ is finite if and only if δν∗(1) is finite almost surely.
Then the result for the non-centred case is identical to both the proposition and the corollary

describing the results in the centred case, modulo the substitution of δ∗ for δ(1) in Corollary 1.

4. Integrable embeddings

4.1. The centred case

Suppose ν ∈ L1 and m = ∫
xν(dx).

In this section, we provide an integrability condition on ν that guarantees that (6) has a solution
on [0,1] and that δ(1) is integrable. Notice that q is twice continuously differentiable on (l, r).
The second derivative

q ′′(x) = 2

η2(x)

is positive, which means that q is convex. Moreover, q is decreasing on (l,m) and increasing on
(m, r); in particular q ≥ 0.

Theorem 3. If the function q is integrable wrt ν, then the ODE (6) has a solution on [0,1] for
almost all paths of M and δ(1) is integrable. In this case, E[δ(1)] = ∫

q(x)ν(dx).

Proof. Assume first that q is integrable wrt ν. This means that the random variable q(N1) is
integrable. Let

τn = 1 ∧ inf

{
t ≥ 0

∣∣∣ ∫ t

0

∣∣q ′(Ns)bx

(
s,B(s,Ns)

)∣∣2 ds ≥ n

}
, (9)

and observe that (Nu)u≤s is bounded away from l and r for any s < 1, and hence τn ↑ 1, a.s. By
Itô’s formula, and using q(N0) = q(m) = 0, we get

q(Nτn) =
∫ τn

0
q ′(Ns)bx

(
s,B(s,Ns)

)
dW̃s + 1

2

∫ τn

0
q ′′(Ns)bx

(
s,B(s,Ns)

)2 ds

=
∫ τn

0
q ′(Ns)bx

(
s,B(s,Ns)

)
dW̃s +

∫ τn

0

bx(s,B(s,Ns))
2

η2(Ns)
ds.

Taking expectations, the martingale part disappears and we obtain

E

[∫ τn

0

bx(s,B(s,Ns))
2

η2(Ns)
ds

]
= E

[
q(Nτn)

]
. (10)
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Notice that Jensen’s inequality implies that

0 ≤ q(Nτn) ≤ E
[
q(N1) | F̃τn

]
.

Since the family (E[q(N1) | F̃τn ])n≥1 is uniformly integrable, also (q(Nτn))n≥1 is uniformly
integrable. Therefore we can interchange the expectation operator and the limit n → ∞ on the
RHS of (10). By monotone convergence, we can do so also on the LHS and hence we get

E

[∫ 1

0

bx(s,B(s,Ns))
2

η2(Ns)
ds

]
= E

[
q(N1)

]
< ∞.

Lemma 3 implies that the ODE (6) has a solution on [0,1] for almost all paths of M and that
δ(1) is integrable. �

The reverse statement of Theorem 3 holds true as-well, that is, if δ(1) is integrable, then q is
integrable wrt ν. Indeed, we next show that the existence of an arbitrary integrable solution of
the SEP implies that q is integrable wrt ν.

Proposition 4. Any stopping time τ that solves the SEP satisfies

E[τ ] ≥
∫

q(x)dν(x). (11)

Proof. Recall that τ = τ ∧ Hl ∧ Hr . Since � is absorbing if H� < ∞ and similarly if Hr < ∞
then r is absorbing, we have that Mτ = Mτ and τ is also an embedding of ν.

Let τ be an stopping time with Mτ ∼ ν. Suppose that τ is integrable; else the statement is
trivial. Let

σn = n ∧ inf

{
t ≥ 0

∣∣∣ ∫ t

0

∣∣q ′(Ms)
∣∣2

η(Ms)
2 ds ≥ n

}
.

Observe that σn ↑ Hl ∧ Hr , a.s. Using Itô’s formula, we obtain

E
[
q(Mτ∧σn)

] = q(M0) +E

[
1

2

∫ τ∧σn

0
q ′′(Ms)d〈M,M〉s

]
(12)

= E[τ ∧ σn].
Then Fatou’s lemma implies

E
[
q(Mτ )

] = E
[
q(Mτ )

] ≤ lim inf
n

E
[
q(Mτ∧σn)

] ≤ E[τ ] ≤ E[τ ],

and hence (11). �

Remark 4. Notice that if M attains the boundary l with positive probability in finite time, then
the function q is finite at l. In this case ν can have mass on l. If M does not attain the boundary
l in finite time, then obviously a distribution ν with mass in l can not be embedded with an
integrable stopping time. Similar considerations apply at the right boundary r .
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Theorems 3 and 4 imply the following corollaries.

