
ARTICLE OPEN

Finite key effects in satellite quantum key distribution
Jasminder S. Sidhu 1,2✉, Thomas Brougham1,2, Duncan McArthur 1, Roberto G. Pousa1 and Daniel K. L. Oi 1✉

Global quantum communications will enable long-distance secure data transfer, networked distributed quantum information
processing, and other entanglement-enabled technologies. Satellite quantum communication overcomes optical fibre range limitations,
with the first realisations of satellite quantum key distribution (SatQKD) being rapidly developed. However, limited transmission times
between satellite and ground station severely constrains the amount of secret key due to finite-block size effects. Here, we analyse
these effects and the implications for system design and operation, utilising published results from the Micius satellite to construct an
empirically-derived channel and system model for a trusted-node downlink employing efficient Bennett-Brassard 1984 (BB84) weak
coherent pulse decoy states with optimised parameters. We quantify practical SatQKD performance limits and examine the effects of
link efficiency, background light, source quality, and overpass geometries to estimate long-term key generation capacity. Our results
may guide design and analysis of future missions, and establish performance benchmarks for both sources and detectors.
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INTRODUCTION
Quantum technologies have the potential to enhance the
capability of many applications1 such as sensing2–4, communica-
tions5–8, and computation9. Ultimately, a worldwide networked
infrastructure of dedicated quantum technologies, i.e. a quantum
internet10, could enable distributed quantum sensors11–14, precise
timing and navigation15–17, and faster data processing through
distributed quantum computing18. This will require the establish-
ment of long distance quantum links at global scale. A
fundamental difficulty is exponential loss in optical fibres, which
limits direct transmission of quantum photonic signals to <
1000 km19–22. Quantum repeaters may overcome the direct
transmission limit but stringent performance requirements render
them impractical by themselves for scaling to the intercontinental
ranges needed for global scale-up23. Alternatively, satellite-based
free-space transmission significantly reduces the number of
ground quantum repeaters required24.
Satellite-based quantum communication has attracted much

recent research effort23–30 following recent in-orbit demonstra-
tions of its feasibility by the Micius satellite31. For low-Earth orbit
(LEO) satellites, a particular challenge is the limited time window
to establish and maintain a quantum channel with an optical
ground station (OGS). For satellite quantum key distribution
(SatQKD), this constrains the amount of secret key that can be
generated due to two issues. First, the commonly assumed
asymptotic resource assumption is not a good approximation for
short received signal blocks. Without an arbitrarily large number of
received signals, statistical uncertainties can no longer be ignored
and the security of the distilled secret key requires careful
treatment of the statistical fluctuations in estimated
parameters32–34. Second, the trade-off between the proportion
of signals used for parameter estimation and key generation
becomes increasingly important to optimise. Further post-
processing operations, such as error correction, reduce the
amount of extractable secret key, with small block lengths leading
to additional inefficiencies over the asymptotic limit35,36.
Initial SatQKD studies used the observed standard deviation to

estimate statistical uncertainties and derive correction terms to

the secret key rate37,38. Analyses based on smooth entropies32

improve finite-key bounds39 and have been applied to free-space
quantum communication experiments40. Recently, tight bounds36

and small block analyses41 further improve key lengths for finite
signals. Here, we provide a detailed analysis of SatQKD secret key
generation, which utilises tight finite block statistics in conjunction
with system design and operational considerations.
As part of our modelling, we implement tight statistical analyses

for parameter estimation and error correction to determine the
optimised, finite-block, single-pass secret key length (SKL) for weak
coherent pulse (WCP) efficient BB84 protocols using three signal
intensities (two-decoy states). We base our nominal system model
on recent experimental results reported by the Micius satellite42 and
use a simple scaling method to extrapolate performance to other
SatQKD configurations. The effects of different system parameters
are explored, such as varying system link efficiencies, protocol
choice, background counts, source quality, and overpass geometries.
We also provide a simple estimation method to determine the
maximum expected long-term key volume at a particular OGS
latitude. The improvement from combining data from multiple
satellite passes is also examined. Our model and analysis may guide
the design and specification of SatQKD systems, highlighting factors
in the quantum communication link that limit secret key generation
in the regime of high channel loss and limited pass duration.
We outline the system model in section ‘System model’,

including overpass geometries and system parameters. Opera-
tional models and finite block construction are given in section
‘SatQKD Operations’. We describe in section ‘Finite key length
analysis’ our SatQKD finite key analysis and examine the
dependence of the SKL on different system parameters in
subsequent sections. We conclude with a discussion of our results
in section ‘Discussion’.

RESULTS
System model
We consider a satellite in a circular Sun-synchronous orbit (SSO) of
altitude h= 500 km, similar to the Micius satellite31, performing
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downlink QKD to an OGS at night to minimise background light.
The elevation and range is calculated as a function of time for
different overpass geometries representing different ground track
offsets and maximum elevations for the overpass (Fig. 1a). The
instantaneous link efficiency ηlink is calculated as a function of the
elevation θ(t) and range R(t) to generate expected detector count
statistics. The quantum link is restricted to be above θmin ¼ 10�.
The link loss ηlink ¼ �10log10pd (dB) is determined by the

probability, pd, that a single photon transmitted by the satellite is
detected by the OGS. A lower dB value of ηlink represents smaller
loss due to better system electro-optical efficiency. This improve-
ment could stem from the use of larger transmit and receive
aperture diameters, better pointing accuracy, lower receiver internal
losses, and higher detector efficiencies. Internal transmitter losses
are not included since they can be countered by adjusting the WCP
source to maintain the desired exit aperture intensities37. We also
do not explicitly consider time-varying transmittance, modelling the
average change in channel loss due only to the change in elevation
with time. For discrete variable QKD (DV-QKD) protocols, e.g. BB84,
channel transmissivity fluctuations do not directly impact the secret
key rate, in contrast to continuous variable QKD where this appears
as excess noise leading to key reduction43,44.
The ideal overpass corresponds to the satellite traversing the

