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Abstract

A popular way to account for unobserved heterogeneity is to assume that the data are

drawn from a �nite mixture distribution. A barrier to using �nite mixture models is that

parameters that could previously be estimated in stages must now be estimated jointly:

using mixture distributions destroys any additive separability of the log-likelihood func-

tion. We show, however, that an extension of the EM algorithm reintroduces additive

separability, thus allowing one to estimate parameters sequentially during each maxi-

mization step. In establishing this result, we develop a broad class of estimators for

mixture models. Returning to the mixture problem, we show that, relative to full infor-

mation maximum likelihood, our sequential estimator can generate large computational

savings with little loss of eÆciency.
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yjbjones@csc.albany.edu. We thank Donald Andrews, Arie Beresteanu, Mark Coppejans, Michael Mc-

Cracken, Tom Mroz, Barbara Rossi, Wilbert van der Klaauw, and two anonymous referees for valuable

comments.
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1 Introduction

One way to account for unobserved heterogeneity in data, and the related problem of self-

selection, is to assume that the data are drawn from a �nite mixture distribution. Under this

approach, each observation is assumed to belong to one of several di�erent \types," each of

which has its own distribution. While the econometrician does not observe each observation's

type, if her model is suÆciently structured she can infer it by applying Bayes' Theorem.

Models with �nite mixtures have appeared in numerous applications.1 In labor economics,

Keane and Wolpin (1997) and Eckstein and Wolpin (1999) use mixtures to control for person-

speci�c di�erences in models of dynamic discrete choice. Finite mixture models form the

basis of Hamilton's (1989) inuential regime-switching model of economic time series. A

particularly important application has been to use �nite mixture models as nonparametric

approximations to more general mixture models. Important papers in this vein include Laird

(1978), Lindsay (1983) and Heckman and Singer (1984). More recently, Cameron and Heck-

man (1998, 2001) use this sort of nonparametric maximum likelihood estimation to study the

e�ect of family background on educational achievement. Mroz (1999) uses mixtures to control

for endogeneity in a binary explanatory variable. He shows that \discrete factor approxima-

tions" to a continuous latent variable often outperform alternative estimators, especially when

the unobservable components of the model have a non-normal distribution.

One drawback to using mixture models is that they can complicate the estimation pro-

cess. In this paper we focus on a particular problem, namely the issue of sequential likelihood.

Some complicated likelihood models can be feasibly estimated only in stages; a subset of the

parameters is estimated using one portion of the likelihood function, with the remainder of the

parameters estimated with the remainder of the likelihood function, using the parameters esti-

1Although we focus on economic applications, �nite mixture models have been used widely in other �elds

as well. Titterington, et al. (1985) and McLachlan and Peel (2000) provide lists.

2



mated in the preceding step(s). While introducing a mixture distribution seemingly prevents

one from proceeding sequentially, we show that if one extends the Expectation-Maximization

(EM) algorithm, one can still estimate the likelihood function in steps.

In contrast to the EM algorithm, which is ultimately a search algorithm, our procedure

does not yield full information maximum likelihood (FIML) estimates. Rather, our procedure

introduces a broad class of estimators for mixture and switching models. In particular, a

simple argument shows that any moment condition that holds across the unobserved \types"

or \states" generates a moment condition that holds across the observed data.

In addition to providing general results, we construct a Monte Carlo exercise that shows

the large savings in computational time from employing the EM algorithm with a sequential

maximization step (ESM). Although the gains to using the method are problem-speci�c,

we show reductions in computing time on the order of 20 for a relatively simple problem.

More complicated problems should show even larger reductions. A further bene�t of the

ESM algorithm is that moving from a problem without unobserved heterogeneity to one with

unobserved heterogeneity requires little change in code.

The next section reviews mixture distributions and the EM algorithm. Section 3 shows

how the EM algorithm introduces an additive separability not previously present in mixture

models. This allows for a sequential maximization step. Section 4 describes the asymptotics

of our estimator, and shows how it can be generalized. Section 5 provides simulations showing

that the ESM estimator performs as well as FIML and takes signi�cantly less time to converge.

Section 6 concludes.

