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1. Introduction

Let X1,X2, . . . ,Xn be independent, identically distributed p-dimensional ob-
servations from a distribution with probability density function

f(x;π) =

K
∑

k=1

πkfk(x), (1)

where πk represents the kth mixing proportion or the probability that the obser-
vation Xi belongs to the kth subpopulation with corresponding density fk(x)
called the kth mixing or component density. Here, K represents the total num-
ber of components with π = (π1, π2, . . . , πK)′ lying in the (K − 1)-dimensional

simplex, i.e. 0 ≤ πk ≤ 1 ∀ k = 1, 2, . . . ,K and
∑K

k=1 πk = 1. This is the most
general form of a mixture: usually fk’s are assumed to be of parametric form
i.e. fk(x) ≡ fk(x;ϑk), where the functional form of fk(·; ·) is completely known,
but for the parametrizing vector ϑk. Thus, (1) can be written in the form

f(x;ϑ) =

K
∑

k=1

πkfk(x;ϑk). (2)

We refer to f(x;ϑ) as a finite mixture model density with parameter vector ϑ,
where ϑ = (π′,ϑ′

1,ϑ
′
2, . . . ,ϑ

′
K)′. When the number of mixture components K,
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is also known, only ϑ has to be estimated. When K is not provided, we have to
additionally estimate the number of components in the mixture.

Finite mixture models made their first recorded appearance in the modern
statistical literature in the nineteenth century in a paper by [95] who used it
in the context of modeling outliers. A few years later, [98] used a mixture of
two univariate Gaussian distributions to analyze a dataset containing ratios of
forehead to body lengths for 1,000 crabs, using the method of moments (MOM)
to estimate the parameters in the model. More recently, mixtures of Poisson dis-
tributions have been used in positron emission tomography to model emissions
occurring in a line along each pair of electronically coupled photon-sensitive
crystal detectors [114]. Poisson mixtures have also been used for document clas-
sification in the field of information retrieval [66]. Other paramedic mixtures
include that of the von Mises-Fisher distributions proposed for the analysis of
text and gene expressions [10], but by far the most popular mixture model is the
one consisting of Gaussian components [35, 44, 88, 98, 123, 124]. A heavy-tailed
alternative to Gaussian mixtures is to use mixtures of t-distributions [87]. We
refer to [87, 113] for a comprehensive survey on the history and applications of
finite mixture models. Other helpful resources on the theory, applications and
developments in the field are [21, 45, 72, 73].

Finite mixture models also provide a convenient yet formal setting for model-
based clustering. Clustering had hitherto been a difficult problem with a large
number of heuristic methods in the literature. In the finite mixture model-
ing framework, each group is assumed to have its own distribution and corre-
sponding probability of representation. Thus the kth group has density given by
fk(x;ϑk) and probability of inclusion in the sample πk. Under this setup, the
observationsX1,X2, . . . ,Xn can be assumed to be a sample from (2). Mixtures
of Gaussian densities are again by far the most commonly used representation
in model-based clustering. We note that though the framework for the latter has
evolved from finite mixture modeling, they have distinct goals: finite mixture
modeling is typically associated with inference on the model and its parameters
while the goal of model-based clustering is to provide a partition of the data into
groups of homogeneous observations. To achieve this, model-based clustering re-
quires an additional step – after model-fitting – that assigns each observation to
different groups according to some pre-specified rule. Mixing proportions can be
thought of as the prior probability that an observation originated from a spe-
cific mixing distribution. We use a Bayes rule here which allocates observations
to clusters in accordance with their posterior probabilities. Thus, every obser-
vation is assigned to the group having the highest posterior probability that
the observation originated from this group. This is equivalent to finding the
group index corresponding to the highest value πkfk(xi;ϑk), k = 1, 2, . . . ,K for
each observation xi, i = 1, 2, . . . , n. If there are multiple posterior probabilities
equal to the maximum value and the rule is indecisive, [87] recommend using
randomization to break the tie among competing clusters.

In this paper, we provide a comprehensive survey of the most important re-
sults and developments in finite mixture modeling, with special reference to
model-based clustering. Section 2 provides a description of inferential methods
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used in the literature, along with its challenges. Methodology for simulating real-
izations from Gaussian mixture models of desired characteristic for the purposes
of evaluating different estimation and clustering methodologies are discussed in
Section 3. Section 4 provides an overview of graphical tools for the visual repre-
sentation and illustration of mixtures. Section 5 provides two recent applications
using mixtures of non-Gaussian distributions. Finally, Section 6 describes avail-
able software for simulating from and performing inference in mixture models
while Section 7 describes a few additional topics and challenges confronting
mixture models in a modern setting. The paper concludes with some discussion.

2. Inference in finite mixture models

Finite mixture models provide for great flexibility in fitting models with many
modes, skewness and non-standard distributional characteristics. The price for
this flexibility is an increase in the number of parameters with the number of
components fk. Here, we survey issues in estimation and model selection with
regard to finite mixture models. While there is no restriction in general that all
fk, k = 1, 2, . . . ,K represent the same parametric distribution, we assume in
what follows that the functional form of fk is parametric and the same for all
components.

2.1. Estimation in finite mixture models

As mentioned earlier, [98] provided a MOM estimator for fitting a two-component
univariate Gaussian mixture. In multivariate multi-component settings however,
this is rarely practical. Fortunately however, maximum likelihood (ML) esti-
mation is possible when implemented via the expectation-maximization (EM)
algorithm and is the method of choice in estimation in finite mixture models.
We discuss issues related to ML estimation here.

2.1.1. Likelihood maximization via the EM algorithm

One practical issue related to ML estimation in finite mixture models is trou-
blesome optimization. First, the form of the likelihood function for a sample
from (2) is typically complicated and severely multi-modal, rarely lending itself
to mathematical treatment and analytical closed-form solutions or numerical
optimization. The standard procedure for finding the ML estimate (MLE) in
almost all cases is the EM algorithm and is also applicable in complicated multi-
parameter situations. The EM algorithm [36, 86] is, thus, the primary tool in
finite mixture models and model-based clustering.

