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1. Introduction. Studies of magnetohydrodynamic flows with finite electrical
conductivity about slender two-dimensional bodies have been carried out by many
authors. These studies have included cases where the applied magnetic field is either
parallel or perpendicular to the undisturbed, uniform flow field. Most of the authors,
however, have confined their attention to incompressible fluid flows. For example, the
incompressible analysis for the case where the magnetic field and the flow field are
aligned at infinity was carried out by Lary [1]. The purpose of this investigation is to
carry out the aligned-fields analysis for compressible fluids flow. These flows exhibit
such interesting phenomena as forward-facing waves and up-stream wakes.

As usual, we require that the body be slender enough so that we can linearize the
governing equations about a uniform state. Unfortunately, to analyze this set of equa-
tions without further simplifications would be formidable. An important simplification
is to treat the case of large magnetic Reynolds number, i.e., large electrical conductivity.*
With this assumption, a procedure using Fourier synthesis may be utilized. McCune
[2] has used a similar procedure to treat the crossed-fields, incompressible case.

Our quantitative results verify the qualitative predictions of Sears and Resler [3]
concerning the behavior of flows past finite bodies, based on the knowledge of the
solutions for flow over infinite sinusoidal walls. Furthermore, they serve to increase
our confidence in being able to observe experimentally the unusual phenomena of
forward-facing waves and upstream wakes.

One begins by writing down the equations pertinent to this problem, and proceed
by linearizing them about the uniform conditions at infinity. This leads to a single
linear equation for the transverse component of the perturbation velocity, which in
turn leads to an algebraic equation (the dispersion equation) satisfied by each of the
field modes. We then write down the general form of the solution as an arbitrary com-
bination of all these modes. With the assumption of large magnetic Reynolds number,
it is possible to express the solution in a tractable form, and discuss its composition
in terms of well-known phenomena. Finally, we consider a specific body shape and
determine in detail the velocity and current density distributions throughout the flow.

2. Formulation. The linearized equations governing the two-dimensional motion
of a compressible, electrically conducting fluid, in the presence of a magnetic field
aligned with the fluid velocity far upstream of a finite disturbance, may be expressed
as the single equation

*Received April 11, 1967.

1Similarly we could treat the case of small magnetic Reynolds number. However, the large magnetie
Reynolds number case is more interesting because it is in this case that we have important interactions
between the magnetic and flow fields.
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Here £ is a linear, fourth-order partial differential operator, ¢ is one of the perturbations
in the velocity or magnetic field components, M/, m are respectively the free stream
Mach and Alfvén numbers, and Rm is the magnetic Reynolds number based on a typical
length. If we define the total velocity and magnetic field vectors in an (z, y)-coordinate
system to be

q={U1+w), Uv), and H = [H.(1 + h,), H.h),

then all the perturbation quantities u, », h, , and h, satisfy Eq. (1). This equation was
first obtained by Sears and Resler [3]. We are concerned here with the structure of the
solutions to this equation for large magnetic Reynolds numbers. In particular we will
be concerned with the flow over a finite slender body.

When the magnetic Reynolds number is infinite, i.e., when the gas is a perfect
conductor, the fourth-order differential operator degenerates to a second-order operator
that is either elliptic or hyperbolic, except for certain ‘“transition’” lines, depending
on the values of m and M. The graphical delineation of these regions in an (M?, m*)-plane,
Fig. (1), has come to be known as the Taniuti-Resler-Imai diagram. Kogan [4] and
Resler and McCune [5] were the first authors to give a quantitative description of the
linearized flow fields associated with each of these regions. The other limit for which
quantitative predictions of the behavior of the flow exist is that of incompressible flow.
In this case £ degenerates to the product of a Laplacian operator and an Oseen operator,
and the solution is a linear combination of an irrotational potential flow and a parabolic
wake flow. The width of the wake is proportional to (x/Rm)'”?, and whether it is for-
ward- or backward-facing depends on the sign of (m* — 1). A quantitative description
of the incompressible flow was first given by Lary [1].