Corollary 2. Suppose ν ∈ L1 and m = ∫
xν(dx). There exists an integrable solution τ of the

SEP if and only if q is integrable wrt ν. In this case, τ satisfies (11).

Corollary 3. Suppose ν ∈ L1 and m = ∫
xν(dx). Whenever there exists an integrable solution

of the SEP, then δ(1) is also an integrable solution.

4.2. The non-centred case

Suppose we are given a local martingale diffusion M started at M0 = m and a measure ν ∈ L1

with ν∗ �= m.
Recall the definition of q in (2). To emphasise the role of the initial point, write qm for this

expression. More generally, for n ∈ (l, r) define

qn(x) =
∫ x

n

dy

∫ y

n

dz
2

η(z)2
. (13)

Then qm(z) = qn(z) + qm(n) + q ′
m(n)(z − n). As q = qm, in particular

q(z) = qν∗(z) + q
(
ν∗) + q ′(ν∗)(z − ν∗)

and
∫

q(z)ν(dz) = ∫
qν∗(z)ν(dz)+q(ν∗). Hence,

∫
q(z)ν(dz) is finite if and only if

∫
qν∗(z)ν(dz)

is finite.
We state the following theorem in the case m > ν∗ which necessitates r = ∞, and then � ∈

[−∞,m). There is a corresponding result for m < ν∗ in which the condition limn↑∞ q(n)/n < ∞
is replaced by limn↑∞ q(−n)/n < ∞. Note that the limit limn q(n)/n is well defined because q

is convex.

Theorem 4. Suppose m > ν∗.
Suppose

∫
q(z)ν(dz) < ∞ and limq(n)/n < ∞. Then δ∗ is an integrable embedding of ν.

Conversely, suppose there exists an integrable embedding τ of ν in M . Then
∫

q(z)ν(dz) < ∞
and limq(n)/n < ∞.

Proof. Consider the first part of the theorem. By the comments before the theorem, we may
assume that

∫
qν∗(z)ν(dz) < ∞ and hence, for M started at ν∗, E[δν∗(1)] < ∞. Then, it is

sufficient to show that E[HM
ν∗ ] < ∞. But

E
[
HM

ν∗
] = lim

n↑∞E
[
HM

ν∗ ∧ HM
n

] = lim
n↑∞E

[
q(MHM

ν∗∧HM
n

)
]

= q
(
ν∗) lim

n↑∞
n − m

n − ν∗ + lim
n↑∞q(n)

m − ν∗

n − ν∗

= q
(
ν∗) + (

m − ν∗) lim
n↑∞

q(n)

n
,

which is finite under the assumption that limq(n)/n < ∞.
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For the converse, suppose that τ is an integrable embedding. Without loss of generality, we
may assume that τ is minimal; if not we may replace it with a smaller embedding which is also
integrable. Then∫

q(x)ν(dx) = E

[
lim inf
n→∞ q(Mτ∧HM−n∧HM

n
)
]

≤ lim inf
n→∞ E

[
q(Mτ∧HM−n∧HM

n
)
]

= lim
n→∞E

[
τ ∧ HM−n ∧ HM

n

]
= E[τ ] < ∞.

It remains to show that E[HM
ν∗ ] < ∞. Recall that this is equivalent to the condition

limn↑∞ q(n)/n < ∞.
Recall that by the Dubins–Schwarz theorem (Rogers and Williams [16], page 64) we can

write Mt = ŴCt for a G = (Gt )t≥0-Brownian motion Ŵ where Gs = F
C−1

s
. Let σ = Cτ . Then

Mτ = ŴCτ = Ŵσ and σ embeds ν in Ŵ .
Since σ is a minimal embedding of ν in Ŵ , by Theorem 5 of Cox and Hobson [6]

lim
n

nP
[
σ > HŴ−n

] = 0. (14)

Moreover, by arguments in the proof of Lemma 11 of Cox and Hobson [6], for any stopping time
σ̃ ≤ σ

E
[|Ŵσ̃ |] ≤ E

[|Ŵσ |] =
∫

|z|ν(dz).

Hence, (Ŵt∧σ )t≥0 is bounded in L1, and then by Theorem 1 of Azéma et al. [2], (Ŵt∧σ )t≥0

is uniformly integrable if and only if limn nP[σ > HŴ−n ∧ HŴ
n ] = 0. Since ν is not centred and

(Ŵt∧σ )t≥0 is not UI, it follows from (14) that limn nP[σ > HŴ
n ] > 0. But (σ > HŴ

n ) ≡ (τ >

HM
n ) so lim supn nP[τ > HM

n ] > 0.
Then

E[τ ] = lim
n

E
[
q(Mτ∧HM

n
)
]

≥ lim
n

E
[
q(n); τ > HM

n

]
= lim

n

(
q(n)

n
nP

[
τ > HM

n

])

≥ lim
q(n)

n
· lim supnP

[
τ > HM

n

]
.