The EM algorithm is implemented by assuming that there are some miss-
ing observations, namely the group identifiers, which, in conjunction with the
observed data, yield so-called complete data. The corresponding complete like-
lihood function usually has a much more appealing form and can be readily
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maximized. The EM algorithm is an iterative procedure consisting of the expec-
tation (E) and the maximization (M) steps. At the E-step of the s-th iteration,
the posterior probabilities

π
(s)
ik = Prob{Xi ∈ k − th cluster | Xi;ϑ

(s−1)} =
π
(s−1)
k fk(xi;ϑ

(s−1)
k )

∑K
k′=1 π

(s−1)
k′ fk(xi;ϑ

(s−1)
k′ )

(3)
are calculated, while the M-step maximizes the expected conditional complete
loglikelihood, historically denoted as Q-function, with respect to the parameter
vector ϑ: Q(ϑ;ϑ(s−1),x1,x2, . . . ,xn). Iteration of the E- and M-steps until con-
vergence yields, under fairly mild conditions [23, 36, 86, 125], the ML estimate

ϑ̂ for the original observed data. Of course, the expressions for the updated
parameter vector ϑ(s) at the M-step may not necessarily be of closed-form, in
which case the Q-function should be maximized numerically.

Multivariate Gaussian mixtures are not just the most popular choice in finite
mixture models: they are also among the most complicated cases as pointed out
by [28]. The corresponding mixture density function is given by

f(x;ϑ) =

K
∑

k=1

πkφ(x;µk,Σk).

Here, µk is the mean vector andΣk the dispersion matrix for the k-th component
normal density given by

φ(x;µk,Σk) = (2π)−
p

2 |Σk|
− 1

2 exp

{

−
1

2
(x− µk)

′Σ−1
k (x− µk)

}

.

The corresponding Q-function is

Q(ϑ;x1,x2, . . . ,xn) =−
1

2

n
∑

i=1

K
∑

k=1

πik
{

log |Σk|+ (xi − µk)
′Σ−1

k (xi − µk)
}

+

n
∑

i=1

K
∑

k=1

πik log πk −
pn

2
log 2π.

The E-step consists of updating the posterior probabilities π
(s)
ik given the current

parameter estimates ϑ(s−1):

π
(s)
ik =

π
(s−1)
k φ(xi;µ

(s−1)
k ,Σ

(s−1)
k )

∑K
k′=1 π

(s−1)
k′ φ(xi;µ

(s−1)
k′ ,Σ

(s−1)
k′ )

.

The covariance matrix Σk can have various structures: therefore, the exact
formula for the EM update of Σk can be different. Throughout this paper, we
assume that Σk is a general unstructured dispersion matrix. Here, the M-step
provides the convenient closed-form solutions:

π
(s)
k =

1

n

n
∑

i=1

π
(s)
ik , µ

(s)
k =

∑n
i=1 π

(s)
ik xi

∑n
i=1 π

(s)
ik

,
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and

Σ
(s)
k =

∑n
i=1 π

(s)
ik (xi − µ

(s)
k )(xi − µ

(s)
k )′

∑n
i=1 π

(s)
ik

.

While different criteria can be used for terminating EM, some criteria – such
as the convergence of ϑ(s) – are too demanding when there is a large number
of parameters. The most usual stopping criterion is based on when the relative
increase in the likelihood function is no longer appreciable. In this context, [20]
introduced the so-called Aitken’s rule by using Aitken’s acceleration to inves-
tigate the limiting value for the sequence of log likelihood values. Specifically,

they proposed the stopping criterion |ℓ
(s+1)
A − ℓ

(s)
A | < ǫ, where ǫ is the tolerance

level and ℓ
(s)
A is the Aitken accelerated estimate of the limiting value such that

ℓ
(s+1)
A = ℓ

(s)
A +

ℓ
(s+1)
A − ℓ

(s)
A

1−
ℓ
(s+1)

A
−ℓ

(s)

A

ℓ
(s)

A
−ℓ

(s−1)

A

.

We refer to [20, 87] for further details.

2.1.2. Challenges in implementation

Unbounded likelihood functions In some situations – for example in the
case of Gaussian mixtures with heterogeneous dispersions – the likelihood func-
tion may be unbounded. This happens, for instance, because of singular covari-
ance matrices being estimated as a consequence of degraded components that
have only one observation, or having several identical or nearly-identical ob-
servations. Gaussian mixtures with homogeneous components, however, do not
share this problem as covariance matrices are restricted in the parameter space
so that it is impossible to obtain degraded components.

There are several methods proposed in the literature to address the possible
unboundedness of the likelihood function. [53] suggested introducing an addi-
tional constraint on dispersions of univariate normals: i.e. assume σ−2

i σ2
j ≥ c > 0

for any i and j. The paper showed that the global maximizer of the likelihood
function defined on the restricted parameter space exists for any value of c. A
generalized version of this condition was proposed for the multivariate frame-
work by [87]. The suggested restriction is |Σi|

−1|Σj | ≥ c > 0 for any i and j
with the only inconvenience of this approach related to the fact that the con-
stant c has to be pre-specified and it is unclear how to choose a reasonable value.
Another possibility includes defining a penalized log likelihood function [28, 67]
that contains a penalty term preventing the log likelihood from going to infin-
ity by construction. [87] proposed working with unconstrained normal mixtures
but also relying on the result of [62] which states that even when the likelihood
function is unbounded in the parameter space, there exists a strongly consistent
asymptotically efficient local maximizer in the interior of the parameter space.
Therefore, it is recommended to search the best local maximum in the uncon-
strained parameter space and then to check that the obtained solution indeed
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corresponds to a local maximum and is not on its way to infinity. This check can
be difficult due to the presence of so-called spurious local maxima which should
be ignored. Spurious solutions represent the parameter vector lying close to the
boundary of the parameter space and can be easily identified by the presence
of very few points in some components or by detecting some observations lying
in a lower-dimensional subspace. Detailed review of these and related issues can
be found in [87].