OGS zenith (Fig. 1b) giving the longest transmission time with
lowest average channel loss. Generally, an overpass will not pass
directly overhead but will reach a maximum elevation θmaxð<90�Þ.
We model total losses, including pointing and atmospheric effects,
using Micius in-orbit measurements (ref. 42 Extended data, Fig. 3b)
to construct a representative ηlink vs θ curve extrapolating over the
entire horizon to horizon passage time (Fig. 1c). The Micius data
represent a near ideal scenario since the OGSs are situated in dark
sky conditions at high altitudes of ~3000m minimising the effects
of atmospheric turbulence and attenuation, other sites may

perform differently. Though the link efficiency in ref. 42 is for the
entanglement distribution system, not the optimised prepare-
measure QKD downlink system as reported in ref. 45, it should still
be representative of downlink efficiencies and sifted key rates
achievable with current technologies (Fig. 1d).
Systems with higher link losses are also considered. The system

loss metric, ηsysloss, is used to characterise the overall system electro-
optical efficiency independent of the overpass geometry, and is
defined as the ηloss value at zenith, i.e. the maximum probability of
detecting a single photon sent from the satellite to the OGS.
Worse performing systems have a larger associated ηsysloss. The
baseline ηsysloss value considered is 27 dB, which corresponds to the
improved Micius system using a 1.2 m diameter OGS receiver at
Delingha42. By increasing the value of this metric, we explore the
performance of SatQKD systems with greater fixed losses, e.g.
using a smaller OGS, but otherwise similar behaviour to the Micius
system. We consider a maximum ηsysloss value of 40 dB since this
reflects realistic SatQKD operation using smaller OGS receiver
diameters and a reduced pointing accuracy of smaller satellites. If
the time-averaged ground spot is much larger than the OGS
diameter Dr, η

sys
loss scales as 20log10ðDr=D0

r Þ (dB) where D0
r ¼ 1:2 m

is the reference Delingha OGS diameter.
Estimating the effect of transmitter aperture (Dt) is more

complex since factors other than diffraction, such as pointing
performance and turbulence, also determine the time-averaged
ground spot size46,47. Micius, with Dt of 180mm and 300mm and
sub-μrad pointing performance, reported 10 μrad beam widths42

which suggests the presence of non-diffraction-limited beam
spreading effects that may result in a smaller dependence of ηsysloss
on Dt. A smaller Dt could result in a smaller increase in ηsysloss than
given by purely diffractive beam broadening, conversely using a
larger Dt may not significantly improve ηsysloss if pointing and
turbulence losses dominate. We refer the reader to detailed

Fig. 1 Satellite-to-ground QKD model. a General satellite overpass geometry for circular orbit of altitude h50. Maximum elevation θmax
reached when satellite—OGS ground track distance is at a minimum, dmin. The smallest θmax, θ

�
max, that generates finite key defines the key-

generation footprint 2dþmin. b Zenith overpass maximises transmission time with lowest average channel loss. Quantum transmission is limited
to above θmin. c Zenith overpass channel loss vs time/elevation (based on ref. 42 data). Link loss varies with range (R−2 diffraction fall-off ) and
the atmospheric optical depth (attenuation and turbulence). Peak link loss ηlink at zenith characterises the system loss performance level,
denoted ηsysloss. Additional constant losses (independent of range and elevation) are modelled by constant dB offset to the link loss curve, hence
also off-setting ηsysloss. d Modelled sifted key rate and QBER vs time/elevation. Zenith overpass, ηsysloss ¼ 27 dB, pec= 5 × 10−7, and QBERI= 0.5%.
BB84 WCP-DS protocol parameters: fs= 200MHz, μ1,2,3= 0.5, 0.08, 0.0, p1,2,3= 0.72, 0.18, 0.1, with pX= 0.889, 0.9 for the transmitter and
receiver basis bias, respectively, as in ref. 45. Shaded region indicates elevation below θmin ¼ 10�.
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analyses of atmospheric turbulence48 or extinction49, and more
recent works where their effects on SatQKD are considered46,50,51.
We simplify our model by including several quantities in the

parameters pec and QBERI. The sum of dark and background light
count rates, pec, is assumed constant and independent of
elevation. The intrinsic quantum bit error rate, QBERI, combines
errors arising from source quality, receiver measurement fidelity,
basis misalignment, and polarisation fluctuations52. Baseline
system parameters are summarised in Table 1.

SatQKD Operations
A standard model of SatQKD uses large, fixed, and long-term OGSs
to establish links with satellites29. A more demanding scenario is
where the OGS may only be able to communicate sporadically
with a particular satellite, limiting the amount of data that can be
processed as a single large block, e.g. smaller, mobile OGS
terminals may be required to generate a key from a limited
number of passes, possibly only one, due to operational
constraints. In contrast, fibre-based QKD can often assume a
stable quantum channel able to be operated continuously until a
sufficiently large block size is attained. High count rates and large
block sizes, e.g. 1012, are generally more feasible in fibre-
based QKD.
In SatQKD, often the theoretical instantaneous asymptotic key

rate R1ðtÞ is integrated over the overpass to give the continuous
secret key length (SKL)28,29,

SKLCont:1 ¼
Z tend

tstart

R1ðtÞdt; (1)

where the quantum transmission occurs between times tstart and
tend. Data segments from multiple passes with identical statistics
should be combined to yield an asymptotically large block for
post-processing. More practically, small blocks, each having similar
statistics, from different passes are combined to give the following
SKL,

SKLBlock1 ¼
X
j

RðjÞ
1Lj ; (2)

where Rj
1 is the asymptotic key rate for a small segment j, and Lj

its length. Operationally, this leads to considerable latency
between establishing a first satellite-OGS link and the generation
of secret keys after a sufficient number of subsequent overpasses.
A less restrictive mode of operation is to combine data from
multiple passes without segmenting into data blocks with similar
statistics, and processing using asymptotically determined or

assumed parameters. However, the security guarantee for this
procedure requires closer examination.
Here instead, we process overpass data as a single block

without segmentation, incorporating finite statistics and uncer-
tainties to maintain high levels of composable security with

SKLfinite ¼ SKL nμk ;m
μ
k

� �� �
; (3)

where fnμk ;mμ
kg denote agglomerated observed counts without

partitioning into sub-segments (see ‘Methods’ section ‘Finite key
analysis for decoy-state BB84’). This is more practical for large
constellations28,53 and OGS numbers, obviating the need to track
and store a combinatorially large number of link segments until
each has attained a sufficiently large block size for asymptotic key
extraction. Note that we have the freedom of constructing block
sizes in this manner since the security of the distilled finite key
remains unaffected. However, an important requirement in finite
key analyses is the assumption that each block is randomly
sampled at a constant and uniform rate. This requires both the
protocol parameters and the fraction of X to Z bases be kept the
same. We do not make any assumptions on the underlying
statistics for each data block, which are not required to be the
same. Instead, we require only information on the count statistics
for the entire overpass.