Then, if E[τ ] < ∞ it follows that lim q(n)
n

< ∞ and E[HM
ν∗ ] < ∞. �

Finally, we consider the case where ν /∈ L1.
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Lemma 4. Suppose ν /∈ L1. If τ is an embedding of ν, then τ is not integrable.

Proof. Observe that q(x) ≥ 0 and that if ν /∈ L1 then since q is convex we must have∫
q(x)ν(dx) = ∞. Then if τ is an embedding of ν

E[τ ] = lim
n↑∞E

[
τ ∧ H

q(M)
n ∧ H

q(M)
−n

] = lim
n↑∞E

[
q(M

τ∧H
q(M)
n ∧H

q(M)
−n

)
]

≥ E

[
lim inf
n↑∞ q(M

τ∧H
q(M)
n ∧H

q(M)
−n

)
]

= E
[
q(Mτ )

] = ∞. �

5. Bounded time embedding

5.1. The centred case

In this section, we analyze the question under which conditions we can guarantee the stopping
time δ(1) to be bounded, that is, δ(1) ≤ T ∈ R+. Let us first state a necessary condition which
places a lower bound on how little mass must be embedded in each a neighbourhood of a point x.

Theorem 5. Suppose that η is locally bounded and denote by η∗ its upper semicontinuous enve-
lope. If a distribution with distribution function F can be embedded before time T > 0, then for
all x ∈ R with 0 < F(x) < 1 it must hold that

lim sup
ε↓0

−ε2 ln
(
F(x + ε) − F(x − ε)

) ≤ π2

8
T η∗(x)2. (15)

Proof. Fix x and suppose t ′ is such that Mt ′ = x.
For ε > 0 define Bε(x) = {y | |y − x| < ε} and η̄(x, ε) = max{η∗(z) | z ∈ B̄ε(x)}. Note that on

t ≥ t ′ the process M̃ which solves the SDE dM̃t = η̃(Mt )dWt where

η̃(m) = (
1{m∈Bε(x)}η(m) + 1{m/∈Bε(x)}η̄(m, ε)

)
subject to M̃t ′ = Mt ′ = x, coincides with M up to the first leaving time of Bε(x). Moreover,
there exists a Brownian motion W̃ such that on t ≥ t ′, M̃t = W̃�t , where �(t) = ∫ t

t ′ η̃(Ms)
2 ds ≤

η̄(x, ε)2t . Then

P

[
sup

t ′≤t≤T

|Mt − Mt ′ | < ε
]

= P

[
sup

t ′≤t≤T

|M̃t − M̃t ′ | < ε
]

= P

[
sup

t ′≤t≤T

|W̃�(t) − W̃�(t ′)| < ε
]

≥ P

[
sup

0≤s≤η̄(x,ε)2T

|Ws | < ε
]
.
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The probability for the absolute value of the Brownian motion W to stay within the ball Bε(0)

up to time KT ≥ 0 is given by (see Section 5, Chapter X in Feller [8])

P

[
sup

s∈[0,K2T ]
|Ws | < ε

]
= 4

π

∞∑
n=0

1

2n + 1
e−(2n+1)2π2/(8ε2)KT (−1)n

≥ 4

π
e−π2/(8ε2)KT − 4

3π
e−9π2/(8ε2)KT ≥ 8

3π
e−π2/(8ε2)KT .

Assume that there exists a stopping time τ such that Mτ has the distribution F . Denote by
ζ = inf{t ≥ 0 :Mt = x} the first time the process M hits x. Since F(x) /∈ {0,1}, the event A =
{ζ < τ } occurs with positive probability.

Let Fζ be the σ -field generated by M up to time ζ and observe that A ∈Fζ . Note further that
the process Z = (Zh)h≥0 given by Zh = Mh+ζ − Mζ is independent of Fζ .

Now suppose τ is bounded by T . The mass of F on the ball Bε(x) has to be at least as large as
the probability that A occurs and that X stays within the ball Bε(x) between ζ and T . Therefore,

F(x + ε) − F(x − ε) ≥ P

[
A ∩

{
sup

ζ≤s≤T

|Ms − Mζ | < ε
}]

= P[A]P
[

sup
ζ≤s≤T

|Ms − Mζ | < ε
]

≥ P[A] 8

3π
e−π2/(8ε2)η̄(x,ε)2T .

