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Quantum key distribution promises unconditionally secure communications. However, as

practical devices tend to deviate from their specifications, the security of some practical

systems is no longer valid. In particular, an adversary can exploit imperfect detectors to learn

a large part of the secret key, even though the security proof claims otherwise. Recently,

a practical approach—measurement-device-independent quantum key distribution—has been

proposed to solve this problem. However, so far its security has only been fully proven

under the assumption that the legitimate users of the system have unlimited resources.

Here we fill this gap and provide a rigorous security proof against general attacks in

the finite-key regime. This is obtained by applying large deviation theory, specifically the

Chernoff bound, to perform parameter estimation. For the first time we demonstrate the

feasibility of long-distance implementations of measurement-device-independent quantum

key distribution within a reasonable time frame of signal transmission.
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I
t is unequivocal that quantum key distribution (QKD)1,2 needs
to bridge the gap between theory and practice. In theory, QKD
offers perfect security. In practice, however, it does not, as

most practical devices behave differently from the theoretical
models assumed in the security proofs. As a result, we face
implementation loopholes, or so-called side channels, which may
be used by adversaries without being detected, as seen in recent
attacks against certain commercial QKD systems3–11.

There are two potential ways to guarantee security in the
realization of QKD. The first is to develop mathematical models
that perfectly match the behaviour of physical apparatuses, and
then incorporate this information into a new security proof.
While this is plausible in theory, unfortunately it is very hard to
realize in practice, if not impossible. The second alternative is to
design new protocols and develop security proof techniques that
are compatible with a wide class of device imperfections. This
allows us to omit an accurate characterization of real apparatuses.
The most well-known example of such a solution is (full) device-
independent QKD (diQKD)12–16. Here the legitimate users of the
system (typically called Alice and Bob) treat their devices as two
quasi ‘black boxes’—that is, they need to know which elements
their boxes contain, but not how they fully function17. The
security of diQKD relies on the violation of a Bell inequality18,19,
which certifies the presence of quantum correlations. Despite its
beauty, however, this approach is highly impractical because it
requires a loophole-free Bell test that at the moment is still
unavailable20. Also, its secret key rate at practical distances is very
limited21,22.

Very recently, a novel approach has been introduced, which is
fully practical and feasible to implement. This scheme is known as
measurement-device-independent QKD (mdiQKD)23 and offers
a clear avenue to bridge the gap between theory and practice. Its
feasibility has been promptly demonstrated both in laboratories
and via field tests24–27. It successfully removes all (existing and
yet to be discovered) detector side channels3,5,6,9–11, which,
arguably, is the most critical part of most QKD implementations.
Importantly, in contrast to diQKD, this solution does not require
that Alice and Bob perform a loophole-free Bell test; it is enough
if they prove the presence of entanglement in a quantum state
that is effectively distributed between them, just like in standard
QKD schemes28. In addition, now Alice and Bob may treat the
measurement apparatus as a true ‘black box’, which may be fully
controlled by the adversary. A slight drawback is that Alice and
Bob need to characterize the quantum states (for example, the
polarization degrees of freedom of phase-randomized weak
coherent pulses (WCPs)) that they send through the channel.
However, as this process can be verified in a protected
environment outside the influence of the adversary, it is less
likely to be a problem. For completeness, the readers can refer to
ref. 29 where a characterization of the prepared states is no longer
required.

Nevertheless, so far the security of mdiQKD has only been
proven in the asymptotic regime23, which assumes that Alice and
Bob have access to an unlimited amount of resources, or in the
finite regime but only against particular types of attacks30,31. In
summary, until now, a rigorous security proof of mdiQKD that
takes full account of the finite size effects32–34 has appeared to be
missing and, for this reason, the feasibility of long-distance
implementations of mdiQKD within a reasonable time frame of
signal transmission has remained undemonstrated.

The main contributions of this work are twofold. First, in
contrast to existing heuristic results on mdiQKD, we provide, for
the first time, a security proof in the finite-key regime that is
valid against general attacks and satisfies the composability
definition35,36 of QKD. Second, we apply large deviation theory,
specifically a multiplicative form of the Chernoff bound37, to

perform the parameter estimation step. The latter is crucial to
demonstrate that a long-distance implementation of mdiQKD
(for example, 150 km of optical fibre with 0.2 dB km� 1) is feasible
within a reasonable time frame. To obtain high secret key rates in
this scenario, it is common to use decoy state techniques38–40,
both for standard QKD protocols and mdiQKD. Here a key
challenge is to estimate the transmittance and the quantum bit
error rate (QBER) of the single-photon component of the signal
at the presence of high losses (for example, 30 dB). We show that
such an estimation problem can be solved using the Chernoff
bound, as it provides good bounds for the above parameters even
in the high-loss regime. We highlight that our results can be
applied to other QKD protocols (for example, the standard decoy
state BB84 protocol38–40) as well as to general experiments in
quantum information.