Finite key length analysis
We now quantify SatQKD system performance and SKL generation
from different satellite overpasses. We employ the efficient BB84
protocol with weak coherent pulses (WCPs)6 for which tight finite-
key security bounds have been derived for one34 and two33 decoy
states. The performance of one and two-decoy states is similar,
however using two decoy states allows better vacuum yield
estimation, useful in high loss operation. We optimise the two-
decoy state protocol parameters and the amount of overpass data
used in a block to explore the dependence of the single-pass SKL on
different variables and derive an expected long term key volume.
The efficient BB84 protocol54 encodes signals in X and Z bases

with unequal probabilities pX and 1− pX, respectively. One basis is
used exclusively for key generation and the other only for
parameter estimation. We choose to use the error rate of the
announced sifted Z basis to bound leaked information from the
sifted X basis raw key. Biased basis choice improves the sifting
ratio whilst retaining security. In the asymptotic regime, the sifting
ratio tends to 1, versus 0.5 for symmetric basis choice (original
BB84). This sifting ratio advantage persists in the finite key regime
(see section ‘Protocol performance’) resulting in a longer raw
sifted key that reduces parameter estimation uncertainties and
provides more raw key to distil.
For the two decoy-state WCP BB84 protocol, the sender

randomly transmits one of three intensities μj for j∈ {1, 2, 3} with
probabilities pj. For the purposes of the security proof, we assume
the intensities satisfy μ1 > μ2 > μ3= 0. The finite block secret key
length is then given by33,

ℓ ¼
$
sX;0 þ sX;1ð1� hðϕXÞÞ � λEC � 6log2

21
ϵs

� log2
2
ϵc

%
; (4)

where sX,0, sX,1 and ϕX, are the X-basis vacuum yield, single-photon
yield and phase error rates, respectively. In contrast to fibre-optic
based systems, the size of the sifted X-basis data block cannot
easily be fixed for satellite-based QKD. Instead the number of
pulses N sent per pass is determined by the source repetition rate
and the time available during a satellite overpass. In the
asymptotic sample size limit (Eq. (2)), the X and Z basis data
block sizes are straightforwardly determined by N, the pulse
detection probability (itself a function of time), and the sifting
ratio. However, finitely sized samples generate observed statistics
that deviate from asymptotic expectations. Taking this into
account can significantly reduce the SKL and we employ

Table 1. Baseline SatQKD system parameters. λEC depends on block
size and QBERI= 0.5% is consistent with Micius results19.

Description Parameter Value

Intrinsic QBER QBERI 5 × 10−3

Afterpulse probability pap 1 × 10−3

Extraneous count probability/pulse pec 5 × 10−7

Source rate fs 1 × 108 Hz

Correctness parameter ϵc 10−15

Secrecy parameter ϵs 10−9

Error correction efficiency λEC See text

Baseline system loss metric ηsysloss 27 dB

Orbital altitude h 500 km

Minimum transmission elevation θmin 10∘

We sum detector dark count and background rate in pec. A reported
background count rate 500–2000 cps per detector (Moon position
dependent) lower bounds pec by 5 × 10−7 73, assuming a 1 ns coincidence
window.
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correction terms δ±
XðZÞ;k that relate the expected and observed

statistics for bases X(Z) with a k-photon state, using the tight
multiplicative Chernoff bound36 (see ‘Methods’ ‘Finite key analysis
for decoy-state BB84’ and ref. 55 for software details).
Error syndrome information is publicly announced to perform

error correction. The number of bits thus leaked is denoted λEC,
and is accounted for during privacy amplification. In the finite key
regime, this information leakage has a fundamental upper bound
λEC � log jMj, where M characterises the set of syndromes in the
information reconciliation stage35. We use an estimate of λEC that
varies with block size (Eq. (9)).
We characterise the reliability and security of the protocol by

two parameters, ϵc and ϵs. The protocol is ε= ϵc + ϵs-secure if it is
ϵc-correct and ϵs-secret33,56. For the numerical optimisation, we
take ϵc= 10−15 and ϵs= 10−9. Conditioned on passing the checks
in the error-estimation and error-correction verification steps, an
ϵs-secret key of length ℓ can be generated that is secure against
general coherent attacks and is universally composable56. This
indicates it is not possible for a malicious party to take advantage
of changes to any underlying statistics in each data block that may
arise due to changes in channel losses in SatQKD.
In the following sections, we highlight constraints arising from the

quantum communication link and its implications for system design.
It is also important to consider the constraints arising from the
classical communication link. This is particularly important for SatQKD
operations. We can use our finite key optimiser to provide an estimate
for the number of classical bit transmission required in SatQKD for the
baseline system parameters summarised in Table 1 with ηsysloss ¼40 dB
(see ‘Methods’ section ‘Classical communications for SatQKD’).

Transmission time window optimisation
A satellite overpass is limited in duration and experiences highly
varying channel loss, hence the expected count rates and QBER will
change significantly throughout the pass. The received data
obtained from lower elevations will have higher QBER compared
to signals sent from higher elevations due to greater losses and the
contribution of extraneous counts. This suggests that the SKL that
could be extracted could be optimised by truncating poorer quality
data from the beginning and end of the transmission period in
some circumstances, despite resulting in a shorter raw block57.
Our approach is to first fix the transmission duration and optimise

the protocol parameters to use during the pass, then iterate over the
window duration to find the highest resulting SKL. We define the
transmission time window to run from −Δt to +Δt, where t= 0
represents the time of highest elevation θmax. For each Δt, we find
optimum protocol parameters that maximise the SKL extractable
from the data block generated within this transmission window. We
impose a minimum elevation limit that reflects practicalities such as
local horizon visibility and system pointing limitations. Here we use
θmin ¼ 10� which for a zenith pass limits 2Δt to less than ~440 s.
We show the SKL as a function of Δt for different ηsysloss values in

Fig. 2. For small ηsysloss, the QBER at low elevations does not rise greatly
above QBERI and it is better to construct keys from the greatest
amount of data where Δt reaches the maximum allowed by θmin.
Conversely, for large ηsysloss, utilising only data from near zenith leads
to a longer SKL due to the better average QBER countering both the
smaller raw key length and larger statistical uncertainties.