Obviously it is not expedient to solve Eq. (1) for each of the four perturbation
quantities. Because the y-component of the perturbation velocity is the quantity directly
related to the body shape, we will employ Eq. (1) and the boundary condition in the
body to determine this quantity. Having determined v(z, y) we may use the linearized
version of the continuity equation

(1 — M? du/dx + ov/oy = 0 @)

to find u(z, y). With the velocity field and hence the vorticity, Q, prescribed we can
find the electric current density, J, by taking the curl of the linearized momentum
equation with the result that

J = m*Q. (3)

The magnetic-field components can then be obtained from Ampére’s law and the
solenoidal requirement on the magnetic field, provided we assume the permeability
to be constant:

J = V xH, 4
V-H = 0. 5
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Because we are concerned with the quantitative description of the flow past a slender
obstacle, an appropriate procedure would be to formulate the boundary conditions
for a finite body and obtain the solution by using Fourier transforms. Since Sears and
Resler [3] have already studied some of the properties of sinusoidal solutions to Eq. (1),
we can proceed to construct our solutions by means of a Fourier synthesis of these
field modes. If we assume that v(x, y) is proportional to exp (iAx — ky), then v(z, y)
satisfies £0 = 0 provided the ratio r = k/\ satisfies the dispersion relation

() = 1 + = { (M%z@;> 1+ [(KW—‘EL’”——_— 1)2 + 4iK]l/2},
(6)

where K = Rm/\M>. Since the dispersion relation is biquadratic, there are four values
of r for which £v = 0. Two of these will lead to v’s that vanish as y — «, while their
conjugates will give »’s that are unbounded as y — . Keeping only the two values
of r that lead to bounded solutions, we may express v as

v(A; 2, y) = Vi(\) exp M@z — ry)] + V(N exp Nz — )],

where the arbitrary functions of A are to be determined from the boundary conditions.

We are interested in predicting quantitative features of the flow field about a finite
slender body. In particular, we wish to examine the flow field itself, rather than the
forees on the body, because it is important to predict those magneto-aerodynamic
features that may be observed in laboratory experiments. For this reason, and math-
ematical simplicity as well, we limit our attention to symmetric bodies. For a finite
body the solution »(z, ¥) must consist of contributions from all wave numbers, A. Thus
the general solution for a finite body has the form

we, ) = [ 700 exp (—rda) + Vo) e (—rad] e ) . ()

Here we have included negative \’s as well, simply for mathematical convenience.
With our body shape prescribed and symmetrical about the z-axis, the inviscid boundary
condition on the velocity prescribes the distribution of » on the surface of the body.

Under the mean-surface approximation this reduces to prescribing v(z, 0) on the z-axis.
Thus

)+ V) = = [ " b(s, 0) exp (—as) ds. ®)

Another relation between the V’s must be supplied by an additional boundary
condition. Besides the usual inviscid fluid dynamic boundary conditions, we have
boundary conditions on the electromagnetic quantities. Because there is no applied
electric field when the velocity and magnetic field vectors are aligned at infinity, the
latter are simply that the magnetic induction be continuous through the surface. We
shall take the permeability of the body to be the same as that of the fluid, and impose
this continuity on the magnetic field vector H. This boundary condition, coupled with
the requirement that both components of H be harmonic inside the body, leads to another
linear relationship between V, and V, . For a slender body this reduces to the require-
ment that h,(z, 0) vanish and yields, with the aid of Eqgs. (2)-(5),

Vo) = =@MV, €
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where
(=D = M =)
O = =g = =)

The subscripts 1, 2 refer to the 4, — signs in £q. (6). Combining Eqgs. (8) and (9)
we find

©

V.0 = 217 1 — Q™ f 065, 0) exp (=) ds. (10)

With V,(A\) and V,(\) determined, we may then use Eqs. (2)-(5) to express each of
the perturbations in terms of V,(\) and V.(\):

i = Wtz ) = [ OV0) e [—n(y)
+ () Vo(\) exp [—Nr;(My]} exp (\z) dA,
e, ) = [ (Vi) e [=An ()