Hence, we have

−ε2 ln
(
F(x + ε) − F(x − ε)

) ≤ ε2 ln
3π

8P[A] + π2

8
η̄(x, ε)2T ,

which implies the result. �

Now we turn to the converse, and sufficient conditions for these to exist an embedding of ν in
bounded time. Suppose again that ν ∈ L1 and M0 = m = ∫

xν(dx).
Recall the definition of r in (5). The first result is an immediate corollary of Theorem 1.

Corollary 4. If λ(t, y)2 is bounded by T ∈ R+, for all y ∈ R and t ∈ [0,1], then the stopping
time δ(1) is also bounded by T .

Proposition 5. Assume that F is absolutely continuous and has compact support. Suppose F

has density f . If η and f are bounded away from zero, then the stopping time δ(1) is bounded.

Proof. Note that h′ = ϕ

f ◦F−1◦� and thus it follows from f bounded away from zero that h′ is
bounded. Hence, bx is bounded and thus λ(t, y) is bounded. �



Finite, integrable and bounded time embeddings for diffusions 1081

Lemma 5. Suppose that η is concave on (l, r). Let F be an absolutely continuous distribution
with supp(F ) ⊆ [l, r] and suppose that supx∈[l,r]

h′(x)
η(h(x))

≤ √
T < ∞. Then F is embeddable in

bounded time, and there exists an embedding τ with τ ≤ T .

Proof. We have b(t, x) = (ϕ1−t 	 h)(x) and

bx(t, x) = (
ϕ1−t 	 h′)(x) ≤ √

T
(
ϕ1−t 	 (η ◦ h)

)
(x) ≤ √

T η ◦ (ϕ1−t 	 h)(x) = √
T η

(
b(t, x)

)
and then λ(t, x)2 ≤ T and the result follows from Corollary 4. �

Remark 5. More generally for the existence of a bounded embedding it is sufficient that there is
a concave function ξ and ε in (0,1) for which εξ ≤ η ≤ ε−1ξ . Then if supx∈[l,r]

h′(x)
η(h(x))

≤ √
T

bx(t, x) ≤ √
T ε−1(ϕ1−t 	 (ξ ◦ h)

)
(x) ≤ √

T ε−1ξ ◦ (ϕ1−t 	 h)(x) ≤ √
T ε−2η

(
b(t, x)

)
,

and λ(t, x)2 ≤ T ε−4.

Remark 6. The sufficient condition from Lemma 5 implies a stronger version of the necessary
condition of Theorem 5. Indeed, it implies that the limit superior of the left hand side of equation
(15) is equal to zero. To show this, let η be locally bounded and assume that F satisfies the
assumptions of Lemma 5. Then for all z ∈ (v, v̄), the interior of supp(F ), we have

f (z) ≥ 1√
T

ϕ ◦ �−1 ◦ F(z)

η(z)
.

Let x ∈ (v, v̄). Since η is locally bounded there exists B ∈ R+ such that η(z) ≤ B for z close
enough to x. Then, for ε small we have

ln
(
F(x + ε) − F(x − ε)

) = ln

(∫ x+ε

x−ε

f (z)dz

)

≥ ln

(
1√
T B

∫ x+ε

x−ε

ϕ ◦ �−1 ◦ F(z)dz

)
,

and applying Jensen’s inequality we obtain

ln
(
F(x + ε) − F(x − ε)

) ≥ ln
2ε√
T B

− 1

4ε

∫ x+ε

x−ε

[(
�−1 ◦ F(z)

)2 + ln 2π
]

dz.

Consequently lim supε↓0 −ε2 ln(F (x + ε) − F(x − ε)) = 0.

5.2. The non-centred case

If M is a martingale and if τ is bounded by L, then Mt∧τ is uniformly integrable and E[Mτ ] = m.
Hence, there are no embeddings of ν in M if ν /∈ L1 or ν∗ �= m.
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If M is a local martingale but not a martingale, then we may have τ ≤ L and E[Mτ ] �= M0 = m.
However, δ∗ is not bounded since δ∗ > HM

ν∗ which is not bounded.
For example, let m = 1 and η(x) = x2 so that dMt = M2

t dBt , and M is the reciprocal of a
3-dimensional Bessel process. Let ν = L(M1). Then ν ∈ L1 and ν∗ ≤ 1 = m. Then, trivially,
τ ≡ 1 is a bounded embedding of 1.

6. General diffusions

Let (Xt )t≥0 be a solution to

dXt = β(Xt)dt + α(Xt )dWt, with X0 = x0,

where x0 ∈ R, β :R → R and α :R → R are Borel-measurable. We assume that X takes values
only in an interval [l, r] with −∞ ≤ l < x0 < r ≤ ∞. Moreover, we assume that α(x) �= 0 for all
x ∈ (l, r) and that 1+|β|

α2 is locally integrable on (l, r).
Suppose we want to embed ρ in X with a stopping time τ .
By changing the space scale one can transform the diffusion X into a continuous local martin-

gale. To this end, we define the scale function s (cf. [15], Chapter VII, §3) via

s(x) =
∫ x

x0

exp

(
−

∫ y

x0

2β(z)

α(z)2
dz

)
dy, x ∈ (l, r).