SKL system parameter dependence
We now determine the dependence of the SKL on different
system parameters, including extraneous counts pec, intrinsic
quantum bit errors QBERI, and the source repetition rate fs. The
optimised SKL is then determined for different ηsysloss that model
alternative SatQKD systems that differ from the baseline config-
uration (Table 1) up to ηsysloss ¼ 42 dB, corresponding to Micius

transmitting to an OGS with Dr= 21.3 cm, keeping all other
system parameters the same.
We first consider how the SKL is affected by pec, which includes

both detector dark counts and background light. For DV-QKD,
silicon single photon avalanche photodiodes (Si-SPADs) are
typically used for visible or near infrared wavelengths and can
achieve a dark count rate of a few counts per second with
thermoelectric cooling and temporal filtering58. Superconducting
nanowire single photon detectors (SNSPDs)59 can offer superior
wavelength sensitivity (particularly beyond 1 μm), dark count rate
(less than 1 cps), and timing jitter, though at the expense of
greater cost, size, weight, and power (SWaP), owing to the need
for cryogenic operation. Background light, due to light pollution
and celestial bodies (most notably the Moon) is the main
constraint to minimising pec60. We have used a simplified model
which does not include elevation dependent background light
levels (which is highly site dependent). The impact of varying pec
on the single overpass (solid), two-pass normalised (dashed), and
normalised block asymptotic (dotted) finite SKLs (see ‘Methods’
section ‘Asymptotic key length per pass’) is shown in Fig. 3a. For
the finite variants, the SKL is determined using Eq. (3), where data
from either one (solid lines) or two (dashed lines) zenith
overpasses are processed as a single block. Multiple-pass SKLs
are normalised by the number of passes to maintain a fair
comparison with the single pass SKL. For each scenario, while
extraneous counts increase the vacuum yield sX;0, any addition to
the SKL is offset by reductions from worse phase error rates and
error correction terms. For example, a factor of 10 increase in pec
results in a 40% net reduction to the SKL for ηsysloss ¼ 27 dB. The
effect of extraneous counts is further compounded for large ηsysloss
values and can result in zero SKL due to an excessive QBER.
The QBER also suffers from effects such as non-ideal signals,

satellite-OGS reference frame misalignment, or imperfect projective
measurements by the OGS. We characterise these by an intrinsic
system error, QBERI, which is independent of the count rate or
channel loss. Figure 3b illustrates the effect of different QBERI on the
SKL. We observe that the finite key length is not as susceptible to
changes in the QBERI as compared with pec. The relative effects of
both pec and QBERI on the SKL is illustrated in Fig. 4 (see also
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Fig. 2 Secret key length and QBER vs transmission duration.
Zenith overpass with different ηsysloss (solid lines), QBERI= 0.5%, and
pec= 5 × 10−7. Dashed lines represent truncated block QBERs. For
each Δt, the SKL extractable from received data within −Δt to +Δt is
optimised over protocol parameters. For the better ηsysloss values,
increasing Δt beyond 200 s leads to minor SKL improvement. For
larger ηsysloss, including data from low elevations is detrimental to the
SKL as seen by an increase in the truncated block averaged QBER.
The non-smooth QBER appears since it is not the objective function
of the optimisation. The shaded region indicates the time when the
satellite elevation is lower than θmin ¼ 10�.
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Supplementary Fig. 1). The SKL varies greatly along the pec direction,
with zero finite key returned for large pec irrespective of
improvements to QBERI. This indicates that improvements to
background light suppression and detector dark count over source
fidelities and satellite alignment should be prioritised.
We can estimate the effect of increasing the source rate fs by

incorporating a correction factor to ηsysloss for the current results.
Since the SKL is a function of fnμk ;mμ

kg, these only depend on the
integrated product of the source rate and the link efficiency, with
all other system parameters kept the same. Therefore, a 100 MHz
source at a given ηsysloss provides the same amount of raw key as a
1 GHz source with a 10 dB larger system loss metric, e.g.
corresponding to a three times smaller OGS receiver diameter
(Supplementary Fig. 2). This approximation, however, neglects
extraneous counts and the resultant instantaneous QBER which is
unaffected by the source rate but does depend on ηsysloss.
Nevertheless, the above heuristic holds provided the contribution
of pec to QBER is small and thus SKL is mostly constrained by raw
key length and statistical uncertainties.
Practically, the amount of raw key that could be transmitted

during an overpass may be limited by the amount of available
stored random bits, irrespective of increases in fs. Real-time
quantum random number generation can overcome this though
at the expense of increased SWaP, which is often constrained on
smaller satellites. Even with limits on the amount of raw key
available, increasing fs can still be advantageous by compressing
the transmission into a smaller duration around θmax, which
decreases the average loss per transmitted block.

Protocol parameters that affect the SKL include signal
intensities μj, their probabilities pj, and basis bias pX. The optimum
values of these system parameters generally depend on ηsysloss and
the overpass geometry. The optimal key generation basis choice
probability pX decreases with increasing ηsysloss. As the OGS detects
fewer photons with increasing loss, leading to worse parameter
estimation of sX,0, sX,1 and ϕX due to greater statistical fluctuations,
to compensate we need to collect more Z basis events by
increasing 1− pX. The reduced number of key generation events is
outweighed by better bounds on the key length parameters. This
implies that the uncertainties in the parameter estimation from
finite statistics dominates the SKL compared with raw key length
when ηsysloss is large (Supplementary Fig. 3).