Results
Security definition. Before stating the protocol, let us quickly
review the security framework35,36 that we are considering here.
A general QKD protocol (executed by Alice and Bob) generates
either a pair of bit strings SA and SB, or a symbol ? to indicate the
abort of the protocol. In general, the string of Alice, SA, can be
quantum mechanically correlated with a quantum state that is
held by the adversary. Mathematically, this situation is described
by the classical quantum state

rAE¼
X
s

sj i sh j � rsE;

where sj if gs denotes an orthonormal basis for Alice’s system, and
the subscript E indicates the system of the adversary.

Ideally, we say that a QKD protocol is secure if it satisfies
two conditions, namely the correctness and the secrecy. The
correctness condition is met if SA¼ SB, that is, Alice’s and
Bob’s bit strings are identical. The secrecy condition is met
if rAE¼UA � rE, where UA¼

P
s

1
jSj sj i sh j is the uniform mixture

of all possible values of the bit string SA. That is, the system of the
adversary is completely decoupled from that of Alice.

Owing to the presence of errors, however, these two conditions
can never be perfectly met. For example, in the finite-key regime
it is impossible to guarantee SA¼ SB with certainty. In practice,
this implies that we need to allow for some minuscule errors. That
is, we say that a QKD scheme is Ecor-correct if Pr SA 6¼ SB½ � � Ecor,
that is, the probability that Alice’s and Bob’s bit strings are not
identical is not greater than Ecor. Similarly, we say that a protocol
is, Esec-secret if

1
2

rAB �UA � rEk k1� Esec;

where �k k1 denotes the trace norm. That is, the state rAB is
Esec-close to the ideal situation described by UA � rE. Thereby a
QKD protocol is said to be E-secure if it is both Ecor-correct and
Esec-secret, with Ecor þ Esec � E.

With this security definition we are able to guarantee that the
security of the protocol holds even when combined with other
protocols, that is, the protocol is secure in the so-called
universally composable framework35,36.

Protocol definition. The set-up is illustrated in Fig. 1. Alice and
Bob use a laser source to generate quantum signals that are
diagonal in the Fock basis. Instances of such sources include
attenuated laser diodes emitting phase-randomized WCPs,
triggered spontaneous parametric downconversion sources and
practical single-photon sources. Each pulse is prepared in a
different BB84 state41, which is selected, for example, uniformly
at random from two mutually unbiased bases, denoted as Z
and X. The signals are then sent to an untrusted relay Charles,
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who is supposed to perform a Bell state measurement that
projects them into a Bell state. Also, Alice and Bob apply decoy
state techniques38–40 to estimate the gain (that is, the probability
that the relay outputs a successful result) and the QBER for
various input photon numbers.

Next, Charles announces whether or not his measurements are
successful, including the Bell states obtained. Alice and Bob keep
the data that correspond to these instances and discard the rest.
Also, they post-select the events where they employ the same
basis. Finally, either Alice or Bob flips part of her/his bits to
correctly correlate them with those of the other. See Box 1 for a
detailed description of the different steps of the protocol.

Since Charles’ measurement is basically used to post-select
entanglement between Alice and Bob, the security of mdiQKD
can be proven by using the idea of time reversal. Indeed,
mdiQKD builds on the earlier proposals of time-reversed EPR
protocols by Biham et al.42 and Inamori43, and combine them
with the decoy state technique. The end result is the best of both
worlds—high performance and high security. We note on passing
that the idea of time reversal has also been previously used
in other quantum information protocols including one-way
quantum computation.

Security analysis. We now present one main result of our paper.
It states that the protocol introduced above is both Ecor-correct
and Esec-secret, given that the length ‘ of the secret key SA is
selected appropriately for a given set of observed values. See Box 1
for the definition of the different parameters that we consider in
this section.

The correctness of the protocol is guaranteed by its error
correction step, where, for each possible Bell state k, Alice sends a
hash of Zk to Bob, who compares it with the hash of Ẑk. If both
hash values are equal, the protocol gives Sk¼Ŝk except with error
probability Ecor/4. If hashðẐkÞ 6¼ hashðZkÞ, its output is an empty
string (that is, the protocol is trivially correct). Moreover, if the
protocol aborts, the result is ?, that is, it is also correct.
This guarantees that SA¼ SB except with error probability rEcor.
Alternatively to this method, Alice and Bob may also guarantee
the correctness of the protocol by exploiting properties of the
error-correcting code employed44.

