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Abstract—In this paper, we are concerned with thefinite-length
analysis of low-density parity-check (LDPC) codes when used over
the binary erasure channel(BEC). The main result is an expression
for the exact averagebit and block erasure probability for a given
regular ensemble of LDPC codes when decodediteratively. We also
give expressions for upper bounds on the average bit and block
erasure probability for regular LDPC ensembles and the standard
random ensemble undermaximum-likelihood (ML) decoding. Fi-
nally, we present what we consider to be the most important open
problems in this area.

Index Terms—Belief propagation, binary erasure channel
(BEC), finite-length analysis, low-density parity-check (LDPC)
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I. INTRODUCTION

I N this paper, we are concerned with thefinite-lengthanalysis
of low-density parity-check (LDPC) codes when used over

thebinary erasure channel(BEC). The main result is an expres-
sion for theexact averagebit and block erasure probability for
a givenregular ensemble l r when decodedit-
erativelywith message-passing algorithms as in, e.g., [11]. For
an introduction into the terminology and basic results of LDPC
codes we refer the reader to [3]–[9], [11]–[15].

For a particular code1 in a given ensemble , let
denote the expectedbit erasureprobability if is

used to transmit over a BEC with parameterand if the re-
ceived word is decoded iteratively by the standard belief propa-
gation decoder. Here, the expectation is over all realizations of
the channel. Let denote the corresponding
ensemble average. The following two results are well known,
see [7], [9].
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1More precisely,G denotes the bipartitegraphrepresenting the code.

[Concentration Around Ensemble Average] For any given
there exists an such that

[Convergence of Ensemble Average to Cycle-Free Case]
There exists a constantsuch that

In words, the first statement asserts that the behavior of the indi-
vidual codes concentrates around the ensemble average and that
this concentration is exponential in the block length. The second
statement asserts that the ensemble average converges to the en-
semble average of the cycle-free case as the block length tends
to infinity.2 Note, though, that the speed of the convergence to
the cycle-free case is known to be of order at leastand is likely
to be polynomial at best, whereas the converge to the ensemble
average is exponential in the block length.3 The above two state-
ments suggest the following. Fix the block lengthand consider
individual elements of . Although the behavior of in-
dividual codes can differ significantly from that of the cycle-free
(asymptotic) case for moderate block lengths, the behavior of
individual instances is likely to be concentrated around the en-
semble average. Let us demonstrate this point by means of an
example. Consider the situation depicted in Fig. 1. The two solid
curves represent (left solid curve) and

(right solid curve), respectively. As we
can see, for a block length of , the average bit erasure
probability differs significantly from the one of the cycle-free
case. Also plotted are curves corresponding to for
several randomly chosen instances of (dashed
curves). These curves follow the ensemble average very closely
for bit erasure probabilities down to .

From the above observations we can see that the ensemble
average plays a significant role in the analysis of finite length
codes and that, therefore, computable expressions for

2Recall that in the limit of infinite block length, the support tree up to any fixed
given depth of a randomly chosen node or edge is cycle free with probability
that goes to one. We, therefore, use the phrases “cycle free” and “infinite block
length” interchangeably.

3For the erasure channel more precise statements about the convergence
speeds can be gained by an analysis of the “error floor,” see [10], [16].

0018-9448/02$17.00 © 2002 IEEE
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Fig. 1. Concentration of the bit erasure probabilityP (G; �) for specific
instancesG 2 C(512; x ; x ) (dashed curves) around the ensemble average

[P (G; �)] (left solid curve). (It is noteworthy that there appear
to be two dominant modes of behavior.) Also shown is the performance of the
cycle-free case, [P (G; �)] (right solid curve).

are of considerable value. Viewing the decoding operation from
a standard message-passing point of view, it is hard to see how
one could derive analytic expressions of .
Cycles in the graph seem to render the finite-length problem
quite intractable. The crucial innovation in this paper is to use
as a starting point acombinatorialcharacterization of decoding
failures. This combinatorial characterization was originally pro-
posed in [12] in the context of the efficientencodingof LDPC
codes.