SKL and overpass geometry
A typical satellite overpass will not go directly over zenith but will
pass within some minimum ground track offset dmin of the OGS,
reaching a maximum elevation θmaxð<90�Þ (Fig. 1a). To maximise
the number of overpass opportunities that can generate a secret
key, a SatQKD system should be able to operate with as low a
maximum elevation θmax as possible. The SKL per pass as a
function of dmin is shown in Fig. 5 for different ηsysloss values. As
expected, overpasses with smaller θmax deliver smaller SKLs due to
shorter transmission times and lower count rates from large
average ηlink at lower elevations and longer ranges. The SKL
vanishes once θmax is below a critical elevation angle θ�max when
the small block size leads to excessive statistical uncertainties or
the average QBER becomes too high.
We now can estimate the long-term average amount of secret

key that can be generated using single overpass blocks with an
OGS site situated at a particular latitude. We first integrate the area
under the SKL vs dmin curve,

SKLint ¼ 2
Z dþmin

0
SKLdmin ddmin; (5)

where dþmin is the maximum OGS ground track offset that
generates key. Assuming a sun synchronous orbit, we then
estimate the expected annual key from (neglecting weather),

SKLyear ¼ Nyear
orbits

SKLint
Llat

; (6)

where Nyear
orbits is the number of orbits per year, and Llat is the

longitudinal circumference along the line of latitude at a single
OGS location (see Methods section ‘Expected annual SKL’). This
estimate assumes that dmin is evenly distributed (unless in an Earth
synchronous orbit28) and the OGS is not close to the poles where
the orbital inclination (~97°) invalidates the approximation of even

Fig. 3 SKL with system loss metric. Fixed system parameters were pap= 10−3, θmin ¼ 10�. In both plots, solid lines represent the optimised
SKL with a single zenith overpass, dashed lines represent the two-pass normalised SKL, and dotted lines represent the normalised block
asymptotic SKL (see ‘Methods’ section ‘Asymptotic key length per pass’). a SKL dependence on pec with QBERI= 0.5%. The maximum pec
represents operation near a full Moon or with severe light pollution. b SKL dependence on QBERI with pec= 5 × 10−7 per pulse.

Fig. 4 SKL versus pec and QBERI. Single zenith overpass with ηsysloss
values: a 27 dB, b 33 dB, c 37 dB, and d 40 dB. The grey region
indicates zero SKL.
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distribution. In Table 2, we summarise the expected yearly secret
finite key lengths attainable for various ηsysloss at latitude 55. 9∘ N.

Multiple satellite passes
Disregarding latency of key generation, data from several over-
passes can be combined to improve SKL generation. Figure 3
displays finite and asymptotic SKLs for a single zenith overpass.
The overpass-normalised asymptotic SKL corresponds to multiple
overpasses where the block sizes used for key rate determination
tend to infinity. Instead of Eq. (2), we aggregate data from
separate overpasses (with the same geometry and protocol
parameters) into a single processing block without segmented
instantaneous asymptotic key rates, only assuming asymptotically
ascertained combined block parameters. The process of taking the
block size to infinity requires care due to the limited amount of
data per pass (see ‘Methods’ section ‘Asymptotic key length per
pass’). The per-pass SKL increases significantly as the block
asymptotic regime is approached.
Systems with zero single-overpass SKL can generate positive

key by accumulating signals from several overpasses (Fig. 6). If ℓM
is the total SKL generated from M identical satellite passes, then
ℓM ≥Mℓ1 with diminishing improvement ℓM+1− ℓM with

increasing M, with the largest jump going from M= 1 to 2.
Averaging over several identical passes does not improve the
underlying block averaged signal parameters such as QBER, hence
the per-pass SKL improvement is mainly due to smaller estimation
uncertainties from increased sample size, with better error
correction efficiency and reduced λEC also contributing. This
shows that finite statistical fluctuations are the principle limitation
to the SKL that can be generated with a limited number of
overpasses.
Practically, employing multiple passes to improve SKL genera-

tion should be balanced against greater latency and potential
security vulnerabilities in storing large amounts of raw data for a
longer period between passes. This will depend on the assumed
security model and anticipated attack surfaces of the encryption
keys at rest61.

Protocol performance
The choice of QKD protocol can also significantly affect the SKL
due to finite block size statistics. This is illustrated by comparing
two BB84 variants: efficient BB84 (considered thus far)54 and
standard BB8462. The main difference is the basis choice bias, with
standard BB84 choosing both X and Z bases with equal
(symmetric) probability, while efficient BB84 allows biased
(asymmetric) basis choice. Standard BB84 also uses both bases
to generate key, hence requires parameter estimation of both.
Efficient BB84 uses only one basis for key generation and the other
for parameter estimation. We refer to the two protocols as s-BB84
and a-BB84, respectively.
In general a-BB84 produces higher SKL for all system loss

metrics, can tolerate larger ηsysloss, and operate with lower θmax
(Supplementary Fig. 4). The expected annual SKL (as in section
‘SKL and overpass geometry’) with a-BB84 and s-BB84 for the
baseline system parameters (Table 1) is obtainable from Fig. 7. For
ηsysloss ¼ 33 dB and 40 dB, a-BB84 generates 70% and 182% times
more key on average, respectively. The advantage increases with
larger ηsysloss due to several reasons. First, the better sifting ratio of
a-BB84 results in more raw bits that also allows for better
parameter estimation. Second, a-BB84 uses all events in one basis
to estimate the vacuum and single photon yields in the other. In
contrast, s-BB84 reveals an optimally sized random sample of
results for each basis to separately estimate signal parameters.
Hence only half the revealed results are used for each basis
estimation, leading to worse statistical uncertainties.
A tangential advantage is that a-BB84 requires less classical

communication than s-BB84. In a-BB84 the choice of bits for public
comparison for QBER estimation is implicit in the basis choice and
automatically revealed during sifting. A minor disadvantage to

Table 2. Expected annual SKL for different ηsysloss. The SKLint values
correspond to the area under each SKL vs dmin curve in Fig. 5 with
units of bit-metres (bm).

ηsysloss SKLint SKL
55:9�N
year

27 dB 3.74 × 1012 bm 0.9131 Gb

30 dB 1.52 × 1012 bm 0.3720 Gb

33 dB 5.40 × 1011 bm 0.1318 Gb

37 dB 8.75 × 1010 bm 0.0214 Gb

40 dB 1.13 × 1010 bm 0.0028 Gb

For h= 500 km, Nyear
orbits � 5500, and at 55.9∘N (latitude of Glasgow) L55:9�N �

2:25 ´ 107 m, the expected annual key volume
SKLyear ¼ 2:44 ´ 10�4SKLint m�1 . We assume θmin ¼ 10� , pec= 5 × 10−7, and
QBERI= 0.5%.