2 Mixture Distributions and the EM Algorithm

The general relationship between mixtures and the EM algorithm has been covered in a

number of sources, such as Everitt and Hand (1981), Titterington, et al. (1985), and Hamilton

(1990). We provide a brief review.

Consider a panel data set of I individuals, where for each individual i we observe T

realizations of the J-element vector x. Observations of x are independent across individuals,
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although not necessarily across time. As a matter of notation, let the collection of x-vectors

for agent i be denoted by the J � T -element vector xi =
�
x0i;1; x

0
i;2; :::; x

0
i;T

�0
.

Each individual belongs to one of K distinct types. While the econometrician knows K,

he does not observe individuals' types. Let pk denote the unconditional probability that an

individual belongs to type k, with p = (p1; p2; :::; pK) denoting the vector of these probabilities.

Letting fk(�) denote the density function for type k, and letting � = (�1; ::::; �M) denote a

vector of parameters, the unconditional likelihood of xi is

g(xi;�;p) =

KX
k=1

pkfk(xi;�):

It follows from Bayes' theorem that Pr(kjxi;�;p), the probability that agent i is of type

k, conditional on having observed xi, is given by

Pr(kjxi;�;p) =
pkfk(xi;�)

g(xi;�;p)
: (1)

Let SK denote the K�1-dimensional unit simplex. Using equation (1), it is straightforward to

show that if one maximizes the sample log-likelihood, L(�;p) �
P

i ln(g(xi;�;p)), subject

to the restriction p 2 SK , the maximum likelihood estimate bpk is given by

bpk = 1

I

IX
i=1

Pr(kjxi; b�; bp): (2)

The maximum likelihood estimate b� must solve

IX
i=1

KX
k=1

Pr(kjxi; b�; bp)@ ln(fk(xi; b�))

@�
= 0; (3)

so that b� = argmax
�

IX
i=1

KX
k=1

Pr(kjxi; b�; bp) ln(fk(xi;�)): (4)

In other words, b� maximizes the sample average of two di�erent objects: (1) the log of the

unconditionally-type-averaged likelihood (ln[
P

k
pkfk(xi)]); and (2) the conditionally-type-

averaged log-likelihood (
P

k Pr(kjxi) ln[fk(xi)]). The key insight of our paper is that while

the �rst object does not support sequential estimation, the second one does.
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Equations (1) through (4) suggest the following iterative algorithm, which is a special case

of the EM algorithm developed by Dempster, Laird and Rubin (1977). Suppose that at the

beginning of of iteration l, the operative value of � is �l and the operative value of p is pl.

In the \E" step, one uses equation (1) to �nd Pr
�
kjxi;�

l;pl
�
. In the \M" step, one uses

equations (2) and (4) to �nd pl+1 and �l+1, respectively. One iterates until convergence.

3 The EM Algorithm with a Sequential M Step

Now divide the parameter vector � into �1 and �2. Clearly the solution to equation (4) can

be found by maximizing across �1 and �2 simultaneously, or by iterating, using the most

recent value of b�1 to update b�2 and then using this updated value of b�2 to recalculate b�1.

For some applications, it is easier to proceed sequentially. Meng and Rubin (1993) call this

approach the Expectation-Conditional Maximization (ECM) algorithm, and show that the

ECM algorithm retains all of the convergence properties of the EM algorithm.2

A more interesting case occurs when the type-conditional likelihood function can be de-

composed as

fk(xi;�1;�2) = f1k(xi;�1)f2k(xi;�1;�2);

and f1k(xi;�1) can be written as a product of type-conditional likelihoods:

f1k(xi;�1) =

JY
j=1

f1k(xi;jjxi;�j;�1); (5)

where xi;j and xi;�j are mutually exclusive subvectors of xi.