Initialization of the EM Algorithm The EM algorithm is an iterative,
strictly hill-climbing procedure whose performance can depend severely on par-
ticular starting points because the likelihood function often has numerous local
maxima (see, e.g. [87]). Thus, good initialization is crucial for finding ML es-
timates. Many different initialization procedures have been suggested in the
literature (for an overview, see [40] and [78]) but no method uniformly outper-
forms the others. Here, we list only the most common and better-performing
strategies. A model-based hierarchical clustering approach [11] was proposed
and incorporated in the R package Mclust [44] designed for Gaussian mixtures.
This approach was shown to work well when the components are well-separated,
but not as well in other cases [81]. The use of hierarchical clustering in initial-
ization also limits applicability to larger datasets. Another deterministic ap-
proach [78], based on finding the most separated local modes, demonstrates
good performance for low dimensions but is very time-consuming for severely
multi-dimensional datasets. There are also stochastic algorithms for initializa-
tion. For instance, the emEM algorithm proposed by [17] consists of two EM
stages. The first stage, called the short em, involves starting from several ran-
dom points and running the EM algorithm until some lax convergence criterion
is satisfied. The solution producing the highest log likelihood is chosen as a
starter for the second stage, called the long EM , which runs until the usual
strict convergence criteria is met. A modification of the emEM algorithm, Rnd-
EM, was proposed by [78]. Here, the short em stage is replaced by choosing
multiple starting points and evaluating log likelihood at these values without
running any EM iterations. The best obtained solution serves as an initializer
for the long EM stage. As pointed out by [41], using multiple random starting
points needed for finding the global maximum can be time-consuming. Besides,
there is also no assurance that the global maximum has been found. In par-
ticular, they noted that successful search for the global maximum depends not
only on the number of random starts but also on both the complexity of the
function being optimized and the procedure for generating the random starting
points. To this end, the authors developed a probabilistic measure for assessing
the adequacy of the search for the global maximum with a view to guiding de-
cisions as to when the search can be called off. In general, however, no strategy
works uniformly well in all cases [81], so the usual practice is to try, as far as
practical, different strategies and then to choose the solution with the highest
log likelihood value.
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2.1.3. Variance estimation

One advantage of ML estimation is the ability to obtain (at the very least,
asymptotic) dispersions of the estimated quantities. This is done by inverting
the corresponding information matrix which is usually estimated in practice by

the observed information matrix I(ϑ̂) = −∂2 logL(ϑ)
∂ϑ∂ϑ′ |

ϑ=ϑ̂
, where L(ϑ) repre-

sents the likelihood function. Clearly, the related computations involve taking
double derivatives, potentially with respect to vectors and matrices, and may
be very complicated for finite mixture models. A way to express the observed
information matrix was proposed by [74]. The approach relies on the missing
information principle and likelihood calculations for complete data. While pro-
viding some flexibility, this method still does not provide an easy way to obtain
the observed information matrix. Fortunately, there exists a simple approxima-
tion for I in the case of independent, identically distributed observations. The
approximation relies on computing the corresponding empirical information [87]
whose approximation can be obtained by

Ie(ϑ̂) = (∇q1
...∇q2

... . . .
...∇qn)(∇q1

...∇q2
... . . .

...∇qn)
′ |

ϑ=ϑ̂
,

where ∇qi represents the gradient vector of the expected complete loglikelihood
at the i-th observation: ∇qi ≡ ∇qi(ϑ;xi). Then, Ie(ϑ̂) can be inverted and

employed as an estimated covariance matrix of the MLE ϑ̂.
As an example of variance calculations, consider the case of the multivariate

Gaussian mixture with unstructured covariance matrices. The corresponding
gradient vector ∇qi has form given by (see [80])

∇qi =

[

((

∂qi
∂πk

))′

k=1,2,...,K−1

,

((

∂qi
∂µk

))′

k=1,2,...,K

,

((

∂qi
∂Σk

))′

k=1,2,...,K

]′

,

where
∂qi
∂πk

=
πik
πk

−
πiK
πK

,
∂qi
∂µk

= πikΣ
−1
k (xi − µk),

and
∂qi
∂Σk

= G′vec

{

1

2
πikΣ

−1
k

(

(xi − µk)(xi − µk)
′Σ−1

k − I
)

}

.

Here,
((

∂qi
∂µk

))′

k=1,2,...,K
is a vector consisting of all derivatives for qi with

respect to µk, k = 1, 2, . . . ,K and
((

∂qi
∂πk

))′

k=1,2,...,K−1
with

((

∂qi
∂Σk

))′

k=1,2,...,K

are defined similarly. G represents the unique p2 × p(p+1)
2 -dimensional matrix

such that vec(A) = Gvech(A), where vec is an operator that stacks columns of
a matrix A (converting the matrix into the vector consisting of the columns of
a matrix) and vech is an operator transforming a p× p symmetric matrix into

a p(p+1)
2 -coordinate vector consisting of the columns of the lower triangle of the

matrix (for more details, see [55, 76, 83]). The length of ∇qi is K − 1 +Kp+
Kp(p+1)/2. This result substantially facilitates the estimation of the covariance
matrix for the MLE of ϑ in the case of multivariate normal mixtures.
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2.2. Model selection

In finite mixture models, it is usually assumed that the variables and the func-
tional form of mixing densities is known. In the past, model selection has typi-
cally referred to the problem of choosing the optimal number of components K.
An aspect of model selection that has been recently investigated is the identifi-
cation of variables with more discriminating power than others in the inference.
We review both these aspects in brief in this section.

