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1

Basics of probability theory

The majority of readers will probably be best off by takingthe following piece
of advice:

Skip this chapter!

Those readers who have previously taken a basic course in probability or
mathematical statistics will already know everything in this chapter, and should
move right on to Chapter 2. On the other hand, those readers who lack such
background will have little or no use for the telegraphic exposition given
here, and should instead consult some introductory text on probability. Rather
than being read, the present chapter is intended to be a collection of (mostly)
definitions, that can be consulted if anything that looks unfamiliar happens to
appear in the coming chapters.

� � � �

Let � be any set, and let� be some appropriate class of subsets of�,
satisfying certain assumptions that we do not go further into (closedness under
certain basic set operations). Elements of� are calledevents. For A ⊆ �, we
write Ac for thecomplementof A in �, meaning that

Ac = {s ∈ � : s �∈ A} .

A probability measure on� is a functionP : � → [0,1], satisfying

(i) P(∅) = 0.
(ii) P(Ac) = 1− P(A) for every eventA.
(iii) If A andB are disjoint events (meaning thatA∩B = ∅), thenP(A∪B) =

P(A) + P(B). More generally, ifA1, A2, . . . is a countable sequence
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2 1 Basics of probability theory

of disjoint events (Ai ∩ Aj = ∅ for all i �= j ), thenP
(⋃∞

i=1 Ai
) =∑∞

i=1P(Ai ).

Note that (i) and (ii) together imply thatP(�) = 1.
If A and B are events, andP(B) > 0, then we define theconditional

probability of A given B, denotedP(A | B), as

P(A | B) = P(A∩ B)

P(B)
.

The intuitive interpretation ofP(A | B) is as how likely we consider the event
A to be, given that we know that the eventB has happened.
Two eventsA andB are said to beindependentif P(A∩ B) = P(A)P(B).

More generally, the eventsA1, . . . , Ak are said to be independent if for any
l ≤ k and anyi1, . . . , i l ∈ {1, . . . , k} with i1 < i2 < · · · < i l we have

P
(
Ai1 ∩ Ai2 ∩ · · · ∩ Ail

) =
l∏

n=1
P(Ain) .

For an infinite sequence of events(A1, A2, . . .), we say thatA1, A2, . . . are
independent ifA1, . . . , Ak are independent for anyk.
Note that ifP(B) > 0, then independence betweenA andB is equivalent

to havingP(A | B) = P(A), meaning intuitively that the occurrence ofB does
not affect the likelihood ofA.
A random variable should be thought of as some random quantity which

depends on chance. Usually a random variable is real-valued, in which case it
is a functionX : � → R. We will, however, also consider random variables
in a more general sense, allowing them to be functionsX : � → S, whereS
can be any set.
An eventA is said to bedefined in terms of the random variableX if we

can read off whether or notA has happened from the value ofX. Examples of
events defined in terms of the random variableX are

A = {X ≤ 4.7} = {ω ∈ � : X(ω) ≤ 4.7}
and

B = {X is an even integer} .

Two random variables are said to be independent if it is the case that whenever
the eventA is defined in terms ofX, and the eventB is defined in terms ofY,
thenA andB are independent. IfX1, . . . , Xk are random variables, then they
are said to be independent ifA1, . . . , Ak are independent whenever eachAi
is defined in terms ofXi . The extension to infinite sequences is similar: The
random variablesX1, X2, . . . are said to be independent if for any sequence
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A1, A2, . . . of events such that for eachi , Ai is defined in terms ofXi , we have
thatA1, A2, . . . are independent.
A distribution is the same thing as a probability measure. IfX is a real-

valued random variable, then thedistribution µX of X is the probability
measure onR satisfyingµX(A) = P(X ∈ A) for all (appropriate)A ⊆ R.
The distribution of a real-valued random variable is characterized in terms of
its distribution function FX : R → [0,1] defined byFX(x) = P(X ≤ x) for
all x ∈ R.
A distributionµ on a finite setS = {s1, . . . , sk} is often represented as a

vector (µ1, . . . , µk), whereµi = µ(si ). By the definition of a probability
measure, we then have thatµi ∈ [0,1] for eachi , and that∑k

i=1µi = 1.
A sequence of random variablesX1, X2, . . . is said to bei.i.d., which is

short forindependent and identically distributed, if the random variables

(i) are independent, and

(ii) have the same distribution function, i.e.,P(Xi ≤ x) = P(X j ≤ x) for all
i , j andx.

Very often, a sequence(X1, X2, . . .) is interpreted as the evolution in time
of some random quantity:Xn is the quantity at timen. Such a sequence is then
called arandom process(or, sometimes,stochastic process). Markov chains,
to be introduced in the next chapter, are a special class of random processes.
We shall only be dealing with two kinds of real-valued random variables:

discreteandcontinuousrandom variables. The discrete ones take their values
in some finite or countable subset ofR; in all our applications this subset is (or
is contained in){0,1,2, . . .}, in which case we say that they arenonnegative
integer-valueddiscrete random variables.
A continuousrandom variableX is a random variable for which there exists

a so-calleddensity function fX : R → [0, ∞) such that∫ x

−∞
fX(x)dx = FX(x) = P(X ≤ x)

for all x ∈ R. A very well-known example of a continuous random vari-
able X arises by lettingX have the Gaussian density functionfX(x) =

1√
2πσ2

e−((x−µ)2)/2σ2 with parametersµ andσ > 0. However, the only con-

tinuous random variables that will be considered in this text are theuniform
[0,1] ones, which have density function

fX(x) =
{
1 if x ∈ [0,1]
0 otherwise
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and distribution function

FX(x) =
∫ x

−∞
fX(x)dx =



0 if x ≤ 0
x if x ∈ [0,1]
1 if x ≥ 1 .