It proves instructive to consider the log-likelihood that arises when K = 1, i.e., there is

only one type:

L(�) =

IX
i=1

ln (f1(xi;�1)) +

IX
i=1

ln (f2(xi;�1;�2)) ;

� L1(�1) + L2(�1;�2):

2As Ruud (1991) points out, one can update Pr(kjxi; b�; bp) each time either
b�1 or b�2 is updated. Meng

and Rubin (1993) label this the \multi-cycle ECM" algorithm. Also see the discussion in McLachlan and

Krishnan (1997).
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In this case, consistent estimates of �1 can be found by maximizing L1, while consistent

estimates of �2 can be found from maximizing L2, taking as given the estimates of �1.
3 Note

that this di�ers from the ECM approach in that we are not maximizing fk(:) in steps, but are

instead sequentially maximizing two partial likelihoods. While this approach is less eÆcient

than maximizing the log of f(:), it is often much easier to implement, especially when L2 is

diÆcult to evaluate.

For example, Rust (1994) considers the maximum likelihood estimator for a Markov deci-

sion process:

b� = argmax
�

IX
i=1

ln

 
TY
t=1

P (dit
�� sit;�1;�2)�(s

i
t

�� sit�1; d
i
t�1;�1)

!
; (6)

where dit is agent i's decision vector at time t, and sit is the vector of state variables that

characterizes agent i's economic environment at time t. While �(sitj :) is straightforward to

evaluate, P (ditj :) requires one to solve a dynamic programming problem. Rust �nds that

estimating �1 as the maximizer of
P

i

P
t ln
�
�(sitj s

i
t�1; d

i
t�1;�1)

�
can greatly reduce the

number of times
P

i

P
t ln (P (d

i
tj s

i
t;�1;�2)) must be evaluated, which in turn signi�cantly

lowers computational cost. Indeed, Rust and Phelan (1997) conclude that \[e]stimation is

only feasible using a simpler two-stage estimation procedure[.]"

In the �nite mixture case, the log-likelihood is

L(�;p) =

IX
i=1

ln

 
KX
k=1

pkf1k (xi;�1) f2k (xi;�1;�2)

!
;

which cannot be neatly decomposed into L1 and L2. This seemingly destroys the option of

sequential estimation. But with the EM algorithm we work with equation (4) which can be

written as

(b�1; b�2) = arg max
f�1;�2g

IX
i=1

KX
k=1

Pr(kjxi; b�; bp) ln (f1k(xi;�1)) +

IX
i=1

KX
k=1

Pr(kjxi; b�; bp) ln (f2k(xi;�1;�2)) :

3The asymptotic properties of these sorts of two-step estimators are discussed in Cox (1975) and Amemiya

(1978), as well as in the next section.
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Once again we can proceed sequentially, using the partial likelihood estimators

e�1 = argmax
�1

IX
i=1

KX
k=1

Pr(kjxi; e�; ep) ln (f1k(xi;�1)) ; (7)

e�2 = argmax
�2

IX
i=1

KX
k=1

Pr(kjxi; e�; ep) ln�f2k(xi; e�1;�2)
�
: (8)

Applying the EM algorithm in this way introduces an additive separability that allows � to

be estimated sequentially, with each stage using the estimates from the previous stage. Note

that the derivative of f2k(:) with respect to �1 never has to be calculated. This means that

the estimates generated by equations (7) and (8) are less eÆcient than the FIML estimates,

but potentially much easier to compute.

4 Asymptotic Behavior of the Sequential Estimator

As the review in Section 2 reveals, the EM algorithm is a method for �nding standard FIML

estimates. Our sequential estimator, on the other hand, is not equivalent to FIML. The

asymptotic properties of our estimator can be shown instead by constructing moment condi-

tions, to which standard GMM results can be applied. In the next section we derive these

moment conditions. In the succeeding section, we discuss conditions that ensure the pa-

rameters of interest are identi�ed. We �nish our theoretical discussion by showing how our

approach generates a wide class of estimators.