2.2.1. Choosing the optimal number of components

There is a vast literature devoted to the issue of choosing K. We refer to [87]
who provide a detailed rendering of the different approaches available to address
this problem. Here, we briefly summarize existing and recent contributions. Note
that most methods devoted to estimating K can broadly be divided into two
categories, both based on the log likelihood function. The first group of methods
is parsimony-based while the second category relies on testing procedures. The
former has been more widely used and discussed in the literature than the latter
which has only recently been explored more: we therefore, survey parsimony-
based model selection in brief while reviewing testing-based approaches in more
detail.

Parsimony-based approaches choose the K minimizing the negative log like-
lihood function augmented by some penalty function to reflect its complex-
ity. Various information-based criteria such as An Information Criterion (AIC)
[3], Bayes Information Criterion (BIC) [109] and their modifications such as
quadratic AIC/BIC [105], the Integrated Classification Likelihood criterion (ICL)
[15], Normalized Entropy Criterion (NEC) [16], Minimum Information Ratio
criterion (MIR) [122], and Laplace-Empirical Criterion (LEC) [87] fall into this
category. BIC is among the easily implemented methods that has been repeat-
edly shown to demonstrate good performance [33, 80, 107]. [61] showed the
consistency of BIC for choosing the correct number of clusters. However, BIC
tends to underestimate the number of components when sample sizes are small.
On the contrary, another easily implemented criterion, the AIC, typically over-
estimates K substantially. While more difficult to implement, [80] show that the
ICL approach performs very well in a large range of cases.

In general, the criteria-based methods are easily implemented, but share one
shortcoming in that it is difficult to obtain a meaningful comparison of model
fit from one situation to another. For instance, [60] view improvements in BIC
of less than 2 as negligible, while differences greater than 10 are often regarded
as constituting strong evidence. On other words, only reductions in the BIC of
more than ten should indicate a clear improvement in the model associated with
increasing number of components. It is unclear however, how this value should
be calibrated in different situations with regard to n and p. This is where testing-
based approaches have greater appeal, because it specifies evidence in favor of a
complex model against a simpler model in terms of the universally understood
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p-value. Most testing-based approaches use a likelihood ratio test (LRT) or
some derivation thereof. However, direct application of LRT is not possible as
the parameter vector ϑ lies on the boundary of the parameter space under
the null hypothesis. Thus, the regularity conditions of [32] are violated and the
usual asymptotic null distribution of the LRT statistic is not valid. Some special
results are available [47, 52], but they mostly concern comparing one- versus
two-component univariate Gaussian models. To avoid the boundary problem,
[2] suggest moving the parameter vector to the interior of the parameter space
by postulating a prior probability distribution on the mixing proportions. The
lack of theoretical null distributions of test statistics has also stimulated the
development of bootstrap-based methods [1, 85]. Indeed, for the case of Gaussian
mixtures with unequal variances, [39] recommended bootstrapping the LRT
statistic over all other methods to avoid problems with regularity conditions.
This approach was also advocated by [87] as a necessary tool for assessing p-
values (page 184). However, these methods are time-consuming to implement.

We have recently proposed and investigated a likelihood-based testing pro-
cedure [80]. To keep derivations of the null distribution of the LRT statistic
tractable, we introduced an additional assumption stating that a fit of the (sim-
pler) model under the null hypothesis H0 implies that the alternative (and more
complex) model under Ha also fits the data adequately. Under Ha however, only
the alternative model provides a good fit. An approximate null-distribution for
the LRT statistic can then be developed based on Taylor series expansion. Be-
sides keeping derivations tractable, the additional assumption stated above also
addresses concerns expressed by authors such as [105] that in the spirit of [22],
every restricted model is flawed and therefore will always be rejected for some
n regardless of the true model.

The testing approach provides the possibility of obtaining significance of any
K∗-component model vis-a-vis any K-component model (K∗ > K). This can
be displayed via a quantitation map which is a display introduced by [80] to
quantitate support for any complex model relative to a simpler model. Figure 1
represents a contour plot and the quantitation map for the two-dimensional
Ruspini dataset [108]. The rows in the quantitation map represent the num-
ber of components in a simpler model while the columns stand for the number
of clusters under Ha. Thus, every cell produced by the intersection of a par-
ticular combination of rows and columns represents a test. The color of every
cell illustrates the p-value of that particular test. The quantitation map there-
fore is a comprehensive tool visualizing the nature of a dataset and helping to
decide on the best number of mixture components. Not surprisingly for such
well-separated clusters, the quantitation map clearly suggests choosing a four-
component solution. We refer to [80] for further details, including the q-value
quantitation map to control for the proportion of expected false discoveries, and
examples of performance on simulation and standard classification datasets.
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Fig 1. Ruspini dataset: (a) contour plot; (b) quantitation map. The color of cells in quan-
titation map reflects the level of significance for a p-value. Dark red color indicates highly
significant results while faded yellow color stands for insignificant p-values. The other colors
correspond to intermediate p-values according to a linear scale provided in every quantitation
map.

2.2.2. Variable selection

In many multivariate datasets, some of the variables are highly correlated with
the others or just do not carry much additional information about clustering.
The performance of clustering algorithms can actually be severely affected then
by the presence of such variables that only serve to increase dimensionality and
add redundant information. The elimination of such variables can potentially
improve both estimation and clustering performance. This is an aspect of model
selection that has lately received some attention in the literature.