To recall some notation, an ensemble of LDPC codes
is characterized by its block length, a variable

node degree distribution , and a check node
degree distribution . Here, is equal to
the probability that a randomly chosen edge is connected to
a variable (check) node of degree. To be specific, consider
regularensembles of the form l r . For example,
a typical element of is shown in Fig. 2. Note that
each variable node participates in exactly three checks and that
each check node checks exactly six variable nodes.

The following definition characterizes the key object needed
to study the finite-length performance of LDPC codes over the
BEC.

Definition 1.1 [Stopping Sets]:A stoppingset is a subset
of , the set of variable nodes, such that all neighbors ofare
connected to at least twice.

As one can see from Fig. 3, for the particular shownthe set
is a stopping set.

Note, in particular, that the empty set is a stopping set. The
space of stopping sets is closed under unions, i.e., ifand
are both stopping sets then so is . (To see this note that
if is a neighbor of then it must be a neighbor of at
least one of or , assume that is a neighbor of . Since

is a stopping set, has at least two connections to and
therefore at least two connections to .) Each subset of

thus clearly contains a unique maximal stopping set (which
might be the empty set).

Fig. 2. A specific elementG from the ensembleC(10; x ; x ).

Fig. 3. The setfv ; v ; v ; v g is a stopping set.

The next lemma shows the crucial role that stopping sets play
in the process of iterative decoding of LDPC codes when used
over the BEC.

Lemma 1.1 [Combinatorial Characterization of Iterative De-
coder Performance]:Let be a given element from .
Assume that we use to transmit over the BEC and that we
decode the received word in an iterative fashion until either
the codeword has been recovered or until the decoder fails to
progress further. Let denote the subset of the set of variable
nodes which is erased by the channel. Then the set of erasures
which remain when the decoder stops is equal to the unique
maximal stopping set of .

Proof: Let be a stopping set contained in. We claim
that the iterative decoder cannot determine the variable nodes
contained in . This is true, since even if all other bits were
known, every neighbor of has at least two connections to the
set and so all messages towill be erasure messages. It fol-
lows that the decoder cannot determine the variables contained



1572 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 6, JUNE 2002

in the unique maximal stopping set contained in. Conversely,
if the decoder terminates at a set, then all messages entering
this subset must be erasure messages which happens only if
all neighbors of have at least two connections to. In other
words, must be a stopping set and, since no erasure contained
in a stopping set can be determined by the iterative decoder, it
must be the maximal such stopping set.

In order now to determine the exact (block) erasure proba-
bility under iterative decoding it remains to find the probability
that a random subset of the set of variable nodes (the set of
“erasures”) of a randomly chosen element from the ensemble

l r contains a nonempty stopping set. We show
in Theorem 2.1 that this can be doneexactly. In Section III, we
consider the maximum likelihood (ML) performance of LDPC
ensembles as well as of the standard random ensemble. It is in-
structive to study the ML performance since this makes it pos-
sible to distinguish how much of the incurred performance loss
of iterative coding systems is due to the suboptimal decoding
and how much is due to the particular choice of codes. Finally,
in Section IV, we present what we consider to be the most im-
portant open problems in this area.

II. FINITE-LENGTH ANALYSIS

A. LDPC Codes Under Belief Propagation Decoding

The characterization of decoding failures stated in Lemma 1.1
reduces the task of the exact determination of the performance
of iterative decoders to a combinatorial problem. In this section,
we present a solution to that combinatorial problem. In the se-
quel, if is a power series, , we denote
by its th coefficient .

Theorem 2.1:Let denote thebit erasureproba-
bility when transmitting over a BEC with erasure probability

using a code , l r , and a belief propaga-
tion decoder. Hereby we assume that we iterate until either all
erasures have been determined or the decoder fails to progress
further. In a similar manner, let denote theblock era-
sure probability. Define the functions , ,

, and by the recursions

(2.1)

(2.2)

(2.3)

r

l

(2.4)

and the boundary condition

if or

Fig. 4. There arev variable nodes of degreel, c check nodes of degreer, and
onesupercheck node of degreed.