4.1 Moment Conditions

Let starred values denote population parameters. Note �rst that at the population level

(��;p�) = arg max
f�;p2SKg

Ex;k (ln [pkf1k(x;�1)f2k(x;�1;�2)]) ; (9)

with the expectation taken over both k and x. It then follows from the law of total probability

that

(��;p�) = arg max
f�;p2SKg

Ex

 
KX
k=1

Pr(kjx;��;p�) ln [pkf1k(x;�1)f2k(x;�1;�2)]

!
; (10)
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with the latter expectation taken over x alone. This result is the self-consistency property,

which dates back to work by R.A. Fisher.4

It immediately follows from equation (10) that ��
2 solves

max
�2

Ex

 
KX
k=1

Pr(kjx;��;p�) ln [f2k(x;�
�
1;�2)]

!
;

the population analog to equation (8). The �rst-order condition for this problem is

Ex

 
KX
k=1

Pr (kjx;��;p�)
@ ln (f2k (x;�

�))

@�2

!
= 0:

The population analog to equation (2) can be constructed in a similar fashion.

Since f1k (xi;�1) is a type-conditional likelihood in its own right|recall equation (5)|it

must solve5

max
�1

Ex

 
KX
k=1

Pr (kjx;��;p�) ln [f1k(x;�1)]

!
;

the population analog to equation (7). The associated �rst-order condition is

Ex

 
KX
k=1

Pr (kjx;��;p�)
@ ln (f1k(x;�

�
1))

@�1

!
= 0:

The population moment conditions for � and p are thus:

Ex

0BBBBBBBBB@

PK

k=1 Pr(kjx;�
�;p�)

@ ln(f1k(x;��

1
))

@�1PK

k=1 Pr(kjx;�
�;p�)

@ ln(f2k(x;�
�))

@�2

Pr(1jx;��;p�)� p�1
...

Pr(Kjx;��;p�)� p�K

1CCCCCCCCCA
= 0; (11)

with Pr(kjx;��;p�) given by equation (1). Then it follows from standard arguments (see

Hansen, 1982, or Newey and McFadden, 1994) that, subject to the usual regularity conditions,e�1, e�2 and bp are consistent and asymptotically normal, with the variance-covariance matrix

given by the standard method-of-moments formula. Note that even though �1 and �2 can be

estimated sequentially, �nding standard errors requires evaluating all the moment conditions

4See the discussion in Efron (1982) and McLachlan and Krishnan (1997).
5Also see Cox's (1975) discussion of partial likelihood.
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together.6 Equation (11) also reveals that the sequential estimator will not be as eÆcient as

FIML, for

@ ln (g(x;��;p�))

@�1

=

KX
k=1

Pr(kjx;��;p�)

�
@ ln (f1k(x;�

�
1))

@�1

+
@ ln (f2k(x;�

�))

@�1

�
;

which means that the �rst element of the moment vector in equation (11) is not part of the

score vector for the FIML function, even though the remaining elements are.

4.2 Asymptotic Identi�cation

Consistency and asymptotic normality require that an estimator satisfy regularity condi-

tions of the sort set forth by Newey and McFadden (1994). Of these the most important

is asymptotic identi�cation. One approach for achieving identi�cation is to assume that the

moment conditions given by equation (11) are satis�ed only by the parameter vector (��;p�).

Given that mixture likelihoods are often not globally concave, we also consider an alterna-

tive approach. In particular, we assume that the expectation of the log-likelihood function

is uniquely maximized at (��;p�) and characterize the moment conditions listed in equation

(11) as features of this optimum.7

Wu (1983) shows that the EM algorithm converges to at points on the likelihood surface,

so that the EM solution yielding the highest likelihood value can be taken as the maximum

likelihood estimate. One can see this heuristically by considering equations (2) and (4).

While our sequential estimator is not a reformulation of the FIML estimator, it can nonethe-

less be used in a similar way. In particular, one can apply the likelihood criterion when the

sample analog to equation (11) has multiple solutions.8 Although this does not yield FIML

estimates|equation (11) is not the FIML score|using a likelihood tiebreaker ensures consis-

tency. We provide a formal proof of consistency in the appendix, using arguments that apply

6Rust (1994) discusses this issue in some detail for the one-type case.
7In assuming uniqueness, we are imposing several normalizations. Titterington et al. (1985) discuss exact

conditions for identifying �nite mixture models.
8In choosing this way, one must take care to restrict oneself to stationary solutions. It is well known, for

example, that one can drive the sample log-likelihood of a normal mixture to in�nity by assuming that one

of the observations belongs to its own zero-variance type.
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to almost any GMM estimator.9

It is worth reiterating that even if the population likelihood function has a unique max-

imum, FIML estimation can require one to compare numerous local extrema on the sample

likelihood surface. If the ESM algorithm yields multiple �xed points, it is likely to be the

case that a gradient-based FIML search will yield multiple solutions as well. In either case, a

likelihood tiebreaker will have to be applied. The di�erence is that in the searches before the

tiebreaker is applied, the sequential estimator can be much less computationally demanding.