+ Vo(N) exp [—M.(Myl} exp (2Az) dA,

(11)
im"Q(]llz . l)h,(x, y) — ‘/;m {Tl()\)[lri)\jw_z Tl(k)] Vl()\) exp [_)\rl()\)y]
+ Tz()\)[lri)\il[_—l rs()] V.(\) exp [—)\rQ()\)y]} exp (4\x) d\,
m(M* — Dh(z, ) = f: I_—T‘f(]%_—_;& Vi) exp [= (W)y]

1 — M — N

+ () — 1

V.(\) exp [—Ar2(\)y] exp (ZAx) dAX.
Because the highest-order terms in the operator £ can be written as the product
of a Laplacian and a Prandtl-Glauert operator, it is necessary to specify either one
or two cyleic constants, depending on the Mach number. The additional cyclic constant
that arises here is determined by specifying the total current inside the body. However,
for a symmetric body with no current flowing inside, both the cyeclic constants are zero.
Equations (9), (10), and (11) complete our description of linearized magnetogas-
dynamic flow past a slender body. Of course, there remains the important question
of when our linearization is applicable. If we let ¢ be representative of the body slope,
then it is possible to show that outside the magnetogasdynamic boundary layer and
wake,” all the perturbations are at most O(e). Inside the boundary layer, however,
such a conclusion is not possible. The linearized version of Ohm’s law requires that
J = Rm(h, — v) and our boundary conditions then demand J = O(Rme) near the body.

2The terms “boundary layer” or “wake” which we have used here describe phenomena that are
merely diffuse Alfvén waves. But in the case of aligned-fields flow, these waves are nearly, to O(e),
parallel or anti-parallel to the free stream. Having originated from either the leading or the trailing edge
of the disturbance and having the usual parabolic structure in the normal direction, they will be described
here as boundary layers or wakes.
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With current densities of this magnitude, the body force term in the momentum equa-
tion is O(Se), where S = m ™ *Rm is the usual interaction parameter. Thus we cannot
expect the perturbations to remain O(e) near the body. A careful analysis of the order
of magnitude of the terms in this boundary layer (see Sears [6]) shows that the largest
perturbations are 0(S"?¢). Consequently we must require S'/”e¢ = o(1) for our lineariza-
tion to be valid. Because the Joule dissipation is O(S¢®), it may always be neglected
if the perturbations themselves are small.

3. Large magnetic Reynolds number. The solution to the problem we have formu-
lated in the previous section may be represented formally by combining Eqgs. (9)-(11).
For example, the transverse velocity perturbation in the upper-half plane is given by

oz, y) = 1 fw fw (s, 0)[1 — Q)] exp {iA[x — s + ir,(N)y]} d\ ds
2 JoaJoa (12)

- '21; f_: j: (s, 00QM [T — QT exp {i\[z — s + #r.(\)y]} d\ ds.

Even for the simplest choices of v(s, 0), the complicated functional dependence of the
roots of the dispersion relation on N\ makes the evaluation of these integrals formidable,
if not impossible. To obtain an analytic description of the flow field it is necessary for
us to approximate the integrands in I'q. (12). In this regard the quantity of primary
importance in the dispersion relation is K = Rm/A\M”. For small values of this parameter
the magnetogasdynamic effects will be perturbations on the ordinary gasdynamic flow
field. On the other hand, for large values of K we expect all the new and interesting
magnetogasdynamic phenomena to be present. Although present day experiments of
the flow past bodies seem to be confined to low and possibly moderate values of K,
it is anticipated that in the near future experiments for compressible media will be
extended to reasonably large values of K. With this possibility in mind, and because
we are interested in exploring the nature of the flow field in different regions of the
Taniuti-Resler-Imai diagram, we shall limit our investigation to the case of large mag-
netic Reynolds number, i.e., to large K.