If the length ‘k of each bit string Sk, which forms the secret key
SA, satisfies

‘k �nk;0 þ nk;1 1� h ek;1
� �� �

� leakEC;k

� log2
8
Ecor

� 2log2
2

e0kêk
� 2log2

1
2ek;PA

;
ð1Þ

the protocol is Esec-secret, with Esec¼
P

k Ek;sec and Ek;sec¼
2ðe0k þ 2ek;e þ êkÞþ ek;b þ ek;0 þ ek;1 þ ek;PA. In equation (1),
hðxÞ¼� x log2ðxÞ� ð1� xÞ log2ð1� xÞ is the binary Shannon
entropy, and the parameters ek,0, ek,1, and ek,e quantify,
respectively, the probability that the estimation of the terms
nk,0, nk,1 and ek,1 is incorrect. A sketch of the proof of equation (1)
can be found in the Methods section. Also explained there, is the
meaning of all the epsilons contained in the term Ek;sec, which we

Laser

Pol-M

Decoy-IM

Alice
Secure laboratory

Laser

Pol-M

Decoy-IM

Bob
Secure laboratory

Charles

Claims to do Bell
state measurement

Figure 1 | A schematic diagram of mdiQKD. Alice and Bob prepare

quantum signals in different BB84 polarization states41 with a polarization

modulator (Pol-M). Also, they use an intensity modulator (Decoy-IM) to

generate decoy states. The signals are sent to an untrusted relay Charles,

who is supposed to perform a Bell state measurement that projects the

incoming signals into a Bell state. See the main text for details.

Box 1 | Protocol definition.

State preparation: Alice and Bob repeat the first four steps of the
protocol for i¼ 1,y,N until the conditions in the Sifting step are met. For
each i, Alice chooses an intensity a 2 fas; ad1 ; . . . ; adng, a basis
a 2 fZ;Xg, and a random bit r 2 f0; 1g with probability pa,a/2. Here
as adj
� �

is the intensity of the signal (decoy) states. Next, she generates
a quantum signal (for example, a phase-randomized WCP) of intensity a
prepared in the basis state of a given by r. Likewise, Bob does the same.
Distribution: Alice and Bob send their states to Charles via the quantum
channel.
Measurement: If Charles is honest, he measures the signals received
with a Bell state measurement. In any case, he informs Alice and Bob
(via a public channel) of whether or not his measurement was
successful. If successful, he reveals the Bell state obtained.
Sifting: If Charles reports a successful result, Alice and Bob broadcast
(via an authenticated channel) their intensity and basis settings. For
each Bell state k, we define two groups of sets: Za;b

k and X a;b
k . The first

(second) one identifies signals where Charles declared the Bell state k
and Alice and Bob selected the intensities a and b and the basis Z (X).
The protocol repeats these steps until Za;b

k

��� ��� � Na;b
k and

X a;b
k

��� ��� � Ma;b
k 8a; b; k. Next, say Bob flips part of his bits to correctly

correlate them with those of Alice (see Table 1). Afterwards, they
execute the last steps of the protocol for each k.
Parameter estimation: Alice and Bob use nk random bits from Zas ;bs

k to
form the code bit strings Zk and Z0

k, respectively. The remaining Rk bits

from Zas ;bs
k are used to compute the error rate Eas ;bs

k ¼ 1
Rk

P
l
rl � r0l ,

where r0l are Bob’s bits. If Eas ;bs
k 4Etol, Alice and Bob assign an empty

string to Sk and abort steps 6 and 7 for this k. The protocol only aborts if
Eas ;bs
k 4Etol 8k. If Eas ;bs

k � Etol, Alice and Bob use Za;b
k and X a;b

k to
estimate nk,0, nk,1 and ek,1. The parameter nk,0, (nk,1) is a lower bound for
the number of bits in Zk where Alice (Alice and Bob) sent a vacuum
(single-photon) state. ek,1 is an upper bound for the single-photon phase
error rate. If ek,14etol, an empty string is assigned to Sk and steps 6 and
7 are aborted for this k, and the protocol only aborts if ek;14etol 8k.
Error correction: For those k that passed the parameter estimation
step, Bob obtains an estimate Ẑk of Zk using an information
reconciliation scheme. For this, Alice sends him leakEC,k bits of error
correction data. Next, Alice computes a hash of Zk of length
log2 4=Ecorð Þ
� �

using a random universal2 hash function, which she
sends to Bob together with the hash35. If hashðẐkÞ 6¼ hashðZkÞ, Alice
and Bob assign an empty string to Sk and abort step 7 for this k. The
protocol only aborts if hashðẐkÞ 6¼ hashðZkÞ 8k.
Privacy amplification: If k passed the error correction step, Alice and
Bob apply a random universal2 hash function to Zk and Ẑk to extract two
shorter strings of length ‘k (see ref. 35). Alice obtains Sk and Bob Ŝk.
The concatenation of Sk Ŝk

� �
form the secret key SA (SB).