Fig. 6 Per-pass SKL vs Number of combined overpasses. Secret
key is generated from combined multiple overpass data. Zenith
overpasses with θmin ¼ 10�. System parameter sets
fηsysloss; pec;QBERIg: A= {45.7 dB, 10−7, 0.5%}, B= {44.8 dB, 10−7, 1%},
and C= {40.5 dB, 5 × 10−7, 1%}.Fig. 5 SKL vs ground track off-set. pec= 5 × 10−7 and QBERI=

0.5%. The key generation footprint is given by the maximum dmin
with non-zero SKL. Solid lines correspond to imposing θmin ¼ 10�
(indicated by dark grey region on the right) and dashed lines to no
elevation limit. The shaded areas under the curves determine the
expected annual SKL for different ηsysloss. Imposing θmin ¼ 10� reduces
the area, and hence the expected annual SKL, by 18.82%, 13.37%,
and 3.58% at 27 dB, 30 dB, and 33 dB, respectively.
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a-BB84 is the extra overhead in generating biased basis
probabilities63, but the advantage of s-BB84 in this regard is
relatively small taking into account all the biased probabilities
required for both decoy-state variants.

DISCUSSION
Important differences with fibre-based QKD mean that small
sample statistical uncertainties have a significant impact on the
performance of satellite QKD. The restricted overpass time of a
LEO satellite constrains the amount of sifted key that can be
established with an optical ground station. Operationally, a secret
key may need to be generated from a single pass, thus statistical
uncertainties will significantly impact performance in practical
scenarios. Our study examines the severity of finite-key effects for
representative space-ground quantum channel link efficiencies as
indicated by the in-orbit demonstration of Micius.
Our results highlight the influence of system and protocol

parameters on the secret key length that can be generated from a
single overpass. For the range of system loss metrics considered
(ηsysloss ¼ 27 to 42 dB), the strongest dependence comes from the
degree by which extraneous counts (pec) can be suppressed, with
a much weaker dependence on the intrinsic signal/measurement
quality (QBERI) of the system. There is also a minimal effect of
imposing a minimum elevation limit for quantum signal
transmission. This suggests that SatQKD systems should prioritise
background light suppression over higher intrinsic quantum signal
visibilities or extending transmission closer to the horizon.
The dominance of finite-key effects is highlighted by the

comparison between efficient (asymmetric basis bias) BB84 with
conventional (symmetric basis bias) BB84. The much greater secret
key length of efficient BB84 stems from a better sifting ratio and
longer raw key length as well as obviating the need to perform
parameter estimation for two bases that would further compound
the finite statistical uncertainty. This greater performance trans-
lates into a higher secret key length for a given overpass geometry
and also extends the satellite ground footprint within which secret
key can be established with a ground station. Overall, improve-
ments in system performance, whether through better protocols,
smaller system loss metrics, or higher source rates, can
significantly expand expected annual secret key volumes, e.g. a
reduction of 3 dB in the system loss metric from 40 dB to 37 dB
improves the expected annual key volume by a factor of 7.6.
Should operations allow, secret key extraction efficiency can also
be enhanced by combining data blocks from several passes,
especially if no secret is possible from a single overpass.
This preliminary study of SatQKD finite-key effects can be

extended to remove some simplifications and approximations.

An immediate extension would include a more comprehensive
time and elevation dependent quantum channel model incorpor-
ating scattering, turbulence, and anisotropic background light
distributions. Site dependent scenarios could include local horizon
limits, light pollution, and seasonal weather effects. We can
constrain the optimisation of the protocol parameters to reflect
additional restrictions on system operations and deployment in
practice. Ultimately, design and optimisation of SatQKD systems
should incorporate orbital modelling of constellations and ground
stations geographic diversity together with cost/performance
trade-off studies.

METHODS
Finite key analysis for decoy-state BB84
The Bennett-Brassard 1984 (BB84) quantum key distribution (QKD)
protocol is widely implemented owing to its simplicity, overall perfor-
mance and provable security62. However, practical implementations of
BB84 depart from the use of idealised single-photon sources. Instead, weak
pulsed laser sources are used given their wide availability and relative ease
of implementation. This improves repetition rates over current single
photon sources, but leaves the BB84 protocol vulnerable to photon-
number-splitting (PNS) attacks that exploit the multi-photon pulse fraction
present in emitted laser pulses64.
Decoy-state protocols circumvent PNS attacks and improve tolerance to

high channel losses, with minimal modification to BB84 implementations.
These protocols employ multiple phase randomised coherent states with
differing intensities that replace signal pulses. This modification permits
better characterisation of the photon number distribution of transmitted
pulses associated with detection events65, which reliably detect the
presence of PNS attacks in the quantum channel. Decoy-state BB84
protocols also allow better estimation of the secure fraction of the sifted
raw key (vacuum and single photon yields), which makes them a secure
and practical implementation of QKD.
The security of decoy-state QKD was initially developed assuming the

asymptotic-key regime66,67. For applications with finite statistics, uncer-
tainties in the channel parameters cannot be ignored68–70. Early
approaches in handling these finite key statistics used Gaussian assump-
tions to bound the difference between the asymptotic and finite results71.
This restricts the security to collective and coherent attacks. Security
analyses for more general attacks have also been developed72. The
multiplicative Chernoff bound39,71 and Hoeffding’s inequality33 can be
used to bound the fluctuations between the observed values and the true
expectation value. Recently, a more complete finite-key analysis for decoy-
state based BB84, with composable security, has been presented in ref. 36,
which uses the multiplicative Chernoff bound to derive simple analytic
expressions that are tight.
Due to limited transmission times, satellite-based quantum commu-

nications are strongly affected by finite statistics. To model different
SatQKD systems, we improve the analysis in ref. 33 with recent develop-
ments in modelling statistical fluctuations arising from finite statistics. This
improvement leads to a more robust SKL and is imprinted through the
finite statistic correction terms δ±

XðZÞ;k , which we define using the inverse
multiplicative Chernoff bound36,71. Specifically, let Y denote a sum of M
independent Bernoulli samples, which need not be identical. Denote y∞ as
the expectation value of Y, with y the observed value for Y from a single
experimental run. The magnitude of difference between the observed and
expected values depends on the statistics available. To quantify this
deviation, we determine the probability that y � y1 þ δþY is less than a
fixed positive constant ε > 0, and the probability that y � y1 � δ�Y is less
that ε. This is achieved through setting