(Note, in (2.4), that r l

if so need not
be defined for this case.) Then

l r

l

r

l

r

l r

l

r
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l
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where .
Proof: Consider the situation depicted in Fig. 4. There are

variable nodes of degree, check nodes of degree, and
onesupercheck node of degree.4 Label the variable node
sockets in some arbitrary but fixed way with elements from the
set and, in a similar manner, label the

check node sockets in some arbitrary but fixed way with
elements from the set . Let

denote maps which describe the association of variable and
check node sockets to their respective nodes, so that, e.g., if

then this signifies that the third variable node socket
emanates from the fifth variable node. We always label the
regular check nodes by and set the label of the super check
node to .

4As we will see shortly, it is the introduction of this extra check node which
makes it possible to write down the recursions.
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For simplicity, we will refer to a particular realization of con-
necting the variable node sockets to the check node
sockets as aconstellation. More precisely, a constellation is an
injective map (so is required)

so that variable node socket, , is connected to check
node socket , . Let denote the
set of all such maps and let . Since
there are r

l
degrees of freedom in choosing which of the

check node sockets are connected and a further ways of
permuting the corresponding edges, is as given in
(2.1).

We will say that a constellation contains astopping set if it
contains a nonempty subset of the variable nodes such that any
regular check node which is connected to , is connected to

at least twice. More precisely, , , is a stopping set if

Note that this definition is slightly more general than the one
given in Definition 1.1 since in our current setup we have in
addition a super check node of degree. In particular, in this
extended definition,no restrictionsare placed on the number of
connections from the stopping setto the super check node.

Clearly, the set can be partitioned into the set of
maps that containno stopping set, call this set , and
the set of maps that containat least onestopping set, call this
set . Letting

and

we, therefore, have the relationship (2.2).
Consider now , the set of constellations that con-

tain at least one stopping set. Observe that ifand are two
stopping sets then theirunion is a stopping set. It follows that
each element of contains aunique maximalstop-
ping set. Therefore, we have

(2.5)

where denotes the set of constellations which
have as their unique maximal stopping set. By some abuse
of notation, let

where we have used the fact that the cardinality of
only depends on the cardinality of but not on the specific
choice of variable nodes. Since there are choices of of
size and since the union in (2.5) is disjoint we get (2.3).

It remains to prove the recursion (2.4) which links
to . Consider the situation depicted

in Fig. 5, where a specific set of cardinality is chosen.
We are interested in counting the elements of .
Note that by definition of , is the unique
maximal stopping set. First, this implies thatis a stopping
set. Consider those elements of for which the set

is connected to (out of the ) regular check nodes. There
are ways of choosing these check nodes. Next, there are

r l

Fig. 5. There arev variable nodes of degreel, c check nodes of degreer, and
onesupercheck node of degreed. Further,S is a subset ofV , the set of variable
nodes, of cardinalitys.

ways of choosing the check node sockets to which thesockets
of the set are connected. Finally, the edges emanating from

can be permuted in ways.
So far we have only been concerned with edges that emanate

from . We still need to ensure that we only count those con-
stellations for which is themaximalstopping set. Consider a
set . Assume that has the property that any regular
check node which is connected tobut not to is connected
to at least twice. Then clearly is also a stopping set and
so is not the maximal stopping set. Conversely, assume that

is not the maximal stopping set. Letbe the maximal stop-
ping set and consider . By definition, every regular
check node which is connected tois connected to at least
twice. Therefore, every regular check node which is connected
to but not to is connected to at least twice. We conclude
that will be the unique maximal stopping set iff does not
contain a subset with the property that every regular check
node which is connected to but not to is connect to at
least twice. How many constellations are there which fulfill this
property? A moment’s thought shows that this number is equal
to : there are variable nodes
in ; there are further regular check nodes which are
not neighbors of ; and the remaining available
sockets can be combined relegated the super check node.