A greedy variable selection algorithm based on Bayes factors was introduced
by [103]. The idea of the algorithm is to divide all variables into three groups: the

first group, X(1), contains already selected variables, the second group, X(2),
consists of variables currently under consideration for inclusion into the first
group, and the last group, X(3), consists of remaining variables that are not
included or considered yet. Then, they define two competing models

M1 : p(X(1),X(2),X(3)|z) = p(X(3)|X(2),X(1))p(X(2)|X(1))p(X(1)|z)

M2 : p(X(1),X(2),X(3)) = p(X(3)|X(2),X(1))p(X(2),X(1)|z),

where z is the unobserved class information for each observation. Model M1

implies that X(2) does not carry any clustering information in addition to that
already contained in X(1). The model M2, on the contrary, assumes that X(2)

introduces some new information about cluster memberships afterX(1) has been
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observed. The models M1 and M2 are compared using the Bayes factor, B12, in
which potentially high-dimensional terms p(X(3)|X(2),X(1)) cancel providing

B12 =
p(X(2)|X(1),M1)p(X

(1)|M2)

p(X(2),X(1)|M2)
,

which is estimated via BIC. The authors provide a greedy algorithm which
simultaneously selects the model and K. The approach is easily implemented
and shown to perform well on simulated datasets with correlated redundant
variables, variables with no clustering information and on the Iris [4], crabs [26]
and textures [25] datasets.

[103] did not allow irrelevant variables to be independent of clustering vari-
ables, potentially leading to erroneous model choices. This shortcoming was
addressed by [82]. [96] proposed an approach based on the L1-norm penalty for
the loglikelihood function in the Gaussian mixture. They suggested using the
regularized loglikelihood function penalized by the term −λ

∑K
k=1

∑p
j=1 |µkj |,

where µkj is the j-th coordinate of the k-th mean vector. This penalty is able to
shrink some fitted means toward 0. Then, variables with all µkj , k = 1, 2, . . . ,K
equal to zero are eliminated. This approach is limited by the assumption of a
common diagonal covariance matrix for all components. [126] extended this ap-
proach by including a new regularization scheme that groups together multiple
parameters of the same variable across clusters. Another modification of this
method, suggested by [118], applies different penalty functions: for instance,
the adaptive L∞-norm and adaptive hierarchical penalties. The authors claim
that the results are better for the proposed penalties but the same assumptions
about covariance matrices are required to be made. While necessary for analyz-
ing small datasets with large numbers of variables, these limitations might be
very restrictive in general. Of course, as mentioned at the beginning, this is an
area of model selection in finite mixture models which has only lately received
attention and is under active development.

In this section therefore, we have discussed several issues in making inferences
in finite mixture models. We now discuss a scheme to simulate finite mixture
model distribution with varying complexity, with a view to evaluating the per-
formance of an algorithm under different settings.

3. Simulating mixture distributions for evaluating clustering

algorithms

There are several clustering methods [127], but none of them uniformly outper-
forms the other in all cases. Thus, it is important to have tools to calibrate and
characterize different algorithms. Therefore, having a procedure capable of sim-
ulating data with different levels of clustering complexity can be very helpful.
This can allow for a comprehensive investigation of an algorithm’s properties
with regard to different situations. Several approaches have been suggested in
the literature (see [111] for a detailed review). Here, we give just a brief summary,
noting that almost all methods in the literature only provide simulation methods
for multivariate Gaussian mixtures with different clustering complexities.
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One popular algorithm proposes to generate well-separated clusters from
truncated multivariate Gaussian distributions [92]. However, due to the trunca-
tion step in the algorithm, the method is incapable of simulating clusters with
wide ranges of separation [111] that can be misleading [5]. Many other proposed
methods [19, 49, 63, 84, 100] share similar shortcomings. An attempt to control
the level of overlap between any two components using intra-class correlations
was made by [5] who however admitted that it still lacked the ability to provide
a “perceptually meaningful description” of overlap (see page 583). The notion
of c-separation was introduced by [34] in the context of learning Gaussian mix-
tures. Here, two p-variate Gaussian distributions Np(µ1,Σ1) and Np(µ2,Σ2)

are defined as c-separated if ‖µ1 − µ2‖ ≥ c
√

p×max(λmax(Σ1), λmax(Σ2)),
where λmax(Σ) represents the largest eigenvalue of Σ. Thus, the level of c-
separation depends on Euclidean distance between clusters, dimensionality, and
the value of the largest eigenvalue from both dispersion matrices. A clear draw-
back here is that the orientation of the clusters is not taken into considera-
tion and considering only the highest eigenvalue can lead to widely varying
mixtures of different clustering difficulty for the same values of c [78]. Also,
as very helpfully pointed to us by a reviewer, the c-separation criterion per-
forms reasonably well for small dimensions but is too wide for larger dimen-
sions. In such cases, the reviewer additionally pointed out that a stronger con-
dition based on employing the principle of least distances between the means
producing separate modes can be developed: such development might be pos-
sible using the geometry of high-dimensional mixtures described in [45, 104].
Nevertheless, this method has been used in evaluating algorithms by [68, 115,
116]. A slight modification of the above is the exact-c-separation of [78] who
required the equality in the above expression to hold for at least one pair
of clusters. OCLUS, an algorithm capable of simulating clusters with known
overlaps between pairs of clusters, pairwise overlaps, was introduced by [111].
Clusters in OCLUS are assumed to be marginally independent and no group
is allowed to interact with more than two other clusters. This limits the al-
gorithm because of its inability to simulate other types of cluster configura-
tions.

Another recent development is the R package clusterGeneration [101] which
is based on the separation index of [102]. The index is defined as the ratio of
the difference between the biggest lower and smallest upper quantiles over the
difference in biggest upper and smallest lower quantiles. The index attains values
close to 1 for well-separated clusters and can approach −1 for clusters with high
overlaps. In the original paper, the authors used the 2.5% and 97.5% quantiles.
Defined in an univariate framework, this index can not be readily extended to the
multivariate case, so the authors suggest finding and using the one-dimensional
projection that produces the highest value of the separation index. Of course,
relying on a single projection may be inadequate to summarize overlap between
any two components in the mixture. Therefore, any statement made on the
degree of cluster separation in multivariate case is at best partial and may even
lead to erroneous conclusions.
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Fig 2. Contour plots for mixtures with (a) high (ω̄ = 0.001) and (b) low (ω̄ = 0.05) separation.