From the nature of the roots of the dispersion relation, we can see that periodic
solutions consist of damped waves, and that the damping, and in some cases the wave
angle, is dependent upon the wavelength of exeitation. This behavior is simplified
when we consider the asymptotic form of the roots for large K :

r = ¢ MA(Rm/2AM?)' (1 + 3) + O(K™'?),
ry = (¢’ — 1DV’ — A'/2Rm(1 — m’)] + O(K?).

Here we have introduced the parameter ¢ = m’M?/(m® + M*? — 1); the transitions
from elliptic to hyperbolic behavior in Fig. (1) occur at m = 1, M = 1, and ¢™' = 0.
In Egs. (13) the plus or minus sign must be chosen for », when ¢™* > 0 or ¢ < 0 to
insure that the disturbances vanish at infinity. For the same reason the following signs
must be chosen for r, : the plus sign for ¢~* < 0; the plus or minus sign for m* > 1 or
m® < 1 when ¢® > 1; the minus sign for ¢ > 1.

Under the hypothesis of large magnetic Reynolds number, we see that the first
root (13) corresponds to an exponential damping of the disturbance proportional to
yRm'”?. Thus the disturbance is confined to a wake-like region about the z-axis. In
contrast, for ¢ > 1, the damping of the second root is proportional to yRm™"'. Further-

(13)
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more the inclination of the lines of constant phase corresponding to this root is indepen-
dent of A. Thus the structure of this contribution is wave-like. On the other hand,
when ¢* < 1, the damping of the second root is proportional to  and the inclination
of lines of constant phase is dependent on A. This behavior is typical of solutions to
elliptic equations. The complete solution for large magnetic Reynolds number consists
of the superposition of a parabolic and either a hyperbolic or an elliptic behavior.

With the simplifications afforded by (13) and the expansion

QM) = m*/(1 — M*) + O(\/Rm)
we may rewrite Eq. (12) for large K

M? -1
v(x, y) = 27I'(m2 + AI‘A’

—_— f_ : f : (s, 0) exp {iN[x — s F [c7'| M(BRm/2 |\]))'*y]

— e M(Bm/2 \)* Ny} dsdn F for C* 20 (14)

+ D +mM2 m—y f_m f_m (s, 0) exp {tA\[x — s F (€ — 1)'?y] == oN%} ds d],

forc® 21

where we have introduced the parameter ¢ = (¢ — 1)'’¢'/2Rm(1 — m®) to simplify
the second integrand. The first term on the right-hand side represents the parabolic
contribution to the solution and the second term the contribution that corresponds
to either elliptic or hyperbolic behavior.

We know that for large K the integrands in (14) are valid replacements for the
integrands in (12). This does not necessarily mean, however, that (14) is a suitable
representation for v(z, y). The parameter K is large when Rm/M? is large provided
that A takes on small or moderate values; for large values of A, K will be moderate
or small. Because the integrations in Eqgs. (12) and (14) are carried out over all \, we
must also consider the contributions that arise for large ), i.e., moderate or small values
of K. Thus, to show that (14) is a valid representation of the solution, it is necessary
to show that for large A both the spurious contribution to (14) and the true contribution
to (12) are negligible. For (Rmy)™' = o0(1) one may easily show that the difference
between our approximate solution and the true solution is O[Rmy/(1 + z%)'*]. On
the other hand, for Rmy = O(1) the above requirement is too stringent; it is only neces-
sary that for large A the difference between the spurious contribution and the true
contribution be small. In this case we may show the error to be O[Rmy/(1 + z*)'/*]
compared to 1. Thus for large and small values of Rmy, the representation (14) is a
valid approximation to (12) for large Em. We hypothesize that (14) is indeed a valid
replacement for (12) for all Rmy and z, with the possible exception of a circular regions
of diameter O(Rm™") centered at the leading and trailing edges. A more detailed in-
vestigation (Tang [7]) of the expressions (12) and (14), and the behavior of our results
for Rmy = O(1) support this hypothesis. However, short of carrying out the integra-
tion over A for IEq. (12), it is impossible to prove this hypothesis for Rmy = O(1). Further-
more, our analytical results suggest that in the leading- and trailing-edge regions excepted
above the error in (14) relative to (12) may be O(1).