Intuitively, if X is a uniform [0,1] random variable, thenX is equally likely
to take its value anywhere in the unit interval [0,1]. More precisely, for every
interval I of lengtha inside [0,1], we haveP(X ∈ I ) = a.
Theexpectation(or expected value, ormean) E[X] of a real-valued ran-

dom variableX is, in some sense, the “average” value we expect fromx. If X is
a continuous random variable with density functionfX(x), then its expectation
is defined as

E[X] =
∫ ∞

−∞
x fX(x)dx

which in the case whereX is uniform [0,1] reduces to

E[X] =
∫ 1

0
x dx= 1

2
.

For thecase whereX is a nonnegative integer-valued random variable, the
expectation is defined as

E[X] =
∞∑
k=1

kP(X = k) .

This can be shown to be equivalent to the alternative formula

E[X] =
∞∑
k=1

P(X ≥ k) . (1)

It is important to understand that the expectationE[X] of a random variable
can be infinite, even ifX itself only takes finite values. A famous example is
the following.

Example 1.1: The St Petersburg paradox.Consider the following game. A
fair coin is tossed repeatedly until the first time that it comes up tails. LetX be
the (random) number of heads that come up before the first occurrence of tails.
Suppose that the bank pays 2X roubles depending onX. How much would you
be willing to pay to enter this game?
According to the classical theory of hazard games, you should agree to pay up

to E[Y], whereY = 2X is the amount that you receive from the bank at the end
of the game. So let’s calculateE[Y]. We have

P(X = n) = P(n heads followed by 1 tail) =
(
1

2

)n+1
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for eachn, so that

E[Y] =
∞∑
k=1

kP(Y = k) =
∞∑
n=0

2nP(Y = 2n)

=
∞∑
n=0

2nP(X = n) =
∞∑
n=0

2n
(
1

2

)n+1

=
∞∑
n=0

1

2
= ∞ .

Hence, there is obviously something wrong with the classical theory of hazard
games in this case.

Another important characteristic, besidesE[X], of a random variableX, is the
variance Var[X], defined by

Var [X] = E[(X − µ)2] whereµ = E[X] . (2)

The variance is, thus, the mean square deviation ofX from its expectation. It
can be computed either using the defining formula (2), or by the identity

Var [X] = E[X2] − (E[X])2 (3)

known asSteiner’s formula.
There are various linear-like rules for working with expectations and vari-

ances. For expectations, we have

E[X1 + · · · + Xn] = E[X1] + · · · + E[Xn] (4)

and, ifc is a constant,

E[cX] = cE[X] . (5)

For variances, we have

Var [cX] = c2Var [X] (6)

and,when X1, . . . , Xn are independent,1

Var [X1 + · · · + Xn] = Var [X1] + · · · + Var [Xn] . (7)

Let us compute expectations and variances in some simple cases.

Example 1.2Fix p ∈ [0,1], and let

X =
{
1 with probabilityp
0 with probability 1− p .

1 Without this requirement, (7)fails in general.
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Such anX is called aBernoulli ( p) random variable. The expectation ofX
becomesE[X] = 0 · P(X = 0) + 1 · P(X = 1) = p. Furthermore, sinceX only
takes the values 0 and 1, we haveX2 = X, so thatE[X2] = E[X], and

Var [X] = E[X2] − (E[X])2

= p− p2 = p(1− p)

using Steiner’s formula (3).

Example 1.3Let Y be the sum ofn independent Bernoulli (p) random variables
X1, . . . , Xn. (For instance,Y may be the number of heads inn tosses of a coin
with heads-probabilityp.) Such aY is said to be abinomial (n, p) random
variable. Then, using (4) and (7), we get

E[Y] = E[X1] + · · · + E[Xn] = np

and

Var [Y] = Var [X1] + · · · + Var [Xn] = np(1− p) .

Variances are useful, e.g., for bounding the probability that a random variable
deviates by a large amount from its mean. We have, for instance, the following
well-known result.

Theorem 1.1 (Chebyshev’s inequality)Let X be a random variable with
meanµ and varianceσ 2. For any a > 0, we have that the probability
P[|X − µ| ≥ a] of a deviation from the mean of at least a, satisfies

P(|X − µ| ≥ a) ≤ σ 2

a2
.

Proof Define another random variableY by setting

Y =
{
a2 if |X − µ| ≥ a
0 otherwise.

Then we always haveY ≤ (X−µ)2, so thatE[Y] ≤ E[(X−µ)2]. Furthermore,
E[Y] = a2P(|X − µ| ≥ a), so that

P(|X − µ| ≥ a) = E[Y]
a2

≤ E[(X − µ)2]

a2

= Var [X]
a2

= σ 2

a2
.
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Chebyshev’s inequality will be used to prove a key result in Chapter 9
(Lemma 9.3). A more famous application of Chebyshev’s inequality is in the
proof of the following very famous and important result.

Theorem 1.2 (The Law of Large Numbers)Let X1, X2, . . . be i.i.d. random
variables with finite meanµ and finite varianceσ 2. Let Mn denote the average
of the first n Xi ’s, i.e., Mn = 1

n(X1+ · · · + Xn). Then, for anyε > 0, we have

lim
n→∞P(|Mn − µ| ≥ ε) = 0 .

Proof Using (4) and (5) we get

E[Mn] = 1

n
(µ + · · · + µ) = µ .

Similarly, (6) and (7) apply to show that

Var [Mn] = 1

n2
(σ 2 + · · · + σ 2) = σ 2

n
.

Hence, Chebyshev’s inequality gives

P(|Mn − µ| ≥ ε) ≤ σ 2

nε2

which tends to 0 asn → ∞.