The bit erasure and block erasure probability can be ex-
pressed in a straightforward manner in terms of .
The decoder terminates in the unique maximal stopping set
contained in the set of erased bits. If we are interested in the
average fraction of erased bits remaining, then a maximal
stopping set of size will cause erasures. If we are interested
in the block erasure probability then each nonempty stopping
set counts equally. From these observations the stated formulas
for the erasure probabilities follow in a straightforward manner.
For the second expression giving the block erasure probability
we argue as follows: the quantity

l

r

l

r
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Fig. 6. [P (G; �)] as a function of� for n = 2 , i 2 [5]. Also
shown is the limit [P (G; �)] (cycle-free case).

is the probability that a randomly chosen subset of sizecon-
tains a nonempty stopping set. If we multiply this quantity with
the probability that the size of the erasure set is equal toand
sum over all then we get the block erasure probability. We can
simplify the expression by verifying that this quantity is equal
to one if l

r
.

Example 1: Consider the ensemble . Fig. 6
shows as a function of for ,

. Also shown is the limit (cycle-
free case). This limiting curve can be determined in the fol-
lowing way. Recall that thethreshold associated to a degree
distribution pair can be characterized as5

Assume now that the initial erasure probabilityis strictly above
this threshold . In this case, the decoder will not terminate suc-
cessfully and a fixed fraction of erasures will remain. To deter-
mine this fraction define , where , as

In words, is the erasure probability of the messages emitted
from the variable nodes at the point where the decoder termi-
nates. To this corresponds an erasure probability of the mes-
sages emitted by the check nodes of . From this
quantity it is now easy to see that the corresponding bit erasure
probability is equal to , where

is the variable node degree distribution from the node perspec-
tive. Therefore, the limiting curve is given in parametric form as

For the specific example of the -regular code it is more
convenient to parameterize the curve by(instead of ). We
know from [1] that and the corresponding

5Note, that the range ofx in this definition can be chosen to bex 2 (0; 1]
rather thanx 2 (0; �] since forx 2 (�; 1] the inequality is automatically
fulfilled if it is fulfilled for x = �.

Fig. 7. [P (G; �)] as a function of� for n = 2 , i 2 [10].

is given by . From we
get

so that the limit curve is given in parametric form by

B. Efficient Evaluation of Expressions

It is clear that the recursions stated in Theorem 2.1 quickly
become impractical to evaluate as the block length grows (this
is in fact the reason why in Fig. 6 we only depicted the curves
up to length !). For the cases or the following
recursions are substantially easier to evaluate.

Fig. 7 shows the average block erasure probability for the en-
semble for block lengths , , as deter-
mined by the following expressions.

Theorem 2.2:Let and be recur-
sively defined by

(2.6)

and
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with the boundary condition

otherwise.

Define

Then

The basic idea in deriving these recursions is simple although
the details become quite cumbersome. Consider a constellation
which does not contain a stopping set. Then it must contain at
least one degree-one check node. Peal off this check node, i.e.,
remove it together with its connected variable node, any edges
connected to these nodes and any further check nodes which,
after removal of these edges, have degree zero. The result will be
a smaller constellation which again does not contain a stopping
set and so we can apply this procedure recursively. Reversing
this procedure, we see that constellations which do not contain
stopping sets can be built up one variable node at a time. This
gives rise to the stated recursions. Some care has to be taken to
make sure that we count each constellation only once since in
general constellations might contain more than just one check
node of degree one and so the same constellation can be con-
structed in general in many ways starting from suitable smaller
constellations. In the above recursions,denotes the number of
variable nodes of a constellation,the number of used check
nodes, the number of check nodes of degree one, andthe
degree of the super check node.