Table 1 | Post-processing of data in the sifting step.

Alice & Bob Bell state reported by Charles

w�j i wþ�� 	
/�j i /þ�� 	

Z basis Bit flip Bit flip — —
X basis Bit flip — Bit flip —

To guarantee that their bit strings are correctly correlated, say Bob applies a bit flip to part of his
data, depending on the Bell state reported by Charles and the basis setting selected.
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omit here for simplicity. In the asymptotic limit of very large data
blocks, the terms reducing the length of SA due to statistical
fluctuations may be neglected, and thus ‘ satisfies
‘ �

P
k max nk;0 þ nk;1 1� hðek;1Þ

� �
� leakEC;k; 0


 �
, as previously

obtained in ref. 23. That is, nk,0 and nk,1 provide a positive
contribution to the secret key rate, while nk,1h(ek,1) and leakEC,k
reduce it. The term nk,1h(ek,1) corresponds to the information
removed from Zk in the privacy amplification step of the protocol,
while leakEC,k is the information revealed by Alice in the error
correction step.

The second main contribution of this work is an estimation
method to obtain the relevant parameters nk,0, nk,1 and ek,1
needed to evaluate the key rate formula above, when Alice and
Bob send Charles a finite number, N, of signals and use a finite
number of decoy states. We solve this problem using techniques
in large deviation theory. More specifically, we employ the
Chernoff bound37. It is important to note that standard
techniques such as Azuma’s inequality45 do not give very good
bounds here. This is because this result does not consider the
properties of the a priori distribution. Therefore, it is far from
optimal for situations such as high loss or a highly bias coin flip,
which are relevant in long-distance QKD. In contrast, the
Chernoff bound takes advantage of the property of the
distribution and provides good bounds even in a high-loss
regime.

More precisely, we show that the estimation of nk,0, nk,1 and ek,1
can be formulated as a linear program, which can be solved
efficiently in polynomial time and gives the exact optimum even
for large dimensions46. Importantly, this general method is valid
for any finite number of decoy states used by Alice and Bob, and
for any photon-number distribution of their signals. Also, for the
typical scenario where Alice and Bob send phase-randomized
WCPs together with two decoy states each, we solve analytically
the linear program, and obtain analytical expressions for the
parameters above, which can be used directly in an experiment.
A sketch of the estimation technique is given in the Methods
section. For a detailed analysis of both estimation techniques we
refer to the Supplementary Notes 1 and 2.

Discussion
In this section, we analyse the behaviour of the secret key rate
provided in equation (1). In our simulation, we consider that
Alice and Bob encode their bits in the polarization degrees of
freedom of phase-randomized WCPs. Also, we assume that
Charles uses the linear optics quantum relay illustrated in Fig. 2,
which is able to identify two of the four Bell states. With this set-
up, a successful Bell state measurement corresponds to the
observation of precisely two detectors (associated to orthogonal
polarizations) being triggered. Note, however, that the results
presented in this paper can be applied to other types of coding
schemes like, for instance, phase or time-bin coding1,2, and to any
quantum operation that Charles may perform, as they solely
depend on the measurement results that he announces.

We use experimental parameters from ref. 47. But, whereas ref.
47 considers a free-space channel, we assume a fibre-based
channel with a loss of 0.2 dB km� 1. The detection efficiency of
the relay (that is, the transmittance of its optical components
together with the efficiency of its detectors) is 14.5% and the
background count rate is 6.02	 10� 6. Moreover, we use a rather
generic channel model that includes an intrinsic error rate that
simulates the misalignment and instability of the optical system.
This is done by placing a unitary rotation in both input arms of
the 50:50 beam splitter, and another unitary rotation in one of
its output arms48. In addition, we fix the security bound to
E¼ 10� 10.