To this point, we have focused on how the ESM algorithm generates a sequential alternative

to the FIML estimator. A di�erent approach is to use the ESM algorithm to generate initial

values for a FIML search. Using the ESM algorithm in this way allows one to enjoy some of

the cost savings of sequential estimation without losing asymptotic eÆciency. A particularly

interesting possibility is to utilize the ESM algorithm as a search routine in nonparametric

maximum likelihood, in a way similar to how Follmann and Lambert (1989) combine the EM

and quasi-Newton algorithms. Such an approach extends the bene�ts of sequential estimation

to cases where the number of types (K) is not known.10

As Rust (1994) points out, yet another way to recover asymptotic eÆciency is to use

the sequential estimator as the basis for a one-step estimator: starting with the sequential

estimates, one can take one Gauss-Newton step with the full likelihood function.

4.3 Generalizations of the Sequential Estimator

Our approach extends in a very straightforward way to general moment conditions in mixture

models. In the interest of brevity, we continue to work with �nite mixtures, but extensions

to general mixtures or regime-switching models are straightforward.

9An interesting result from this section is that to ensure consistency, one has to consider local as well as

global minima of the GMM criterion function generated by equation (11).
10We are grateful to a referee for this suggestion. As described by Heckman and Singer (1984) and Follmann

and Lambert, when K is unknown one proceeds by �nding FIML estimates with successively larger values of

K until, roughly speaking, the derivative of the likelihood function with respect to K is non-positive. A topic

we do not explore here is whether ESM estimates can fully replace FIML estimates in this computationally

intensive procedure, or can serve only as starting values.
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As before, it follows from the law of total probability any function h (x; k;�) that satis�es

Ex;k (h(x; k;�
�)) = 0;

also satis�es

Ex

 
KX
k=1

Pr(kjx;��;p�)h(x; k;��)

!
= 0: (12)

Equation (12) provides a basis for estimation. There is a long tradition of analyzing mixture

distributions with classical method of moments estimators;11 we have simply extended the

classical approach to general moment conditions. As in the motivating case of sequential

likelihood, some of these alternative conditions might be less computationally demanding

than the likelihood equations. It is also straightforward to construct overidenti�cation tests.

By way of example, consider the following linear regression model:

yi = x
0
ib

�
k + ei;

where: xi is an M -element random vector; bk is a parameter vector; and ei is a standard

logistic random variable that is independent of xi. As before i indexes observation and k

denotes observation i's unobserved type. Let � denote the collection of b's. Note that

Ey;x (Pr(kj y;x;�
�;p�)x [y � x

0
b
�
k]) = 0; k 2 f1; :::; Kg:

Following Kiefer (1980), under random sampling the sample analog to this equation can be

found using weighted least squares, where the weighting matrix cWk is a diagonal matrix

whose i-th element is

q
Pr(kij yi;xi; b�; bp). As before, one can proceed iteratively, estimatingbbk with the sample matrices cWkX, cWky, and using these estimates to update cWk.

5 Simulations

Two questions remain. First, are there common cases where the sequential M step results

in signi�cant savings in computational time? Second, since the two-step estimator described

above is not eÆcient, how much information is lost by using it? To address these issues,

11See Everitt and Hand (1981), and Titterington, et al. (1985).
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we perform a Monte Carlo simulation with a dynamic discrete choice problem. Even for

this relatively simple problem, the computational gains are quite large, with little loss of

information.

5.1 The Model

The model we use in our Monte Carlo exercise is one of sequential decision-making because, as

discussed above, sequential estimation works particularly well with models of dynamic choice.