In more detail: Consider a stopping-set-free constellation
which has variable nodes, uses check nodes, of which
have degree one, and is labeled by thestandardlabels and

, respectively. Let denote the set of all such
constellations and let denote its cardinality. We
will now describe how we canpruneandgrow constellations.
This will give rise to the desired recursion. Fix an element
from . For each variable node, call it, , let

denote the number of neighboring check nodes of
degree one. We will call the multiplicity of and we will
denote these neighbors by . To prune an element
of , pick a variable node of multiplicity at least
one and delete and from the constellation. The

parameters of the new constellation are therefore ,
, and . In order to make this constellation an

element of we have to ensure that its
labeling is the standard one with label sets and
for the variable and check nodes, respectively. We do this in the
natural way, i.e., for the pruned constellation all labels smaller
than remain unchanged whereas all labels larger thanare
decreased by one. An equivalent procedure is applied at the
check node side where we have deletednodes.

The above procedure can be inverted, i.e., if we start with this
pruned constellation and add a variable node with labelas well
as check nodes with labels then we can recover
our original constellation by connecting the edges in an appro-
priate way. Hereby, in adding, e.g., the variable node with label

we have to increase all labels of variable nodes with labels
equal to at least by exactly one and a similar remark applies for
the check nodes. Let c c denote the subset of

which contain the variable nodeof multiplicity
which is connected to the degree-one check nodes .
Now note that each element in c c can be re-
constructed in a unique way from an element of

by adding and . It follows that a given
element of can be reconstructed in exactly as many
ways as the number of its variable nodes which have multiplicity
at least one. Note that, by definition, the sum of the multiplic-
ities of all variable nodes is equal to. Therefore, the above
statement can be rephrased in the following manner. If we weigh
each reconstruction by the multiplicity of the inserted variable
node then this weighted sum of reconstructions equals.

Consider now the recursion for in more detail. Without
much loss of generality we assume here that , i.e., that
there is no super check node. The general case is a quite straight-
forward extension. On the left-hand side of the recursion we
write , which by our remarks above is equal to the
weightedsum of reconstructions. There are only three possible
ways of reaching an element of by adding one vari-
able node of degree two to a constellation in

. We can have

or

Consider first the case , and therefore
. In this case, we can choose the labelin ways and the

label in ways. Further, there arechoices for the socket of
and, as a moment’s thought shows,

choices for the socket of the second edge. Next, look at the case
which also implies that . As before,

we can choose the labelin ways, the label in ways, and
there are choices for the socket of . The second edge is now
connected to a check node of degree one, and there are
of them and further we can choose one out of sockets.
Finally, consider the case , which
implies that . As before, we can choose the labelin
ways and the labels in ways and we have choices
for the sockets of the two check nodes. Since we count weighted
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reconstructions we also have to add a factor. In summary we
get the recursion

We can simplify the above recursions by noting that several fac-
tors are common to all terms and only depend onand . This
gives rise to the recursion stated in (2.6).

Rather than explaining the case in detail we refer the
reader to [16], where the above approach has been generalized
to arbitrary and a systematic derivation is given.

There are many more alternative ways in which expressions
for the average block or bit erasure probability can be derived.
We mention one which is particular to the case . Note that
in this case, a stopping-set-free constellation cannot contain a
double edge, i.e., each variable node connects two distinct check
nodes. Therefore, stopping-set-free constellations can be repre-
sented as regular graphs, whose nodes are the check nodes of the
bipartite graph and whose edges are in one-to-one correspon-
dence with variable nodes of the bipartite graph. A moment’s
thought now shows that stopping-set-free constellations on the
bipartite graph correspond to aforestin the corresponding reg-
ular graph. We can, therefore, equivalently count the number of
forests, where each node in the regular graph has degree at most

and where sockets and edges are labeled.

III. ML D ECODING

It is instructive to compare the performance of an LDPC en-
semble underiterative decodingto that of the same LDPC en-
semble underML decodingas well as the performance of the
standard random ensemble underML decoding. The reason for
our interest in these quantities is that they indicate how much
of the performance loss of iterative coding systems is due to the
choice of codes and how much is due to the choice of the subop-
timal decoding algorithm. We note that we assume an ML de-
coder which determines all those bits which are uniquely spec-
ified by the channel observations but does not break ties and
therefore we will deal with true erasure probabilities rather than
error probabilities.