Because we are considering a finite body of length L, and the coordinates have
been nondimensionalized by this length, the s-integration in Eq. (14) need only be con-
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sidered over the range [—3%, 1]. Outside of this interval v(s, 0) is zero for a symmetric
body. We can carry out the integration over A now that the integrands’ dependence

on A has been simplified. With this end in mind, we rewrite (14) as

1 1/2

) = ol ¥ I =D L

(s, 0) (A — DI,(s) + m’I(s)] ds, (15)

where

©

I,s) = f exp {I\[x — s F ¢ 'M@®Bm/2 \))'*y] F ' M@&m |\|/2)’y} d),
and
I(s) = f exp {I\[z — s F (¢© — 1)"’y] &= o\’y]} dA.

The integrals I, and I, correspond to the parabolic and elliptic or hyperbolic contribu-
tions to the solution.

We begin by investigating the simpler of the two integrals (15), I, . Clearly this
integral represents a superposition of highly damped waves that are inclined either
backward or forward when ¢™* > 0 or ¢® < 0. If we consider \ as a complex variable,
then the appropriate branch cut to render the integrand single-valued is along the
positive imaginary axis of the A-plane for ¢™> > 0 and along the negative imaginary
axis for ¢ < 0. To evaluate I, we consider the following contour integral: The real
axis with a suitable indentation about the branch point, the semicircle at infinity in
the upper half-plane for ¢™*(x — s) > 0, or the semicircle at infinity in the lower half-
plane for ¢ *(x — s) < 0. When the semicircle is in the half-plane of the branch cut
the contour is to be deformed about the cut. Since there are no poles in the integrand
and the contributions from the semicircle vanish, the only instances when I, is not
identically zero are when the branch cut is in the half-plane where the integrand vanishes
at infinity. Thus the only contribution comes from integrating along the branch cuts,
i.e., along the positive or negative imaginary axis. On these axes the integrand is purely
real and its integral is the form of a tabulated Laplace transform. The final result is simply

7 = {M le™| @Rm) %y |x — s|7%" exp [—M® |c™°| ¥'Rm/4 |z —s]]; ¢ *(x — s) > O}
1 .

0; ¢ (z—9s) <0
(16)

To investigate the second of the two integrals, it is necessary to consider separately
the hyperbolic case (¢© > 1) and the elliptic case (¢* < 1). For the first case, which
we will designate by I, we have

I, = f exp [Nzt — s F (& — 1)"y] &= o\y} d\
- (17)

= (I?ﬁ;)m exp (=[x —sF & — D")/4|o|y}; m*21.

This integral represents the wave contributions in the hyperbolic regions of Fig. (1).
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Fia. 1. The Taniuti-Resler-Imai (TRI) diagram.

The cotangent of the angle at which the wave is inclined to the y-axis is (¢* — 1)'”*
sgn (m* — 1); for m* > 1 or m* < 1 the wave is inclined backward or forward with
respect to the free stream. Note that the contribution of 7, to the solution is negligible
outside the region where [x — s F (¢* — 1)) < O(Bm™); the wave structure is
diffused throughout this region which is essentially a parabola centered on a line drawn
at the wave angle for Rm™ = 0.

For ¢ < 1, the integral I, represents an elliptic flow field. Note that here ¢ is im-
aginary. This integral contributes lightly damped waves that have their angle of in-
clination with the y-axis proportional to A. For our purposes, the most convenient
representation is

Il

Ig 2[ cos ANz — s — oyN)] exp [—(1 — &)'*Ay] ax
[}

(18)

—exp (Fi3r/4) [z — s+ (1 — cz)'/zy]>}, m® 2 1.