The results are shown in Figs 3 and 4 for the situation where
Alice and Bob use two decoy states each. In this scenario, we
obtain the parameters nk,0, nk,1 and ek,1 using the analytical
estimation procedure introduced above (see Supplementary
Note 1 for more details). The first figure illustrates the secret
key rate (per pulse) ‘=N as a function of the distance between
Alice and Bob for different values of the total number of signals N

D1H

D1V

D2H

D2V

PBS PBS

BS

Charles

Alice Bob

Figure 2 | A schematic diagram of Charles’ measurement device.

The signals from Alice and Bob interfere at a 50:50 beam splitter (BS),

which has on each end a polarizing beam splitter (PBS) that projects the

incoming photons into either horizontal (H) or vertical (V) polarization

states. A click in the single-photon detectors D1H and D2V, or in D1V and D2H,

indicates a projection into the Bell state j c� i¼1
� ffiffiffi

2
p

j HVi� jVHið Þ,
while a click in D1H and D1V, or in D2H and D2V, implies a projection into

the Bell state j cþ i¼1
� ffiffiffi

2
p

j HViþ j VHið Þ:
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Figure 3 | Expected key rate as function of the distance. Secret key rate

‘=N in logarithmic scale for the protocol introduced in the Results section

with phase-randomized WCPs as a function of the distance. The solid lines

correspond to different values for the total number of signals N sent by

Alice and Bob. The overall misalignment in the channel is 1.5%, and the

security bound E¼ 10� 10. For simulation purposes we consider the

following experimental parameters47: the loss coefficient of the channel is

0.2 dB km� 1, the detection efficiency of the relay is 14.5% and the

background count rate is 6.02	 10� 6. Our results show clearly that even

with a realistic finite size of data, say N¼ 1012 to 1014, it is possible to

achieve secure mdiQKD at long distances. In comparison, the dotted line

represents a lower bound on the secret key rate for the asymptotic case

where Alice and Bob send Charles infinite signals and use an infinite

number of decoy settings.
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sent. We fix Ecor¼ 10� 15; this corresponds to a realistic hash tag
size in practice35. Also, we fix the intensity of the weakest decoy
states to ad2 ¼ bd2 ¼ 5	10� 4, since, in practice, it is difficult to
generate a vacuum state due to imperfect extinction. This value
for ad2 and bd2 can be easily achieved with a standard intensity
modulator. Moreover, for simplicity, we assume an error
correction leakage that is a fixed fraction of the sifted key
length nk, that is, leakEC;k¼nkzhðEas;bs

k Þ, with z¼ 1.16 and where
h( � ) is again the binary Shannon entropy32. In a realistic
scenario, however, the value of z typically depends on the value of
nk, and when nko105 the parameter z may be bigger than 1.16.
For a given distance, we optimize numerically ‘=N over all the
free parameters of the protocol. This includes the intensities
as; ad1 ; bs and bd1 , the probability distributions pa;a and pb;b in
the state preparation step, the parameters Na;b

k and Ma;b
k in the

sifting step, the term nk in the parameter estimation step and the
different epsilons contained in Esec. Our simulation result shows
clearly that mdiQKD is feasible with current technology and does
not require high-efficiency detectors for its implementation. If
Alice and Bob use laser diodes operating at 1GHz repetition rate,
and each of them sends N¼ 1013 signals, we find, for instance,
that they can distribute a 1-Mb secret key over a 75-km fibre link
in o3 h. This scenario corresponds to the red line shown in
Fig. 3. Notice that, at telecom wavelengths, standard InGaAs
detectors have modest detection efficiency of about 15%. Since
mdiQKD requires twofold coincidence rather than single
detection events, as is the case in the standard decoy state
protocol, the key rate of mdiQKD is lower than that of the
standard decoy state scheme. However, with high-efficiency
detectors such as silicon detectors49 in 800 nm or high-efficiency
superconducting nanowire single-photon detectors50, the key rate
of mdiQKD can be made comparable to that of the standard
decoy state protocol.

The second figure illustrates ‘=N as a function of N for
different values of the misalignment in the limit of zero distance.
For comparison, this figure also includes the asymptotic secret
key rate when Alice and Bob send an infinite number of signals
and use an infinite number of decoy states23. Our results show

that significant secret key rates are already possible with 1011

signals, given that the error rate is not too large.
In conclusion, we have proved the security of mdiQKD in the

finite-key regime against general attacks. This is the only known
fully practical QKD protocol that offers an avenue to bridge the
gap between theory and practice in QKD implementations.
Importantly, our results clearly demonstrate that even with
practical signals (for example, phase-randomized WCPs) and a
finite size of data (say 1012 to 1014 signals) it is possible to
perform secure mdiQKD over long distances (up to about
150 km).