A. Standard Random Ensemble Under ML Decoding

Theorem 3.1:Consider the ensemble of binary
linear codes of length and dimension defined by means
of their parity-check matrix , where each entry of is
an independent and identically distributed (i.i.d.) Bernoulli
random variable with parameter one-half. Let
denote thebit erasure probabilityof a particular code defined
by the parity-check matrix when used to transmit over
a BEC with erasure probability and when decoded by an

ML decoder. Let denote the correspondingblock
erasure probability. Then

(3.1)

(3.2)

where is the number of binary matrices of
rank . An enumeration is given in Appendix A.

Proof: First consider the block erasure probability. Let
denote the set of erasures and let denote the submatrix of

which consists of those columns of which are indexed by
. In a similar manner, let denote those components of the

codeword which are indexed by. From the defining equation
we conclude that

(3.3)

where . Now note that if denotes the transmitted
codeword and denotes the set of erasures then ,
the right-hand side of (3.3), isknownto the receiver. In standard
terminology, is called thesyndrome. Consider now the equa-
tion . Since, by assumption, is a valid codeword,
we know that this equation hasat least onesolution. It hasmul-
tiple solutions, i.e., the ML decoder will not be able to recover
the codeword uniquely, iff has rank less than . From (A1)
we know that this happens with probability

otherwise.

From this, (3.2) follows in a straightforward manner.
Next consider the bit erasure probability. We claim that a bit

cannot be recoveredby an ML decoder iff is an
element of the space spanned by columns of . To see this
we argue as follows. Write the basic equation in the
form

Since, by assumption, is a codeword we know that there isat
least onechoice of such that this set of equations has solu-
tions. The ML decoder will not be able to determineif this
equation has solutions forbothchoices of . But this happens
iff is contained in the column space spanned by ,
as claimed. From (A1) we know that the probability that
has rank is equal to
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Fig. 8. [P (H; �)] as a function of� for n = 2 , i 2 [10] (solid
curves). Also shown is the union bound (dashed curves). As we can see,
for increasing lengths the union bound expressions become more and more
accurate.

Fig. 9. Union bound on the quantity [P (H; �)] as a function
of � for n = 2 , i 2 [10].

Further, assuming that has rank , the probability that
is an element of the space spanned by the columns of

is equal to . From these two observations (3.1)
follows easily.

Example 2: Fig. 8 shows as a function
of for , . Also shown is the union bound which
is derived in Appendix B. As we can see, for increasing lengths
the union bound expressions become more and more accurate.

B. LDPC Ensemble Under ML Decoding

We have so far not succeeded in deriving exact expressions
for the ML performance of LPDC ensembles. From the previous
section though one can see that the union bound on the ML era-
sure probability for the random standard random ensemble is
reasonably tight except for very short lengths. Therefore, it is
meaningful to derive the union bound of the ML performance of
LDPC ensembles as well. This is done in Appendix B. Stronger
bounds, especially away from the error floor region, can be ob-
tained using more powerful techniques, see, e.g., [4].

Example 3: Fig. 9 shows the union bound on the quantity
as a function of for , .

IV. I NTERPRETATION

In comparing Fig. 7 with Fig. 9 (assuming that the shown
union bound is reasonably tight) and Fig. 6 with Fig. 8, we see,
at least for the ensemble , that most of the perfor-
mance loss is due to the structure of the codes themselves. No-
tice that for the ensemble the performance under
iterative decoding is only slightly worse (at least in the “error
floor region”) than the performance under ML decoding. In
particular, even under ML decoding the curves show an “error
floor” region which is so characteristic of iterative coding sys-
tems. We remark that this effect is even more pronounced since
we look here at block error curves. The corresponding bit error
curves would show this error floor to a lesser degree.

V. OUTLOOK

Although the exact characterization of the average bit and
block erasure probabilities given in this paper are quite encour-
aging, much work remains to be done. We briefly gather here
what we consider to be the most interesting open problems.