_ =\ : <___
- (R{<|ol y> exp (/W5 (o 7
Here W (2) is defined by

W) = exp (=2°) erfe (—12)

and ®(z) indicates the real part of z. When [z — s — ¢(1 — ¢%)y] = O(1) the argument
of the W-function is O(Rm"?*y~""*). I'or large values of the argument we may use the
asymptotic form of W to conclude Iz = O(1). Ior small values of the argument, i.e.,
for (Rm/y)"? = o(1), Iz = O(Rm'*y™"*) = o(1), and its contribution to the solution
is negligible. A more detailed examination of (18) shows that even when (x — s) and
y both approach zero, the asymptotic expansion is sufficient to provide the correct
limiting value as y — 0. Thus, if we replace Eq. (18) by its asymptotic expansion,
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2=y [ { @ — JyRm™ } .
Ig (x — 8)2 +a - cz)yz 1+0 [z — 8)2 +a = cz)yz]z ], (19)

then we introduce an error that is O(Rm™") relative to the leading term.
Finally, we can express v(z, y) as the sum of a parabolic contribution, v,(z, y), and
either a hyperbolic contribution vy (x, y), or an elliptic contribution ve(zx, y):

0 , < —3%
_J@ = be (Im)w f”‘“‘("”” exp [— (¢ 'My)’Rm/2(x — 8)]
vv(xr y) - 2[11777,2 T Z/ —1/2 U(S, O) (Cl? — 8)3/2 dsr
x> —3
s )
for ¢ > 0; (20)
M =1 e <Im>”2 f”z ‘ exp [(c'My)’Rm/2(s — )]
2Mm? T Y max (2. ~1/2) (s, 0) (s — 2)** ds,
(T, y) = ] 2 < %[
0 , > 1

for ¢ < 0;

2 1/2 1/2
v,{<x,y>=ﬁ([—’f—y) [ 6,0 e (=lo — s F = DY/ o] y} ds;

UI —-1/2
m® 2 1; (21)

=Ny v(s, 0) .
vE(x) .1/) - 7l']‘/[2 ‘/;1/2 (x — 3)2 + (1 _ cz)yz ds, (22)

_ oa (2, y)}
U(CC, y) 1),,(.’1?, y) + {vE(x, y) .

4. Example and results. The formulae (19) through (22) constitute the approximate
solution for large magnetic Reynolds number to Eq. (1) with v(z, 0) = 0 for |z] > %,
v(z, 0) prescribed by the body shape for |z| < 1, and v(z, y) — 0 as 2° 4+ y°* — ». The
first of these expressions (19) exhibits wake-like behavior: lines of constant damping
are asymptotic to the parabola Rmy® = z, and there is an algebraic decay proportional
to %% This wake develops behind the body for ¢™* > 0 and in front of the body for
¢ ® < 0. The second expression (21) embodies lightly damped waves about the lines
z 4+ 1= F(* — 1)"%; for m* < 1 the waves are forward-facing and for m* > 1 they
are rearward-facing. The elliptic nature of the third result (22) is manifest in the inte-
grand: the kernel of the integrand is simply the Green’s function for a Prandtl-Glauert
operator.

To proceed we need only to specify the body shape. Our choice should be a function
that makes the integrals tractable; it should also have discontinuities at the leading
and trailing edges so that the waves that occur in the hyperbolic regions originate as
discontinuities. Within these limitations an appropriate choice is the biconvex profile
whose upper surface is given by y(z) = ¢ cos 7z, and thus »(z, 0) = —7esin 7z; |z| < 3.