The model we simulate is similar in spirit to Cameron and Heckman (2001).12 In each of

three periods, individuals decide whether to continue their education. In the fourth period

individuals receive earnings. Earnings depend on education, observable characteristics, a

random shock and an individual's unobserved type. Di�erent types have di�erent labor market

abilities, and have di�erent preferences over education itself. Individuals face uncertainty

over both the pecuniary and non-pecuniary returns to education. As time passes, individuals

receive new information that allows them to reduce this uncertainty.13

In the absence of type-based di�erences, the likelihood function for education choices and

earnings generated by this model resembles the likelihood function in equation (6) and can be

estimated in a similar sequential fashion. This will yield consistent estimates of, among other

things, the returns to college, C. But with unobservable type-based di�erences, estimates

of C will be biased upwards (and inconsistent) unless the estimates account for type-based

selection. The goal of the Monte Carlo exercise is to see whether the ESM algorithm can

account for selection, by estimating the mixture model, more quickly and as accurately as

FIML.

12The model also resembles Aricidiacono's (2002) model of application, college, and major choice.
13A detailed description of the model, the parameters of the data generating process, and the start-

ing values for the optimization routines are in a simulation appendix and can be downloaded from

http:nnwww.econ.duke.edun~psarcidinsimulation.pdf.
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5.2 Simulation Results

All of the simulations were conducted in Matlab, using Matlab's fminunc optimization pack-

age. The number of individuals is �xed at 3000 and the number of types is two. Crucial to

the calculation time is the number of points that are used to approximate the distribution of

new information. An increase in the number of points leads to more complicated expectations

and a larger computational burden. For the simulations, we approximate the distributions of

unknown state variables with 10-point discrete distributions. This discretization is applied to

two unknown state variables at t = 1 and one unknown state variable at t = 2.

The model is estimated 100 times using four di�erent methods. First, we estimate the

model with the complete data, where each individual's type is observed. Second, we estimate

the model with incomplete data, where type is unobserved, and pretend that there is no

selection problem. We then control for unobserved types by estimating the mixture model,

�rst with FIML and then with the ESM algorithm. We do not report estimates for the EM

algorithm itself, as it was substantially slower than FIML.

As we are primarily interested in how well the various approaches to estimating the mixture

distribution mitigate the selection problem, we only report the coeÆcient on the return to

college, C .
14 The key feature of the model is that the estimates of C are biased upwards

from the population value of 0.2 (and inconsistent) unless the estimates account for selection

based upon type. We also report the standard deviation of the estimated returns and the

mean squared di�erence between the estimates and the true value of C . To get a sense of

speed, we record the number of oating point operations (FLOPs) the various algorithms

took to converge.15 We then report the ratio of FIML FLOPs to ESM FLOPs.

Table 1 presents the simulation results. As expected, not controlling for the selection

problem yields estimates of C that are too high relative to the complete data estimates.

Using either FIML or ESM to estimate the mixture model yields estimates much closer to

14All of the approaches produced similar estimates for the other coeÆcients.
15Jamshidian and Jennrich (1993, 1997) use this measure of speed in their study of enhancements to the

EM algorithm. An advantage of using FLOPs is that we were able to run simulations on multiple computers

of varying clock speeds and still have a consistent measure of speed.
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Table 1: Simulation Results

Simulation Resultsy

Complete Incomplete FIML ESM

Mean(̂C) 0.2078 0.2932 0.2255 0.2226

Standard Deviation(̂C) 0.0330 0.0323 0.0496 0.0565

Mean Squared Error(�100)z 0.1141 0.9731 0.3082 0.3667

(FIML FLOPs)/(ESM FLOPs) 22.48

yEach simulation was conducted 100 times with 3000 observations. The underlying model is described in

Appendix B. The distributions of unknown state variables were approximated with 10-point discrete distri-

butions. Values for the data generating process are found in Appendix B.

z Mean squared error refers to the squared di�erences between estimates of C and its true value of 0.2.

those found when individuals' types were observed. Moving from FIML to ESM increases the

standard deviation for ̂C and the mean squared error, both by less than twenty percent. The

last line in Table 1 shows that this relatively small loss of precision leads to large gains in speed:

the ESM algorithm improves the rate of convergence by a factor of roughly twenty. To see the

rate at which adding states a�ects computational time, we also perform the simulation with

�ve and seven states for each of the discretized state variables. Figure 1 graphs the number

of FLOPS for FIML and ESM. While the computational gains are large for �ve states (over

ten times as fast), it is clear that the gains increase with the number of states.