1) In Fig. 1 we see that the individual bit erasure curves fall
into two categories. There is one curve which shows a
fairly pronounced “error floor,” whereas all other curves
exhibit a much steeper slope. In the region where the indi-
vidual curves diverge, the ensemble average is to a large
degree dominated by those “bad” graphs. This suggest
that one can define anexpurgatedensemble and that the
concentration of the individual behavior around the av-
erage of this expurgated ensemble holds down to much
lower erasure probabilities. The question is how to find
a suitable definition of such an expurgated ensemble and
whether one can still find the ensemble average of the ex-
purgated ensemble? Some progress in this direction has
been made in [10].

2) The exact evaluation of

and

is, in general, a nontrivial task and it would be highly de-
sirable to find simpler expressions. It is particularly frus-
trating that not even the simple recursion for the cycle
code case seems amenable to an analytic attack. For ex-
ample, if we try the obvious path employing generating
functions, the resulting partial differential equation does
not seem to admit an analytic solution. Simpler bounds
on these quantities would also be useful.

3) Once simpler expressions for the regular case have been
found, it is natural to investigate if exact expressions can
also be given for the irregular case.

4) These expressions can then be used to find theoptimum
degree distribution pairs for a given length.

5) Find exact expressions for the bit and block erasure prob-
ability for LDPC ensembles under ML decoding. Com-
paring then the expressions for the iterative decoding of
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LDPC ensembles with the ones for the ML of LDPC en-
sembles and the ones for the ML of standard random en-
sembles it will then be possible to assess how much loss
is due to the structure of the codes and how much loss
is due to the suboptimum decoding. A related but sim-
pler problem is to find the threshold for LDPC codes
below which theblock erasure probability can be made
arbitrarily small. It should be interesting to see for which
codes the threshold for bit and block erasure probability
are different and for which they are the same. Some par-
tial answers to the last question can be found in [10].

6) Find exact expressions for the bit and block error prob-
ability of LDPC ensembles under iterative decoding for
more general channels.

7) Apply the same analysis to other ensembles, e.g., repeat–
accumulate (RA) ensembles [2].

8) In this paper, we assumed that the decoder proceeds until
no further progress is achieved. What is the distribution of
the number of required iterations? Also, since measure-
ments by MacKay and Kanter have indicated that the dis-
tribution of the number of required iterations have slowly
decaying tails it is interesting to see how the error proba-
bilities behave if we perform a fixed number of iterations.

APPENDIX A
FULL RANK MATRICES

Lemma A.1:Let denote the number of binary
matrices of dimension and rank . By symmetry

For

otherwise.
(A1)

Proof: Clearly, there is exactly one matrix of zero
rank, namely, the all-zero matrix, so that , for

. Next, note that

since any nonzero binary element of forms a
matrix of rank . Further by induction, any matrix
of rank can be extended to a matrix of rank in
exactly

ways, and conversely, any matrix of rank can be mapped
to aunique matrix of rank by deleting the
last row. It follows that

and, therefore, that

Finally, to prove the recursion we argue as follows. Consider the
number of matrices of dimension and rank . Split these
matrices into those matrices such that after deletion of the last
row the resulting matrices of dimension have rank

and those that have rank . The first such group has by
definition cardinality and each element in this
group can be extended to a matrix of rank in exactly

distinct ways. The second group has cardinality
and each element in this group can be extended to a

matrix of rank in exactly distinct ways.

APPENDIX B
UNION BOUNDS

It is useful to derive union bounds on the block and bit era-
sure probabilities of the standard random ensemble as well as for
LDPC ensembles under ML decoding. We start with the stan-
dard random ensemble.

A. Random Ensembles

Lemma B.1 [Union Bound for Standard Random Ensembles
Under ML Decoding]:

Proof: First note that

rank

Therefore,
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B. LDPC Ensembles

In exactly the same manner we can derive bounds on the era-
sure probabilities for LDPC codes under ML decoding.

Lemma B.2 [Union Bound for LDPC Codes Under ML De-
coding]:

l r

r r

l

r
l

l

l

l r

r r

l

r
l

l

l

Proof: We have

r r

l

r
l

l

l

r r

l

r
l

l

l

where denotes the weight of, from which the block era-
sure probability follows in a straightforward manner.
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