Note that we are always free to choose the scale function such that M0 = s(x0) = 0, and we have
done so.

Then s solves β(x)s′(x)+ 1
2α2(x)s′′(x) = 0. Note that the scale function s is strictly increasing

and continuously differentiable. Itô’s formula implies that Mt = s(Xt ) is a local martingale with
integral representation

Mt =
∫ t

0
s′(Xs)α(Xs)dWs.

Thus dMt = η(Mt)dWt where η ≡ (s′α) ◦ s−1.
Note that ∫ χ+ε

χ−ε

1

((s′α) ◦ s−1)2(z)
dz =

∫ s−1(χ+ε)

s−1(χ−ε)

1

α2(z)s′(z)
dz.

Since s is continuous, 1
η

is locally square integrable provided

1

α(y)
√

s′(y)
= 1

α(y)
exp

(
−

∫ y

x0

2β(z)

α(z)2
dz

)−1/2

= 1

α(y)
exp

(∫ y

x0

β(z)

α(z)2
dz

)

is locally square integrable which follows from our assumptions on the pair (α,β).
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Let Fρ be the distribution function of ρ. If ν = ρ ◦ s−1 so that F(x) = Fρ(s−1(x)), then
Xτ ∼ ρ is equivalent to Mτ ∼ ν. Then ν has mean zero if and only if∫

R

s(x)ρ(dx) = 0. (16)

Clearly the requirement that τ is finite, integrable or bounded is invariant under the change of
scale. However, in the case of bounded embeddings we can give a simple sufficient condition in
terms of data relating to the general diffusion X.

Define g = F−1
ρ ◦ � and h = s ◦ g = F−1 ◦ �.

Theorem 6. If x → − 2β(x)
α(x)

+ α′(x) is non-increasing and g′
α◦g is bounded by

√
T , then ρ can

be embedded in X in bounded time. In particular, there exists an embedding τ with τ ≤ T .

Proof. We prove in the first step that η ≡ (s′α) ◦ s−1 is concave. We have

η′ = ((
s′α

) ◦ s−1)′ = (s′′α + s′α′) ◦ s−1

s′ ◦ s−1
=

(
−2β

α
+ α′

)
◦ s−1

where we have used the fact that s solves αs′′ = −2βs′/α. As s−1 is monotone increasing, under
the first hypothesis of the theorem we have that ((s′α) ◦ s−1)′ is non-increasing and hence η is
concave.

We have h = s ◦ g and hence, again by hypothesis,

h′

η ◦ h
= (s′ ◦ g)g′

(s′α) ◦ g
= g′

α ◦ g
≤ √

T .

Lemma 5 implies that ν can be embedded in M with a stopping time τ satisfying τ ≤ T , and the
same stopping time embeds ρ in X. �

7. Examples

7.1. Brownian motion with drift

Let X be a Brownian motion with drift, that is,

Xt = x0 + γ t + θWt ,

where γ ∈ R, θ > 0 and x0 = 0. The scale function equals

s(x) =
{ 1

κ

(
1 − exp(−κx)

)
for κ �= 0,

x for κ = 0,

with κ = 2γ

θ2 . If κ > 0 then s(R) = (−∞,1/κ), whereas if κ < 0 then s(R) = (1/κ,∞). Then, if
M = s(X) we have dMt = θ(1 − κMt)dWt , and M is a martingale.
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Suppose the aim is to embed ρ. Let Fρ be the distribution function of ρ and write ν = ρ ◦ s−1.
Since ρ is a measure on R, ν is a measure on (l, r) and any embedding τ is finite. Note that

ν∗ =
∫

s(x)ρ(dx) = 1

κ

(
1 −

∫
R

e−κxρ(dx)

)
.

Then, by Proposition 2 there is an embedding of ν if and only if one of the following conditions
is satisfied

1. ν∗ ≥ 0 and κ > 0.
2. ν∗ ≤ 0 and κ < 0.
3. κ = 0.

Condition 1 and 2 simplify to 0 ≤ ν∗κ = 1 − ∫
R

e−κxρ(dx) and hence
∫
R

e−κxρ(dx) ≤ 1 is
necessary for the existence of an embedding if κ �= 0.

7.1.1. The centred case

Suppose
∫

e−κxρ(dx) = 1. Then ν has zero mean.