δþY ¼ βþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2βy þ β2

q
; δ�Y ¼ β

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2βy þ β2

4

s
; (7)

where β ¼ lnð1=εÞ36. Hence, we define the following finite sample size
data block size

n±
XðZÞ;k ¼ ek

pk
nXðZÞ;k ± δ±

nXðZÞ;k

h i
;

m±
XðZÞ;k ¼ ek

pk
mXðZÞ;k ± δ±

mXðZÞ;k

h i
;

(8)

for the number of events and errors respectively in the X(Z) basis. From
this, we define the vacuum and single photon yields, and the phase error

Fig. 7 Protocol effect on SKL vs ground track offset. Shown are
a-BB84 (solid lines) and s-BB84 (dashed lines) with pec= 5 × 10−7,
QBERI= 0.5%.
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rate of single-photon events using ref. 33 (see also pseudocode 1 in Fig. 8)
that determines the finite key length.
An important step in any QKD protocol is error correction. This

necessitates classical communication, of λEC bits, which are assumed
known to Eve. This must be taken account of in the privacy amplification
stage. While λEC is known for practical implementations of the protocol, it
must be estimated for the finite key optimisation. An overly conservative
estimate would yield no key in a region of the parameter space where one
should be viable. Conversely, an overly optimistic value for λEC leads to
spurious results. This highlights the importance of choosing a good
estimate. It is standard to model the channel as a bit-flip channel33,35. This
leads to λEC ¼ fECnXh2ðQÞ, where Q is the QBER and fEC the reconciliation
factor. The value for fEC is chosen slightly above unity, e.g. 1.16. The use of
a constant reconciliation factor is a simple way of accounting for
inefficiency in the error correction protocol. This approach is normally
sufficient when determining the optimal secret key length. However, for
satellite QKD, one operates with high losses that are at the limit of where
one can extract a key. As such, it is beneficial to use a more refined
estimate of λEC.
A better estimate for λEC is given in ref. 35. In this approach, the

correction to nXhðQÞ depends on the data block size. In particular,

λEC ¼ nXhðQÞ þ nXð1� QÞ log ð1�QÞ
Q

h i
� F�1ðϵc; nX ; 1� Q; Þ � 1
� �

log ð1�QÞ
Q

h i
� 1

2 logðnXÞ � logð1=ϵcÞ;

(9)

where nX is the data block size, Q is the QBER and F−1 is the inverse of the
cumulative distribution function of the binomial distribution. We utilise this

definition to estimate the information leaked during error correction in the
finite key regime.
These post-processing terms define the attainable finite key, subject to

rigorous statistical analyses. The key length is a function of the basis
encoding probability, pX , the source intensities and their probabilities,
{μj, pj} for j∈ {1, 2, 3}, and the transmission time window, Δt, used to
construct block data for a satellite pass. Without loss of generality, we set
the second decoy state intensity as the vacuum μ3= 0. For a defined
SatQKD system, we generate an optimised finite key length by optimising
over the parameter space of the six variables: {pX, μ1, μ2, p1, p2, Δt}. A
baseline for system performance used in this work is detailed in Table 1 in
the main text. This procedure can be generalised for any satellite trajectory.
Fig. 8 illustrates a pseudocode of our numerical optimiser, which is
available as open source software55.

Asymptotic key length per pass
In this section, we provide an operational definition for the asymptotic key
length per pass and explain how it can be determined by adapting the
finite key optimiser. Data is combined from multiple satellite passes.
The optimisation over the protocol parameters is then performed on the
combined results and a secret key is extracted. For the following, we
assume that each satellite pass has the same trajectory. With minimal
modification, this can be extended to varying satellite trajectories for
each pass.
Denoting ℓM as the SKL attained from M satellite passes, we saw in Fig. 6

that ℓM ≠Mℓ1. We also saw that the improvement to the SKL decreased
with increasing number of satellite passes. This leads to a natural question:
what is the largest attainable SKL per pass? This is given by the asymptotic
secret key length ℓ1 ¼ lim

M!1
ℓM=M. The key length, ℓM, is found using

equation (4), and the quantity ℓ∞ is determined by examining the
asymptotic scaling of ℓM/M.
The estimate for the vacuum counts per pass is33,

sX;0
M

¼ τ0
μ2 � μ3

μ2Γ3ðnX;3 � δ�X;3Þ � μ3Γ2ðnX;2 þ δþX;2Þ
M

; (10)

where nX,k is the number of sifted counts in the X-basis, from pulses of
intensity k, τ0 is averaged probability that a vacuum state is transmitted by
the laser, Γk ¼ expðμkÞ=pk and δ±

X;k are correction terms that account for
the finite statistics. In ref. 33, δ±

X;k is derived from Hoeffding’s inequality. A
higher SKL is attained by instead deriving these correction terms from the
multiplicative Chernoff bound36. The asymptotic scaling of these correc-
tion terms are Oð ffiffiffiffiffi

nX
p Þ. This scaling is independent of whether the

Hoeffding and Chernoff bounds are used. This scaling implies that the
scaling with the number of satellite passes is Oð ffiffiffiffi

M
p Þ. Hence, δ±

X;k=M scales
Oð1= ffiffiffiffi

M
p Þ and thus tends to zero as M→∞. The finite statistics correction

terms thus go to zero, as expected.
Since each satellite pass is assumed to have the same orbit, the total

number of counts accumulated nX;k is equal to M times the corresponding
number of counts for a single pass, nð1ÞX;k . From this, we obtain

lim
M!1

sX;0
M

¼ τ0
μ2 � μ3

μ2Γ3n
ð1Þ
X;3 � μ3Γ2n

ð1Þ
X;2

� �
¼ s1X;0; (11)

where s1X;0 is the asymptotic estimate of the vacuum counts for a single
pass, which we define formally in the next paragraph. By following a similar
process for each term in ℓM/M, we obtain

ℓ1 ¼ bs1X;0 þ s1X;1 1� hðϕ1
X Þ� �� λ1EC c; (12)

where ϕ1
X ¼ ν1Z;1=s

1
Z;1 is the phase error rate, s

1
X;1, s

1
Z;1 and ν1Z;1 are the single

pass asymptotic estimates for: the single photon counts in the X basis, the
Z basis, and the single photon errors in the Z basis, respectively.
The asymptotic quantities: ν1Z;1, s