5.3 Discussion

It is worth stressing that the ESM algorithm requires little researcher time: programming

the algorithm can be very easy. In the algorithm's simplest form, all that one needs is to

save the full density functions so that one can estimate the type probabilities by Bayes' rule.

One otherwise uses the same estimators as in the non-mixture case, except that the data are

weighted by the imputed type probabilities. Hence, adding decisions or state variables has

very little e�ect on the time spent on programming the ESM algorithm. In general, the ESM

algorithm is easier to program than FIML. Because the simulations behind Table 1 employ
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Figure 1: Number of FLOPs as a Function of the Number of States
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the simplest version of the ESM algorithm, the substantial savings in computational time

come with savings in programming time as well.

There are, however, at least three reasons to believe that the estimates in Table 1 give

lower bounds on the computational savings from the ESM algorithm. First, in our current

optimization routine, the estimate of the Hessian at each stage is re-initialized at the beginning

of each ESM maximization step. Hence, all the updating of the Hessians that occurs while

maximizing the type-conditional log-likelihood functions is lost. Changing the optimization

code to carry estimated Hessians across ESM iterations could substantially reduce convergence

times.

Second, the convergence criteria we used at the maximization step did not depend upon

how close the ESM algorithm was to converging. Precise maximization is not necessary

when the ESM algorithm is far from the optimum. Setting the convergence criteria at the

maximization step to be a function of the changes in the conditional probabilities and the
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likelihoods should thus speed up convergence.

Third, some of the work in the statistics literature on accelerating the EM algorithm

can be applied here. An iteration in the EM (or ESM) algorithm uses �l and p
l to �nd

Pr
�
kjxi;�

l;pl
�
, pl+1 and �l+1. This can be described as

(�l+1;pl+1) = G(�l;pl); (13)

where G(:) is the vector-valued function given by an EM iteration. It is then easy to see that

the EM estimates are �xed points in the nonlinear system given by equation (13). Given that

the EM algorithm proceeds iteratively, there are potential speed gains if one treats the EM

estimate as a zero of a system of non-linear equations, and uses more sophisticated solution

routines to �nd these zeros. Jamshidian and Jennrich (1997) show that using quasi-Newton

methods to solve equation (13) can accelerate convergence of the EM algorithm, sometimes

dramatically.

6 Conclusion

This paper provides a simple way to add unobserved heterogeneity to models that, in the

absence of such heterogeneity, could be estimated sequentially. In particular, if one assumes

that the data are drawn from a �nite mixture distribution, the EM algorithm contains a step

where one maximizes an additively separable type-conditional log-likelihood function. Hence,

one can control for unobserved heterogeneity even in problems where the parameters are most

simply estimated in stages. Although our ESM algorithm does not yield FIML estimates, it

is asymptotically well-behaved|in fact the ESM estimator introduces a broad class of GMM-

type estimators. Simulation results show that the ESM algorithm performs very well with

substantial computational savings and little loss of information.

Appendix: Consistency with Weak Identi�cation

We begin with some notation. Assume that we have an i.i.d. sample of x's of size I. Let

s = [�0;p0]
0
2 S � R

M+K denote a parameter vector, with s� denoting the population value of s
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and bs denoting a sample estimate. Let Q(s) denote the negative of a GMM criterion function,

such as the one behind the sequential estimator, and let QI(s) denote the sample analog

of Q(:). Similarly, let L(s) � E (ln(g(x; s))) and LI(s) denote the population and sample

expectations of the log-likelihood function. Let NM(Q;S) denote the consistency conditions

used in Newey and McFadden's (NM, 1994) Theorem 2.1, when applied to the function Q(:)

and the parameter space S. The conditions are: (i) Q(s) is uniquely maximized at s�; (ii) S is

compact; (iii) Q(s) is continuous; and (iv) QI(s) converges uniformly in probability to Q(s).