Proposition 6. For κ �= 0 (κ = 0) there exists an integrable stopping time embedding ρ into X

if and only if x (x2) is integrable with respect to ρ. In this case, any minimal and integrable
stopping time τ satisfies

E[τ ] =

⎧⎪⎪⎨
⎪⎪⎩

1

γ

∫
xρ(dx) for κ �= 0,

1

v2

∫
x2ρ(dx) for κ = 0.

Proof. Note that q is given by

q(x) =

⎧⎪⎪⎨
⎪⎪⎩

− 2

κθ2

(
1

κ
ln(1 − κx) + x

)
for κ �= 0,

x2

θ2
for κ = 0.

Moreover,

∫
q(x)ν(dx) =

∫
q
(
s(x)

)
ρ(dx) =

⎧⎪⎪⎨
⎪⎪⎩

1

γ

∫
xρ(dx) for κ �= 0,

1

v2

∫
x2ρ(dx) for κ = 0.

The result follows now from Theorem 3 and Proposition 4. �

Finally, we consider sufficient conditions for there to exist a bounded embedding. It turns out
that the embedding stopping time δ(1) is bounded if h = F−1 ◦ � = s ◦ F−1

ρ ◦ � is Lipschitz
continuous with parameter L. We can thus recover the sufficient condition from Section 3.2 in
[1].
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Proposition 7. Suppose that F−1
ρ ◦ � is Lipschitz continuous with Lipschitz constant L ∈ R+.

Then there exists an embedding τ of ρ in X such that τ ≤ L2

θ2 .

Proof. For this example, x → −2β/α + α′ is the constant map. Hence, the result follows from
Theorem 6. �

7.1.2. The non-centred case

Suppose
∫

e−κxρ(dx) < 1. It is clear that δ∗ is finite almost surely, but the arguments of Sec-
tion 5.2 show that there can be no embedding of ρ which is bounded. Further, if

∫
e−κxρ(dx) < 1

then it follows that ν ∈ L1 and that ν∗ ∈ (0,1/κ) (or −1/κ,0).
Now consider integrable embeddings. By Theorem 4, there exists an integrable embedding

if and only if E[HM
ν∗ ] < ∞ and

∫
q(x)ν(dx) < ∞. But E[HM

ν∗ ] = E[HX
s−1(ν∗)] and, since X is

drifting Brownian motion, provided sgn(z) = sgn(κ) = sgn(γ ), X hits z in finite mean time.
Hence, E[HM

ν∗ ] < ∞. Further∫
q(x)ν(dx) =

∫
q
(
s(x)

)
ρ(dx)

= − 2

κθ2

∫ [(
1

κ
ln

(
1 − κs(x)

) + s(x)

)]
ρ(dx)

= − 2

κθ2

∫ [
−x + 1

κ

(
1 − e−κx

)]
ρ(dx)

=
∫

x

γ
ρ(dx) − 1

γ

∫
1

κ

(
1 − e−κx

)
ρ(dx)

= 1

γ

(∫
xρ(dx) − ν∗

)
.

Hence, there is an integrable embedding if
∫

xρ(dx) < ∞ and δ∗ is integrable.

7.2. Bessel process

Let R be the radial part of 3-dimensional Brownian motion so that R solves dRt = dBt +R−1
t dt

and suppose that R0 = 1. Then the scale function is given by s(r) = 1 − r−1, and we can embed
any distribution ρ on R+ in R provided

∫
r−1ρ(dr) ≤ 1 (see Proposition 2).

7.2.1. The centred case

Suppose that
∫

r−1ρ(dr) = 1. Then ν has zero mean.

Proposition 8. There exists an integrable stopping time that embeds ρ into R if and only if∫
r2ρ(dr) < ∞. In this case, any minimal and integrable stopping time τ satisfies E[τ ] = − 1

3 +∫ 1
3 r2ρ(dr).
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Proof. Note that η(x) = (s′α) ◦ s−1(x) = (1 − x)2. Moreover,

q(x) = −2

3
x + 1

3

1

(1 − x)2
− 1

3
.

Notice that
∫

q(x)(ρ ◦ s−1)(dx) = ∫
( 1

3 r2 + 2
3 r−1 − 1)ρ(dr), and hence the result follows from

Theorem 3 and Proposition 4. �

By Remark 1, we have that Mt = 1 − R−1
t is not a martingale (this is the Johnson–Helms

example of a strict local martingale). Further, the map r → −2β(r)/α(r) + α′(r) = −2/r is
increasing.