We begin with the parabolic portion of the solution. Replacing the variable of integra-
tion by (x — s)™"?, we recognize the resulting integral as an error function, which
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we represent in terms of the W-function as

0 , for (sgnc¢ )z < —%1
vz, y) = 1 B(x + 3, 9) , for lz] < § ¢, (23)
Ba+ 1,9 + B@ — 3,9, for mede > 3 [
where
2 r2 2 ~2 2
N _mec (M — 1) 1 I:—RmM el y :‘
Bz £ 14,9) 2 ® P L Tegne e =

AT 2 s . iMRm'*y )
-(R{W({z [(sgn ¢ = %]} a+zq -+ 31| [en ¢ Iz £ 47

1/2 . 1/2
D L | i e T |

2 le] [(sgn ¢ )z = §

Thus we see that the effect of finite electrical conductivity has introduced a wake in
place of the current sheets that envelop the body when the electrical conductivity is
infinite. For large z, i.e., x = O(Rm), the W-functions are asymptotic to z~'/* and the
thickness of the wake is O(x/Rm)"?. In this wake the horizontal velocity component,
which may be deduced from Eq. (2), is O(eRm'®). Consequently we must require
eRm'® = o(1) for our linearization to be valid in the magnetogasdynamic boundary
layer and wake.

For the hyperbolic contribution to the solution, the integral (21) ean also be rec-
ognized as an error function by completing the square of variable of integration. The
result is

2
mEC

va(t,y) = sgn (1 — m’) o exp (=7 |o] y)

-glexp [—irx sgn (1 — m®) — in(® — D)yllerf H.(z, y) + erf H_(z, y)}}. (24)

O. ..-5 17
%\ 5 |
<
Q.
% © 230
el
B3\ 2\
£ X% 2 % \9 Negligible
2 B\3,\ Disturbance
Negligible 2 B\
Disturbance 9 y=1
NAVS L,
-
Jir2 Y x

Fra. 2. Coordinate system for description of the wave component of the solution.
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Here

1+tzsen(l—m’) = — 1)
2(|e| '*

and 9(z) denotes the imaginary part of z. The interpretation of (24) is facilitated by
introducing the coordinates £, n = 3 =+ x sgn (1 — m*) = (¢ — 1)"?y. These coordinates
designate the distances normal to the infinite conductivity wave fronts [, and [, as
sketched in Fig. (2). With Iq. (24) rewritten in terms of these coordinates it it easy
to see that there are two diffuse regions where the disturbances are not negligible.
In these regions the magnitudes of the disturbances are damped to e™' of their values
on [, or [, in a distance of [¢] or 5] = O((x/Rm)'”?) for y = O(1). The effect of finite
electrical conductivity is to allow diffusion to occur about the position of the infinite
Rm standing wave pattern. The structure of these diffuse regions is parabolic in y as
we anticipated.

H.(z,y) =

Y in(lo| )"

Note: The vertical
displacement of the
streamlines (including
the thickness of the
body) has been

| reduced ="' times

-2

F1a. 3. Flow field in region II of TRI diagram for the biconvex profile.
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Finally, by making a suitable change of variables, the elliptic contribution of our
solution can be expressed in terms of the exponential integral, E, , as follows:

Velz, y) = 2%501{«3“”[&@, y) exp (—x(l — )"*y) — E_(z, y) exp (x(1 — &)'*»]},
where
E.(z,y) = E[Fr(1 = )"’y — ia(z + 3)] — E[Fr(l — )Py — ix(z — $)]

=0T —sm (el ~ D @)

The behavior of solutions of this type is well known but difficult to describe. We shall
not attempt to elaborate on its various features here, except to note that the discon-
tinuity in E, provides the discontinuity in »(z, 0) at the leading and trailing edges
of the body.

In any magnetogasdynamic problem it is essential that we fully understand the
role of the Lorentz force in influencing the flow field. To do so, we must first determine
the distributions of the current density, J(z, y). This is carried out by following the
procedure outlined in the Formulation. The resultant expressions for the current density

y
l.OT
Note: The vertical displacement
of the streamlines
(including the thickness
of the body) has been
reduced 7 times.
Rm, = 50
m2 =.45
0.5+ M2 =12
—
—
_-—-—/_
—/—
——/—
szjm 1 1 X
-1 0 ] 2

F1q. 4. Flow field in region V of TRI diagram for the biconvex profile.