An approach that allows for simulating Gaussian finite mixture models ac-
cording to pre-specified levels of average and maximum pairwise overlaps was
proposed by [81]. The overlap between two mixing components is defined there
as the sum of both misclassification probabilities, ωi|j and ωj|i, where

ωj|i = Pr
[

πiφ(x;µi,Σi) < πjφ(x;µj ,Σj)|x ∼ Np(µi,Σi)
]

and ωi|j is defined similarly. The average (ω̄) and maximum (ω̌) levels of overlap
serve as surrogate measures of clustering complexity. The R package MixSim is
available at CRAN and can be also employed for assessing the degree of cluster-
ing difficulty for existing classification datasets. Figure 2 shows data simulated
under two levels of mixture complexity and illustrates some of the capabilities
of MixSim in providing mixtures with different degrees of separation.

4. Graphical representation and visualization

Good visualization in cluster analysis can often be very effective and helpful
for understanding the nature of analyzed datasets. Biplots [46], scatter plots
and contour plots are widely used to illustrate datasets and mixture models.
Contour plots such as in Figures 1a and 2 can present two-dimensional data
by drawing level sets of the bivariate density through corresponding shadings
or contours. For multivariate datasets, biplots (Figure 3) representing a scat-
ter plot of the first two principal components along with variable contributions
are useful. Additionally, observations on the biplot can be plotted using color
and/or character (see Figure 3b) according to their group memberships. Fig-
ure 3b provides a biplot for the three-variable dataset obtained from wine [42]
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Fig 3. Biplots for principal components of the wine dataset (a) with 13 variables and (b) 3
selected variables.

by a variable selection procedure. As we can see, there is very clear separation
in three clusters provided along the first and the second principal components.

The parallel distribution plot (Figure 4) recently developed by [81] allows
for visualizing multidimensional mixtures with Gaussian components. The dis-
persion matrix for a Gaussian mixture with individual component covariance
matrices of a general form is given by

Σ =
K
∑

k=1

πkΣk +
K
∑

k=1

πkµkµ
′
k −

K
∑

l=1

K
∑

k=1

πlπkµlµ
′
k.

Let Γ be the matrix of orthonormal eigenvectors corresponding to Σ. Applying
the rotation Γ′ to the mixture yields the rotated mixture of (rotated) Gaus-
sian components with corresponding mean vectors Γ′µk and dispersion matrices
Γ′ΣkΓ. Then, borrowing ideas from the parallel coordinate plots of [59, 121], we
plot the individual rotated means against the index of the principal component.
Rotated variances are used to obtain quantiles at each principle component.
Connecting these quantiles yields polygons that are shaded with varying opac-
ity according to the probability contained between the corresponding quantiles.
For mixtures with well-separated components (Figure 4a), the between-cluster
variability is substantial even at higher principal components, while for poorly-
separated mixtures (Figure 4b), within-cluster variability swamps the between-
cluster variability fairly soon. The corresponding procedure is incorporated in
the R package MixSim (function pdplot).
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Fig 4. Probability distribution plots for mixtures with (a) high (ω̄ = 0.001) and (b) low
(ω̄ = 0.05) separation.

5. Some recent applications involving non-Gaussian mixtures

As mentioned earlier, most of the work in finite mixture modeling and model-
based clustering involves multivariate Gaussian mixtures. Recently, however,
there has been some interest in mixtures of non-Gaussian distributions. In this
section, we detail two applications using such distributions.

5.1. Text and time-course gene expression datasets

Cluster analysis of text and gene expression datasets is similar to that of direc-
tional data. For text data, it is common to use cosine similarity as the metric
for grouping similar observations, while for time-course gene expression data,
it is of interest to group similar genes according to correlation. In both cases,
datasets are pre-processed to lie on the L2-normalized subspace, i.e. they lie
on the surface of the unit sphere. Note however, that the pre-processed gene
expression datasets are also orthogonal to the unit vector. A popular choice for
directional distributions is the p-variate von Mises-Fisher distribution which is
given by the probability density function f(x;κ,µ) = Cp(κ)e

κµ′x, where κ ≥ 0
and µ is the mean vector such that ‖µ‖ = 1. The support of the density is the
surface of the unit sphere, ‖x‖ = 1. The normalizing constant Cp(κ) is given by

Cp(κ) =
κp/2−1

(2π)p/2Ip/2−1(κ)
,
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where Id(κ) represents the modified Bessel function of the first kind and order
d. Then the model for the finite mixture of von Mises distributions is given by

f(x;ϑ) =

K
∑

k=1

πkCp(κk)e
κkµ

′

kx,

where ϑ = (π1, π2, . . . , πK , κ1, κ2, . . . , κK ,µ
′
1,µ

′
2, . . . ,µ

′
K)

′
. The E-step of the

EM algorithm is conceptually the same as for any other mixture and can be
obtained by (3) while the solution for the M-step can be readily derived [10].
Thus,

π
(s)
k =

1

n

n
∑

i=1

π
(s)
ik , µ

(s) =

∑n
i=1 π

(s)
ik xi

‖
∑n

i=1 π
(s)
ik xi‖

and
Ip/2(κ

(s))

Ip/2−1(κ(s))
=

‖
∑n

i=1 π
(s)
ik xi‖

n
.

As we can see, the first two expressions can be provided in closed form but the
expression for κ(s) is implicit and numerical methods are needed for estimating
κ(s). Some heuristic methods for this are discussed in [10].