However, suppose we want to embed a target law ρ in R in bounded time, where the support of
ρ is bounded away from both 0 and ∞ by l̂ and r̂ , respectively. Let l̄ = s(l̂) and r̄ = s(r̂). Let R̂

be the stopped Bessel process R̂t = Rt∧H
l̂
∧Hr̂

and let M̄ = s(R̂). Then M̄ is a martingale, which

is absorbed at both l̄ and r̄ . Then a necessary condition for there to exist an embedding of ν in M̄

in bounded time is that ν has support in [l̄, r̄] and
∫ r̄

l̄
xν(dx) = 0. Hence, a necessary condition

for it to be possible to embed ρ in R in bounded time is that
∫ r̂

l̂
r−1ρ(dr) = 1. By Remark 5, a

sufficient condition is that
∫ r̂

l̂
r−1ρ(dr) = 1 and logF−1

ρ ◦ � is Lipschitz continuous.

7.2.2. The non-centred case

Suppose
∫

r−1ρ(dr) < 1. It is clear that δ∗ is finite almost surely, but the arguments of Sec-
tion 5.2 show that there can be no embedding of ρ which is bounded.

Consider integrable embeddings. By Theorem 4, there exists an integrable embedding if and
only if limn→∞ q(n)

n
< ∞ and

∫
q(x)ν(dx) < ∞. For the first part, we have that

lim
n→∞

q(n)

n
= lim

n→∞−2

3
+ 1

3

1

(1 − n)2n
− 1

3n
= −2

3
< ∞.

Furthermore,

∫
q(x)ν(dx) =

∫
q
(
s(x)

)
ρ(dx) =

∫
R+

(
1

3
r2 + 2

3
r−1 − 1

)
ρ(dx)

=
∫
R+

(
1

3
r2 − 1

3
− 2

3
s(x)

)
ρ(dx)

= 1

3

(∫
R+

r2ρ(dx) − 1 − 2ν∗
)

.

Hence, there exists an integrable stopping time if r2 is integrable with respect to ρ.
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7.3. Ornstein–Uhlenbeck process

Let X be an Ornstein–Uhlenbeck solving the SDE

dXt = ξXt dt + σ dWt,

where ξ ∈R, σ > 0 and X0 = 0. The scale function is given by s(x) = ∫ x

0 e(−ξ/σ 2y2) dy.

The centred case

Let ρ be a distribution with
∫

s(x)ρ(dx) = 0. Then ν has zero mean.
We next give sufficient conditions for ρ to be embeddable in bounded time. We need to distin-

guish between a positive and negative mean reversion speed ξ .
Suppose first that ξ > 0, and the process is mean repelling. Then the scale function is bounded.

In this case, − 2β(x)
α(x)

+ α′(x) = − 2ξ
σ

x is decreasing. Moreover, for g = F−1
ρ ◦ �, g′

α◦g = 1
σ
g′.

Therefore, by Theorem 6, if g is Lipschitz continuous with Lipschitz constant L, then there

exists an embedding that is bounded by L2

σ 2 .
Suppose next that ξ < 0. Then the derivative of the scale function satisfies s′(x) ≥ 1, x ∈ R.

Moreover, η(x) = (s′α) ◦ s−1(x) ≥ σ and the intensity of the time change satisfies r2(t, x) ≤
1
σ 2 b2

x(t, x). Therefore, if h = s ◦ F−1
ρ ◦ � is Lipschitz continuous with Lipschitz constant L,

then there exists an embedding that is bounded by L2

σ 2 . (Note that h′ = (s′ ◦ g)g′ ≥ g′ so that the
requirement that h is Lipschitz is stronger than the requirement that g is Lipschitz.)

Finally, suppose that ξ = 0. Then the scale function is the identity function, and the arguments
from each of the last two paragraphs apply and yield the same sufficient condition.

Acknowledgements

We thank an anonymous referee for many helpful comments. Stefan Ankirchner and Philipp
Strack were supported by the German Research Foundation (DFG) through the Hausdorff Center
for Mathematics and SFB TR 15.

References

[1] Ankirchner, S. and Strack, P. (2011). Skorokhod embeddings in bounded time. Stoch. Dyn. 11 215–
226. MR2836522

[2] Azéma, J., Gundy, R.F. and Yor, M. (1980). Sur l’intégrabilité uniforme des martingales continues. In
Seminar on Probability XIV (Paris, 1978/1979) (French). Lecture Notes in Math. 784 53–61. Berlin:
Springer. MR0580108

[3] Bass, R.F. (1983). Skorokhod imbedding via stochastic integrals. In Seminar on Probability XVII.
Lecture Notes in Math. 986 221–224. Berlin: Springer. MR0770414