To achieve high secret key rates in such high-loss regime, it is
typical for both standard QKD schemes and mdiQKD to use
decoy state techniques. A main challenge in this scenario is to
obtain tight bounds for the gain and QBER of the single-photon
components sent by Alice and Bob. We have shown that this
estimation problem can be successfully solved using techniques in
large deviation theory, more precisely, the Chernoff bound. This
result takes advantage of the property of the distribution, and
thus provides good bounds for the relevant parameters even in
the presence of high losses, as is the case in QKD realizations.

Using the Chernoff bound, we have rewritten the problem of
estimating the gain and QBER of the single-photon signals as a
linear program, which can be solved efficiently in polynomial
time. This general method is valid for any finite number of
decoy states, and for any photon-number distribution of the
signals. It can be used, for instance, with laser diodes emitting
phase-randomized WCPs, triggered spontaneous parametric
downconversion sources and practical single-photon sources.
Also, for the common scenario where Alice and Bob send
phase-randomized WCPs together with two decoy states each, we
have obtained tight analytical bounds for the quantities above.
These results apply to different types of coding schemes like, for
example, polarization, phase or time-bin coding.

Methods
Secrecy. Here we briefly discuss on the secrecy of the protocol described in Box 1.
To begin with, note that Alice and Bob obtain the error rate EaS ; bS

k using a random
sample of ZaS ;bS

k of size Rk. This means that when Eas ;bs
k satisfies the tolerated value

Etol, the error rate between the strings Zk and Z0
k , which we denote as xas ;bsk , satisfies

the following inequality written as conditional probability51

Pr xas ;bsk � Eas ;bs
k þ wðnk;Rk;�ekÞ j Opass

h i
� �e2k; ð2Þ

where wðx; y; zÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðyþ xÞðyþ 1Þ=ðxy2Þln z� 1

p
. Here the parameter Opass

represents the event that all the tests performed during the realization of the
protocol satisfy the tolerated values.

Let E0
k denote the adversary’s information about Zk up to the error correction

step in Box 1. By using a privacy amplification scheme based on two-universal
hashing35 we can generate an Ek-secret string Sk of length ‘k , where ek40, and

Ek � 8ek þ 2� 1
2 H

4ek
min Zk jE0

kð Þ� ‘kð Þ� 1: ð3Þ
The function H4ek

min Zk j E0
k

� �
denotes the smooth min-entropy35,52. It quantifies

the average probability that the adversary guesses Zk correctly using the optimal
strategy with access to E0

k .
The term E0

k can be decomposed as E0
k¼CkEk , where Ck is the information

revealed by Alice and Bob during the error correction step, and Ek is the adversary’s
information before that step. Using a chain rule for smooth entropies35, we obtain

H4ek
min Zk j E0

k

� �
� H4ek

min Zk j Ekð Þ� jCk j; ð4Þ

with Ckj j � leakEC;k þ log2 8=Ecorð Þ.
The bits of Zk can be distributed among three different strings: Z0

k ; Z
1
k and Zrest

k .
The first contains bits where Alice sent a vacuum state, the second where both
Alice and Bob sent a single-photon state and Zrest

k includes the rest of bits. Using
the result from ref. 53, we have that

H4ek
min Zk j Ekð Þ � H

e0k þ 2e00k þ ð̂ek þ 2ê0k þ ê00k Þ
min Z0

kZ
1
kZ

rest
k j Ek

� �
� nk;0 þH

e00k
min Z1

k j Z0
kZ

rest
k Ek

� �
� 2log2

2
e0k êk

; ð5Þ

where 4ek¼e0k þ 2e00k þ êk þ 2ê0k þ ê00k
� �

. Here we have used the fact that

H
ê0k
min Zrest

k j Z0
kEk

� �
� 0, and H

ê00k
min Z0

k j Ek
� �

� H0
min Z0

k j Ek
� �

¼Hmin Z0
k

� �
¼nk;0.
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Figure 4 | Expected key rate as function of the block size. The plot shows

the secret key rate ‘=N in logarithmic scale as a function of the total

number of signals N sent by Alice and Bob in the limit of zero distance.

The security bound E¼ 10� 10. The solid lines correspond to different values

for the intrinsic error rate due to the misalignment and instability of the

optical system. The horizontal dotted lines show the asymptotic rates.

The experimental parameters are the ones described in the caption of Fig. 3.

Our results show that, even for a finite size of signals sent by Alice and Bob,

mdiQKD is robust to intrinsic errors due to basis misalignment and

instability of the optical system.
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The latter arises because vacuum states contain no information about their bit
values, which are uniformly distributed.