A different approach to this application was provided by [37] who contended
that components may be correlated and have different variances in different coor-
dinates. They proposed to use mixtures of transformed Gaussians. In particular,
they proposed a mixture of stereographic projections of multivariate Gaussian
distributions. Various shapes, orientations and skewness of clusters are attain-
able in this framework. The authors provide a general form of the density for
the inverse stereographic projection which can be conceptually used for con-
structing finite mixture models based on such projections. The implementation
of the EM algorithm is then straightforward, with the E-step having a similar
form as before, but the M-step cannot yield closed-form expressions and heuris-
tic search methods have to be employed. The authors also consider a possibility
of addition of a noise component to deal with noisy data. Computer code is
available: note also that this approach is very computer-intensive and computa-
tionally impractical to apply on text or larger gene expression datasets. Further,
the suggested method was evaluated on some simulation datasets. Surprisingly,
AIC was seen to perform the best in estimating the number of components.
We note that the reported experiments were only on estimating the number of
clusters: evaluations on clustering performance were not reported.

As mentioned earlier, the pre-processed time-course gene expression datasets
are standardized to not only lie on the unit sphere but also to be orthogonal
to the unit vector. This constraint is not included in either of the above for-
mulations: it would be interesting to see how inferences change under a more
accurate model.

5.2. Magnitude magnetic resonance imaging data

Datasets acquired in Magnetic Resonance Imaging (MRI) or Magnetic Reso-
nance Angiography (MRA) are typically magnitudes of complex observations,
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whose real and imaginary parts are both independent univariate Gaussian-
distributed realizations [120]. Thus, using Gaussian mixtures to segment these
datasets is not very appropriate so [31] and [79] use a mixture of Rice distri-
butions to characterize the MR signal at each voxel. The distribution is given
by

f(x;µ, σ2) =
x

σ2
exp

(

−
x2 + µ2

2σ2

)

I0

(xµ

σ2

)

, x > 0,

where I0(·) represents the modified Bessel function of the first kind of zeroth
order. In the application to MR images, µ is the underlying true magnitude MR
signal and σ is the noise parameter. The sample represents the observed mag-
nitude data from n voxels with an individual observation following the mixture
of Ricians given by the density function

f(x;ϑ) =
K
∑

k=1

πkfk(x;µk, σ
2),

where πk represents the proportion of voxels with signal µk and the noise param-
eter σ is assumed to be common for all k = 1, 2, . . . ,K. For the EM algorithm, we
update the posterior probabilities according to (3). At the M-step, we can obtain

a closed-form expression only for the mixing proportions π
(s)
k = n−1

∑n
i=1 π

(s)
ik .

The other equations need to be solved numerically:

n
∑

i=1

π
(s)
ik









−
µ
(s)
k

σ(s)2
+

xi
σ(s)2

I1

(

xiµ
(s)

k

σ(s)2

)

I0

(

xiµ
(s)

k

σ(s)2

)









= 0, k = 1, 2, . . . ,K,

and

n
∑

i=1

K
∑

k=1

π
(s)
ik









−
2

σ(s)
+
x2i + µ

(s)2
k

σ(s)3
−

2xiµ
(s)
k

σ(s)3

I1

(

xiµ
(s)

k

σ(s)2

)

I0

(

xiµ
(s)

k

σ(s)2

)









= 0.

Refer to [79] for details on computational implementation, EM initialization,
parameter and variance estimation and model selection.

5.3. Finite mixtures in biological studies and surveys

Inferring the genetic structure of populations by clustering alleles observed at
multiple loci, using mixtures of products of multinomial distributions is an im-
portant application for which [27] developed a software package called FAS-
TRUCT. A similar scenario arises when finding population groups from re-
spondents to multiple-choice questions in surveys in order to tailor and market
products and surveys [80]. We use the latter application to illustrate and develop
the model here.
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Suppose there are p questions with dj , j = 1, 2, . . . , p options for the jth
question. Thus, the respondent’s choice for the jth question can be modeled by
a multinomial distribution

f(xjr ; ρjr | r = 1, 2, . . . , dj) = nj

dj
∏

r=1

ρ
xjr

jr

xjr !
, xjr = 0, 1, (4)

where ρjr is the probability that the rth option has been selected while xjr

represents the actual choice made by a respondent. Note that nj =
∑dj

r=1 xjr

and
∑dj

r=1 ρjr = 1. If a respondent can choose only one answer to each question,
(4) reduces to the following:

f(xjr ; ρjr | r = 1, 2, . . . , dj) =

dj
∏

r=1

ρ
xjr

jr .

Assuming independence of the multinomial random variables for the responses
to each of the different questions, we are led to a setup whereby the p responses
of each respondent is an observation from the finite product-of-multinomials
mixture model

g(xjr ;πk, ρkjr | k = 1, . . . ,K, j = 1, . . . , p, r = 1, . . . , dj) =
K
∑

k=1

πk

p
∏

j=1

dj
∏

r=1

ρ
xjr

kjr .

Denoting x = {xijr | i = 1, 2, . . . , n, j = 1, 2, . . . , p, r = 1, 2, . . . , dj}, π =
{πk | k = 1, 2, . . . ,K − 1}, and ρ = {ρkjr | k = 1, 2, . . . ,K, j = 1, 2, . . . , p, r =
1, 2, . . . , dj − 1}, the Q-function can be written as

Q(x;π,ρ) =

n
∑

i=1

K
∑

k=1

πik log πk +

n
∑

i=1

K
∑

k=1

πik

p
∑

j=1

dj
∑

r=1

xijr log ρkjr ,

It is easy to see that the E-step has the form

π
(s)
ik = Prob{Xi ∈ kth cluster | Xi} =

π
(s−1)
k

∏p
j=1

∏dj

r=1(ρ
(s−1)
kjr )xijr

∑K
k′=1 π

(s−1)
k′

∏p
j=1

∏dj

r=1(ρ
(s−1)
k′jr )xijr

,

while the M-step yields updated estimates

π
(s)
k =

∑n
i=1 π

(s)
ik

n
and ρ

(s)
kjr =

∑n
i=1 π

(s)
ik xijr

∑n
i=1 π

(s)
ik

.