We will consider Q(sl) to be a local maximum if there exists a closed ball B�(sl), � > 0,

in S such that Q(sl) is a maximum over B�(sl). Let SL denote the set of local maximizers of

Q(s) over the entire space S, and let bSL denote the analagous set generated by the sample

analog QI(s). Let Sm denote a closed subset of S. Let s�m denote the population maximizer

of Q(s) over Sm, and let bsm denote the sample maximizer of QI(s) over Sm. In the proof

below, s�m will be the local maximizer of Q(s) that equals the likelihood parameter vector s�.

Recall that the motivating problem is a lack of identi�cation: even if it were restricted to

global maximizers, the set SL would have multiple elements. The approach suggested in the

text was to pick bs as the element of bSL that maximizes LI(s); we term this the \tiebreaker"

estimator. We now show consistency.

Theorem 1

Suppose that: (i) conditions NM(Q;Sm) hold (local GMM regularity); (ii) s�m lies in the

interior of Sm � S (interiority); (iii) conditions NM(L;S) hold (global MLE regularity);

(iv) ln(g(x; s�m)) and Sm satisfy the conditions of Newey and McFadden's Lemma 4.3 (local

MLE regularity); (v) s�m = s
�, the maximizer of L(s) (cross-identi�cation); and (vi) bs =

argmax
fs2bSLg

LI(s) (tiebreaking estimate). Then bs p
�! s

�.

Proof

The proof proceeds in 2 steps: (1) LI(bsm) p
�! L(s�m); and (2) convergence of LI(bsm) implies

convergence of bs. In the interest of brevity, we assume that all measurability conditions are

satis�ed. (See also the discussion of NM's Theorem 2.1.)

To get step 1, note that by condition (i) and NM's Theorem 2.1, bsm p
�! s

�
m. Then it

follows from condition (iv) and NM's Lemma 4.3 that LI(bsm) p
�! L(s�m).
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It remains to show convergence of bs. It follows from consistency of bsm and condition

(ii) that with probability approaching 1 (w.p.a.1) bsm is in the interior of S and thus a local

maximizer, so that w.p.a.1 bsm 2 bSL. We now proceed as in NM's Theorem 2.1. 8� > 0,

we have w.p.a.1: (1) L(bs) > LI(bs) � �=3 (from condition (iii)); (2) LI(bs) > LI(bsm) � �=3

(by condition (vi) and bsm 2 bSL); (3) LI(bsm) > L(s�m) � �=3 (from step 1). Together these

conditions imply that w.p.a.1 L(bs) > L(s�m)� �. But by condition (v) s�m = s
�. It then follows

from condition (iii) and arguments in NM's Theorem 2.1 that bs p
�! s

�. Q.E.D.

Unless one of the local GMM maximizers is also the maximum likelihood estimator, it is

essential to include local as well as global maximizers in the set bSL. This can be illustrated

with a simple example. Suppose that S can partitioned into two disjoint compact subsets,

S1 and S2, and that in addition to satisfying the conditions for Theorem 1, the maximizers

of each subset, s�1 and s
�
2, are global maximizers of Q(s) over S. Suppose further that s�1 is

also the MLE maximizer s�. Finally, suppose that over S1, QI(s) = Q(s) � 1=I, while over

S2, QI(s) = Q(s) + 1=I. It immediately follows that bs1 = s
�
1 and bs2 = s

�
2, and the proof of

Theorem 1 goes through. But QI(bs1) < QI(bs2), so that a search over global maxima would

exclude bs1 = s
�.

The conditions for the proof apply naturally to the sequential estimator developed in the

main text. Q(s) is the negative of inner product of the expectation vector in equation (11),

and QI is its sample analog. Condition (v) (cross-identi�cation) follows from the construction

of equation (11). Since any solution to equation (11) will be a zero of Q(s), the sequential

estimator is a local maximizer of Q(s). One potential diÆculty is that, as noted by Wu (1983),

some mixture problems lack a compact parameter space.
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