The next step is to obtain a lower bound for the term H
e00k
min Z1

k j Z0
kZ

rest
k Ek

� �
.

Taking that Alice and Bob do the state preparation scheme perfectly in the Z and X
bases (that is, they prepare perfect BB84 states), we can re-write this quantity in
terms of the smooth max-entropy between them, which is directly bounded by the
strength of their correlations32. More precisely, the entropic uncertainty relation
gives us

H
e00k
min Z1

k j Z0
kZ

rest
k Ek

� �
� nk;1 �H

e00k
max X1

k j X01
k

� �
� nk;1 � nk;1h ek;1

� �
: ð6Þ

Combining equations (3)–(6), we find that a secret key of length ‘k given by
equation (1) gives an error of Ek � 2 e0k þ 2e00k þ êk þ 2ê0k þ ê00k

� �
þ ek;PA. Finally, after

composing the errors related with the estimation of nk,0, nk,1 and ek,1, selecting ê0k
and ê00k equal to zero, and also removing the conditioning on Opass, we obtain a
security parameter Ek;sec given by

Ek;sec¼2 e0k þ 2ek;e þ êk
� �

þ ek;b þ ek;0 þ ek;1 þ ek;PA; ð7Þ

where ek;b¼�ek
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pr Opass
� �q

, and ek,0, ek,1 and ek,e, denote, respectively, the error

probability in the estimation of nk,0, nk,1 and ek,1.

Parameter estimation. To simplify the discussion, let us consider the estimation
of the parameter nk,0. The method to obtain nk,1 and ek,1 follows similar arguments.
The procedure can be divided into two steps. First, we calculate a lower bound for
the number of indexes in Zas ;bs

k where Alice sent a vacuum state. This quantity is
denoted as mk,0. Second, we compute nk,0 from mk,0 using the Serfling inequality for
random sampling without replacement51.

In the first step we use a multiplicative form of the Chernoff bound37 for
independent random variables, which does not require the prior knowledge on the
population mean. More precisely, we use the following claim.

Claim: Let X1;X2; :::;Xn , be a set of independent Bernoulli random variables
that satisfy Pr(Xi¼ 1)¼ pi, and let X¼

Pn
i¼1 Xi and m¼E X½ �¼

Pn
i¼1 pi , where E[ � ]

denotes the mean value. Let x be the observed outcome of X for a given trial

(that is, x 2 Nþ ) and mL¼x�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n=2 ln ð1=EÞ

p
for certain E40. When 2e� 1ð Þ1=mL�

exp 3= 4
ffiffiffi
2

p� �� �2
and ê� 1ð Þ1=mLoexp 1=3ð Þ for a certain e; ê40, we have that

x satisfies

x¼mþ d; ð8Þ

except with the error probability g¼Eþ eþ ê, where the parameter d 2 �D; D̂
h i

,

with D¼g x; e4=16ð Þ, D̂¼g x; ê3=2
� �

and g x; yð Þ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2x ln y� 1ð Þ

p
. Here e êð Þ denotes

the probability that xom�D x4mþ D̂
� �

.

Importantly, the bounds (�D and D̂) on the fluctuation parameter d that
appears in equation (8) do not depend on the mean value m. A proof of this claim
can be found in the Supplementary Note 3. There we introduce as well a
generalized version of the claim for the cases where 2e� 1ð Þ1=mL4 exp 3=4

ffiffiffi
2

p� �2
and/or ê� 1ð Þ1=mL� exp 1=3ð Þ.

To apply this statement and be able to obtain the parameter mk,0, we rephrase
the protocol described in Box 1. For each signal, we consider that Alice (Bob) first
chooses a photon-number n(m) and sends the signal to Charles, who declares
whether his measurement is successful or not. After Alice decides the intensity
setting a, Bob does the same. This virtual protocol is equivalent to the original one
because the essence of decoy state QKD is precisely that Alice and Bob could have
postponed the choice of which states are signals or decoys after Charles’ declaration
of the successful events. This is possible because Alice’s and Bob’s observables
commute with those of Charles. Note that for each specific combination of values n
and m, the observables that Alice and Bob use to determine whether a state is a
signal or a decoy act on entirely different physical systems from those of Charles.
This implies that Alice and Bob are free to postpone their measurement and thus
their choice of signals and decoys. Also, this result shows that for each combination
n and m, the signal and decoy states provide a random sample of the population of
all signals containing n and m photons, respectively. Therefore, one can apply
random sampling theory in classical statistics to the quantum problem.