1968} FINITE-MAGNETIC-REYNOLDS-NUMBER EFFECTS 143

may be found in Tang {[7]. Because these analytical descriptions add little qualitative
insight for describing the flow fields and the current density distributions, we shall
employ graphical representation of these solutions in different regions of the Taniuti-
Resler-Imai diagram. To avoid needless repetitions, only the solutions of regions II
and V are included. Fig. (3) displays the flow field of a forward-facing wave and a
backward wake; I'ig. (4) exhibits that of an elliptic behavior and a backward wake.
These figures are self-explanatory and need no elaboration. Corresponding plots of
current density distributions are given in Figs. (5) and (6).

The plots of the current density distributions reveal many interesting phenomena
For example, the elliptic component is symmetric about the y-axis and its magnitude is
negligible in comparison with that of the wake component. The finiteness of this com-
ponent is the result of the compressibility of our gas, and Jz vanishes as the Mach
number approaches zero. I'or M = 0 we recover the irrotational incompressible solution
of Lary [1]. The asymptotic behavior of the current density associated with the wake
component has the general character of a boundary-layer solution. Its algebraic decay
in x is 7%* This does not appear to agree with the decay of 27 predicted by Fan
[8] for a body of general shape. A study of the discrepancy reveals, however, that this
is entirely due to the fore-and-aft symmetry of the body we have chosen and which
annihilates the coefficient of the ™% term. Lastly, the plot of current density distribu-
tion associated with the wave component displays the parabolic growth of the diffusive
regions with increasing y as expected.

y
.o X=5
0.5
0 1 1 ]
0 | 3 Ve
WAVE CURRENT
DISTRIBUTION

J/e

Fia. 5. Distribution of current density in region II of TRI diagram for the biconvex profile.
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y x=5 or -5
RmL= 50
20
m2= 45
M2= 1.2
1o
1 1 1 J/e I i ] -J/e
0 .0015 o} 2 4 6

Fia. 6. Distribution of the elliptic component of the current density for the biconvex profile.

The behavior of J for large y indicated by Fig. (5) is interesting. Oscillations, which
are absent at smaller values of y, appear in the diffusive regions about the wave fronts.
Because these oscillations disappear when we increase Rm with y fixed, one might
attribute them to the cut-off error introduced by our approximate Fourier synthesis.
However, our analysis of the cut-off error seems to negate this possibility. To clarify
this situation, we considered the problem of flow past a ramp body having the same
initial flow deflection angle as our biconvex profile [see Fig. (7)]. A comparison of the
transverse velocity component’ for the ramp body and for the biconvex profile is made
in Fig. (8). From this figure we conclude that the additional oscillations noticed at large y
in Fig. (5) result from the varying slope of our body rather than from cut-off errors
introduced by the finite flow deflection angle at the leading and trailing edges. Referring
back to Eq. (21), we can explain this conclusion as follows: because oy varies like y/Rm,
the exponential part of the integrand serves to filter out a narrow or broad portion
of the slope of the body depending on whether y = O(Em) or y < Rm, the former being

/e
U y

——

-

oy o
RN

Fi1g. 7. The ramp body.

3By virture of the linearized Ohm’s law and the linear relationship between v and h, this procedure
is equivalent to a comparison of the current densities.
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Fic. 8. Combarison of the hyperbolic component of the transverse velocity, vy, near the leading edges of

a ramp and a biconvex profile.

the case where the oscillations oceur. The exponential part of the integrand picks up
more and more of the negative portion of the sinusoid as we move inward from the outer
edge of the diffusive region. This cancels the contribution from the positive portion
of the sinusoid and produces the oscillations.

5. Conclusion. We have succeeded in quantitatively determining the effects of
large but finite Bm upon aligned-fields magnetogasdynamic flow. Analytical solutions
for both the flow fields and the current density distributions in all regions of the Taniuti-
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Resler-Imai diagram have been obtained and plotted with the results showing remarkable
consistency with the assumptions of this analysis. Our small-perturbation solutions
exist everywhere provided (Bm)'’e¢ = o(1), are valid when Rm™" = o(1) and satisfy
the appropriate boundary conditions on the body and at infinity.
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