[4] Carr, P. and Lee, R. (2010). Hedging variance options on continuous semimartingales. Finance Stoch.
14 179–207. MR2607762

http://www.ams.org/mathscinet-getitem?mr=2836522
http://www.ams.org/mathscinet-getitem?mr=0580108
http://www.ams.org/mathscinet-getitem?mr=0770414
http://www.ams.org/mathscinet-getitem?mr=2607762


1088 S. Ankirchner, D. Hobson and P. Strack

[5] Cox, A.M.G. and Hobson, D.G. (2004). An optimal Skorokhod embedding for diffusions. Stochastic
Process. Appl. 111 17–39. MR2049567

[6] Cox, A.M.G. and Hobson, D.G. (2006). Skorokhod embeddings, minimality and non-centred target
distributions. Probab. Theory Related Fields 135 395–414. MR2240692

[7] Cox, A.M.G. and Wang, J. (2013). Root’s barrier: Construction, optimality and applications to vari-
ance options. Ann. Appl. Probab. 23 859–894. MR3076672

[8] Feller, W. (1971). An Introduction to Probability Theory and Its Applications. Vol. II., 2nd ed. New
York: Wiley. MR0270403

[9] Hobson, D. (2011). The Skorokhod embedding problem and model-independent bounds for option
prices. In Paris–Princeton Lectures on Mathematical Finance 2010. Lecture Notes in Math. 2003
267–318. Berlin: Springer. MR2762363

[10] Karatzas, I. and Shreve, S.E. (1991). Brownian Motion and Stochastic Calculus, 2nd ed. Graduate
Texts in Mathematics 113. New York: Springer. MR1121940

[11] Kotani, S. (2006). On a condition that one-dimensional diffusion processes are martingales. In In
Memoriam Paul-André Meyer: Séminaire de Probabilités XXXIX. Lecture Notes in Math. 1874 149–
156. Berlin: Springer. MR2276894

[12] Monroe, I. (1972). On embedding right continuous martingales in Brownian motion. Ann. Math.
Statist. 43 1293–1311. MR0343354

[13] Oberhauser, H. and dos Reis, G. (2013). Root’s barrier, viscosity solutions of obstacle problems and
reflected FBSDEs. Available at arXiv:1301.3798.

[14] Pedersen, J.L. and Peskir, G. (2001). The Azéma–Yor embedding in non-singular diffusions. Stochas-
tic Process. Appl. 96 305–312. MR1865760

[15] Revuz, D. and Yor, M. (1999). Continuous Martingales and Brownian Motion, 3rd ed. Grundlehren
der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 293. Berlin:
Springer. MR1725357

[16] Rogers, L.C.G. and Williams, D. (1987). Diffusions, Markov Processes, and Martingales. Vol. 2. Wiley
Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. New York:
Wiley. MR0921238

[17] Rogozin, B.A. (1966). Distribution of certain functionals related to boundary value problems for pro-
cesses with independent increments. Teor. Veroyatn. Primen. 11 656–670. MR0208682

[18] Root, D.H. (1969). The existence of certain stopping times on Brownian motion. Ann. Math. Statist.
40 715–718. MR0238394

[19] Seel, C. and Strack, P. (2013). Gambling in contests. J. Econom. Theory 148 2033–2048. MR3146917

Received August 2013 and revised January 2014

http://www.ams.org/mathscinet-getitem?mr=2049567
http://www.ams.org/mathscinet-getitem?mr=2240692
http://www.ams.org/mathscinet-getitem?mr=3076672
http://www.ams.org/mathscinet-getitem?mr=0270403
http://www.ams.org/mathscinet-getitem?mr=2762363
http://www.ams.org/mathscinet-getitem?mr=1121940
http://www.ams.org/mathscinet-getitem?mr=2276894
http://www.ams.org/mathscinet-getitem?mr=0343354
http://arxiv.org/abs/arXiv:1301.3798
http://www.ams.org/mathscinet-getitem?mr=1865760
http://www.ams.org/mathscinet-getitem?mr=1725357
http://www.ams.org/mathscinet-getitem?mr=0921238
http://www.ams.org/mathscinet-getitem?mr=0208682
http://www.ams.org/mathscinet-getitem?mr=0238394
http://www.ams.org/mathscinet-getitem?mr=3146917

	Introduction
	The martingale case
	The non-centred case
	Finite embeddings
	The centred case
	The non-centred case

	Integrable embeddings
	The centred case
	The non-centred case

	Bounded time embedding
	The centred case
	The non-centred case

	General diffusions
	Examples
	Brownian motion with drift
	The centred case
	The non-centred case

	Bessel process
	The centred case
	The non-centred case

	Ornstein-Uhlenbeck process
	The centred case


	Acknowledgements
	References