Let Sk;nm denote the set that identifies those signals sent by Alice and Bob with
n and m photons, respectively, when they select the Z basis and Charles announces
the Bell state k. And, let Sk;nm

�� �� ¼ Sk;nm , and pa;b nm;Zj be the conditional probability
that Alice and Bob have selected the intensity settings a and b, given that their
signals contain, respectively, n and m photons prepared in the Z basis. Then, if we
apply the above equivalence, independently of each other and for each signal Alice
and Bob assign to each element in Sk;nm the intensity setting a, b, with probability
pa;b nm;Zj .

Let Xa;b
i k;nmj be 1 if the ith element of Sk;nm is assigned to the intensity setting

combination a, b, and otherwise 0. And, let

Xa;b
k ¼

X
n;m

XSk;nm
i¼1

Xa;b
i k;nmj ; ð9Þ

with ma;bk ¼ E Xa;b
k

h i
¼
P
n;m

pa;bjnm;ZSk;nm . Let x
a;b
k ¼ Za;b

k

��� ��� denote the observed

outcome of the random variable Xa;b
k for a given trial. Then, if 2e� 1

a;b

� �1=ma;bk;L�
exp 3= 4

ffiffiffi
2

p� �� �2
and ê� 1

a;b

� �1=ma;bk;Loexp 1=3ð Þ, with

ma;bk;L¼ Za;b
k

��� ���� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
a;b

Za;b
k

��� ���.2 ln 1=Ea;b
� �s

; ð10Þ

the Claim above implies that

Za;b
k

��� ��� ¼ X
n;m

pa;bjnm;ZSk;nm þ da;b; ð11Þ

except with error probability ga;b¼Ea;b þ ea;b þ êa;b , where da;b 2 �Da;b; D̂a;b

h i
,

with Da;b¼g Za;b
k

��� ���; e4a;b=16� �
and D̂a;b¼g Za;b

k

��� ���; ê3=2a;b

� �
.

Using similar arguments, we find that the parameter mk,0 can be written as

mk;0¼
X
m

pas ;bs j0m;Z
Sk;0m �D0; ð12Þ

except with error probability e0, where D0 ¼ g
P
m
pas ;bs j0m;Z

Sk;0m ; e0

� �
.

Now it is easy to find a lower bound for mk,0. One only needs to minimize
equation (12) given the linear constraints imposed by equation (11) for all a, b.
This problem can be solved either by using numerical tools as linear
programming46 or, for some particular cases, by using analytical techniques. See
Supplementary Notes 1 and 2 for details.

The second step of the procedure is quite direct. Note that Alice forms her bit
string Zk using nk random indexes from Zas ;bs

k . Using ref. 51 we obtain

nk;0¼ max nk
mk;0

j Zas ;bs
k j

� nkLðj Zas ;bs
k j; nk; e00k;0Þ

$ %
; 0

( )
; ð13Þ

except with error probability

ek;0 � e0k;0 þ e00k;0; ð14Þ

where e0k;0 corresponds to the total error probability in the estimation of mk;0, and

the function Lðx; y; zÞ is defined as Lðx; y; zÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� yþ 1Þlnðz� 1Þ=ð2xyÞ

p
.
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Math. J. 19, 357–367 (1967).

46. Vanderbei, R. J. (ed.) Linear Programming: Foundations and Extensions.
International Series in Operations Research and Management Science, 3rd edn
(Springer, 2008).

47. Ursin, R. et al. Entanglement-based quantum communication over 144 km.
Nat. Phys. 3, 481–486 (2007).

48. Xu, F. et al. Practical aspects of measurement-device-independent quantum key
distribution. New J. Phys. 15, 113007 (2013).

49. Hadfield, R. H. Single-photon detectors for optical quantum information
applications. Nat. Photon. 3, 696–705 (2009).

50. Marsili, F. et al. Detecting single infrared photons with 93% system efficiency.
Nat. Photon. 7, 210–214 (2013).

51. Serfling, R. J. Probability inequalities for the sum in sampling without
replacement. Ann. Statist. 2, 39–48 (1974).

52. Tomamichel, M., Colbeck, R. & Renner, R. Duality between smooth min- and
max-entropies. IEEE Trans. Inf. Theory 54, 4674–4681 (2010).

53. Vitanov, A., Dupuis, F., Tomamichel, M. & Renner, R. Chain rules for smooth
min- and max-entropies. IEEE Trans. Inf. Theory 59, 2603–2612 (2013).

Acknowledgements
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