1
X;0 and s1XðZÞ;1, correspond to averaging

the single pass quantities over infinitely many passes. More formally, let
u 2 fϕX ; νZ;1; sXðZÞ;0; sXðZÞ;1; λECg, and let u(M) denote the quantity estimated
using the full data from M passes. The asymptotic quantity is then defined
as

u1 ¼ lim
M!1

uðMÞ

M
: (13)

A refined estimate of λEC and its upper bound on the asymptotic
behaviour is provided in ref. 35. From this, we determine that
λ1EC ¼ nð1ÞX hðQÞ, where Q is the QBER for a single pass. When running
the finite key optimiser for the asymptotic key length per pass, we define

Fig. 8 Pseudocode for the optimised finite key length. We
consider a pulse repetition rate fs, M satellite passes in the plane
offset by angle ξ from the zenith plane, and time dependent losses
L. An elevation constraint of θmin ¼ 10� imposes realistic local
constraints of establishing an optical link between the OGS and
satellite. The key length is optimised over all protocol parameters
and a transmission time window Δt over which the raw key is
acquired. The correction terms δ±

XðZÞ;k for bases X(Z) and the
intensities μk are determined from the multiplicative Chernoff
bound that account for finite statistics36.
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λ1EC ¼ 1:16nð1ÞX hðQÞ, which accounts for inefficient error correction even in
the asymptotic limit.
Rather than looking at the key length per pass, it is also common to

consider the key rate, i.e. the number of secret key bits per transmitted
pulse. Let N be the total number of pulses transmitted by the satellite
during a single pass. The key rate for M passes is just SKRM= ℓM/(MN). In
the limit of infinitely many passes, the asymptotic key rate is given by
SKR∞= ℓ∞/N.
Notice that our analysis of the asymptotic secret key rate, SKR∞ differs

from the route often taken in the literature. Specifically, the asymptotic key
rate can be determined as a function of different elevation angles. The
data is then combined according to Eq. (1). While such an approach is
possible if we extract keys for each angle of elevation, it is not appropriate
for the current analysis, where we group all the data for a pass and then
extract a key from the combined data.

Classical communications for SatQKD
In traditional fibre-based QKD, the cost of classical communications is
often overlooked given the availability of the internet backbone. However,
in SatQKD classical radio communications is often constrained due to
restrictions in antenna size and power, and thus could possibly represent a
bottleneck in the reconciliation process.
We estimate the classical communication capacity required for secret

key generation in SatQKD. Using the baseline system parameters from
Micius summarised in Table 1, we consider a system loss metric of
ηsysloss ¼ 40 dB for a zenith pass. For BB84 there are five stages requiring four
distinct rounds of classical communication between the satellite (Alice)
and the OGS (Bob) to process a block:

1. Alice to Bob: Prior to any classical transmission, Alice first encodes
information in the polarisation basis of WCPs that are transmitted to
Bob. Based on our finite key optimiser, the optimal time window for
ηsysloss ¼ 40 dB is a total of 200 s centred at zenith (Δt= 100 s) with
signal parameters of μ1= 0.697364, p1= 0.738668, μ2= 0.159325,
p2= 0.189355, μ3= 0, p3= 0.0720, and a basis encoding probability
PX= 0.725313. This results in the expected detections by Bob of
nX ¼ 536038 and nZ ¼ 203006 in the X and Z bases, respectively.

2. Bob to Alice: Bob needs to report to Alice the time-slot positions and
basis values for each detection event. To specify a time-slot position
requires a maximum of dlog2ð2ΔtfsÞe ¼ 36 bits with a naïve
encoding. Bob detected nB ¼ nX þ nZ ¼ 739044 events and uses
36+ 1 bits per event in his bit string which is < 27 Mb.

3. Alice to Bob: Alice confirms to Bob the time-slot of the detected
events for which the bases matched. She also transmits along with
each reconciled event the intensity of the pulse (2 bits), and if sent
in the Z basis (1 bit), the sent bit value. After basis reconciliation
there are on average nX= 388795, nZ= 55763 events in the X and Z
bases, respectively. Alice reports nA= nX+ nZ= 444558 events and
uses at most 36+ 2+ 1 bits per event in her bit string which results
in < 20Mb data to be downlinked.

4. Bob to Alice: Bob now calculates the phase and bit error rates using
Alice’s reconciliation data and then transmits to Alice the
parameters for the error correction code to use, e.g. which pre-
agreed set of low density parity check (LDPC) codes to use, as well
as the dimensions of the privacy amplification matrix, which require
bit strings of size≪ 1 kb.

5. Alice to Bob: Alice calculates the specified error correction
syndromes and transmits the results to Bob who then performs
the error correction on his side. We estimate the amount of
syndrome data to be transmitted by the amount of leaked
information, λEC= 55360 bits, hence Alice sends < 60 kb down to
Bob in this step.

The total classical communication required in the above steps is less
than 50 Mb (6.25 MB), of which ~27 Mb is uplinked and ~20 Mb is
downlinked.
Note for the classical communication exchange in satellite QKD, steps

two and three can start as soon as Bob starts receiving counts. However,
steps four and five can only occur after Bob receives the final counts that
make up the block, but the amount of data in these steps is minimal. This
indicates that the bulk of the classical communication exchange can occur
in parallel to the quantum transmission.

Expected annual SKL
We can estimate the expected annual secret key length from SKL vs
ground track offset relation. Consider a satellite in sun synchronous orbit
(SSO) at an inclination of ~98∘. For OGS latitudes below 60∘, this can be
approximated by a polar orbit (Fig. 9). The precession period of a SSO is
one year, during which time the satellite makes ~5500 orbits.
The striped purple ground path below the satellite is the key generation

footprint. As the Earth rotates daily under the orbit of the satellite, the key
generation footprint intercepts the line of latitude uniformly on average
throughout the year. Note, this is under the assumption that the orbital
period is not rationally related to the length of the solar day, i.e. not for a
simultaneous SSO and Earth synchronous orbit. Since at low latitudes the
distance around the line of latitude is greater than for higher latitudes, the
key generation footprint represents a smaller fraction of the longitudinal
circumference. Hence, on average, the satellite is more likely to pass close
to the OGS at higher latitudes.
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