Once again, the E- and M-steps alternate until convergence. [80] use the above
model to analyze the voting preferences of 100 senators in the 109th United
States Congress, based on 441 votes cast. On each of the bills under consider-
ation, senators either voted for or against the motion or did not record their
votes. Thus the result was a mixture model of the products of 386 trinomial and
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55 binomial distributions – the last arise from those bills for which every sena-
tor recorded an up-or-down vote. They further combined their methodology on
assessing significance to come up with a three-component solution: this solution
had one group of 33 Republican senators, another comprising 31 Democratic
senators (including one independent senator in the Democratic caucus) and a
third group consisting of the senators who are either regarded to be moderate
or did not vote on many occasions. Their results matched well general opinions
on the voting preferences of these senators.

6. Available software

Several packages are available for model-based clustering and related tasks.
Based on their applications, these packages can be divided into two groups. The
first group consists of software products devoted to simulating data and finite
mixture models according to some pre-specified characteristics. These packages
can then be used for the evaluation of clustering algorithms or assessing cluster-
ing difficulty of existing datasets. The second group of algorithms fits data to
specified models, estimates classification vectors and chooses the optimal num-
ber of components. Detailed descriptions of several older programs can be found
in [54]; we provide short descriptions of the most important or recent clustering
packages here.

6.1. Simulation and evaluation

• OCLUS [111] is a MatLab function allowing for the generation of overlap-
ping clusters from different multivariate distributions (see Section 3). The
authors state that the procedure is available upon email request.

• clusterGeneration (formerly GenClus) [101] is an R package based on the
separation index of [102] (see Section 3 for details).

• MixSim [81] is an R package that manipulates misclassification probabili-
ties of Gaussian components in order to attain the pre-specified levels of
average and maximum overlap. A wide range of random multi-dimensional
and multi-component mixtures can be simulated. The package can be also
used for assessing misclassification probabilities and overlap of existing
classification datasets. It also includes graphical capabilities for plotting
parallel distribution plots (using the function pdplot, see Sections 3 and 4
for more information).

• CARP [90] is an open source C package with a command-line interface
available from www.mloss.org with the ability to simulate generate finite
Gaussian mixture model distributions, using the same engine as MixSim,
but additionally can provide an evaluation of one or more clustering algo-
rithms.

www.mloss.org
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6.2. Inference and clustering

• Mclust [44] is an R package developed in FORTRAN for multivariate Gaus-
sian mixture models. It relies on the EM algorithm for density estimation
and BIC for model selection. Model-based hierarchical clustering is also
implemented in Mclust and is used to initialize the EM algorithm. Various
parametrizations of the dispersion matrix Σk are available. Its flexibility,
availability and relatively frequent good performance make this package
one of the most popular.

• EMMIX [88] is another popular piece of software [88] developed in FORTRAN.
It is designed for fitting multivariate Gaussian and t-component mixtures
([87]). Three initialization strategies are implemented: random starting
points, k-means-based starts and hierarchical-clustering-based starts. The
optimal number of mixture components is selected using a resampling test.

• MIXMOD [18] is a package written in C++ and interfaced with Matlab

and Scilab. The package can be employed for the analysis of data using
multivariate Gaussian and Multinomial mixture models. Several modifi-
cations of the EM algorithm and different criteria for model selection are
included in this package.

7. Some additional topics and challenges

There are several challenges that have at best been only partially resolved in the
context of finite mixture models and model-based clustering. In this section, we
provide an overview of some of these challenges and outline possible approaches
to addressing them. While our discussion here is with regard to model-based
clustering, we note that many of the challenges also arise with distribution-free
clustering methods.

7.1. Hierarchical model-based clustering and cluster merging

A fundamental issue with finite mixture modeling is that finding the best fit-
ting mixture is not necessarily equivalent to finding the optimal partition for a
given dataset. This is not necessarily a problem when all components are well-
separated, because in that case, every component in a fitted mixture model can
be associated with one cluster and this relationship yields a one-to-one corre-
spondence. However, it may well be that from a clustering point of view, one
group is better modeled using several mixture components rather than one, in
which case, a one-to-one correspondence between each component and a clus-
ter may be too restrictive. For instance, several Gaussian components are often
needed to model multimodal clusters or unimodal but skewed clusters. If clus-
ters cannot be adequately fitted using a single component, it is unclear how well
a finite mixture model can serve for providing reasonable clustering inference
based on the correspondence between clusters and single mixture components.
This discussion emphasizes that clusters can consist of multiple mixture com-
ponents. Thus, the obtained finite mixture model solution is converted into a
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clustered partition of the dataset by merging components. A suggested approach
to implementing cluster merging is model-based hierarchical clustering, which
borrows ideas from its distance-based counterpart. There are several important
and challenging issues that arise. For one, it has to be decided how to relate each
cluster with (perhaps more than one) components of a fitted mixture model. For
instance, how distant should a component (or a group of components) be from
the others to be considered a cluster distinct from another, the latter formed by
another component or groups of components? Then, there is the related issue of
finding the optimal number of groups and the number of mixture model compo-
nents providing the best fit to the dataset. [30] introduced the notion of a mutual
cluster defined as a group of points sufficiently close to each other but distant
from the others and which have never been separated. The authors investigated
mutual clusters specifically for the case of hierarchical clustering, however the
concept can be adopted for the case of model-based hierarchical clustering. [50]
considered using hierarchical clustering specifically in the context of mixture
modeling. They proposed to simplify a Gaussian mixture model replacing each
group of components by a single Gaussian component. This provides us with a
hierarchical version of finite mixture models as every observation in the dataset
is stipulated to be in the same original cluster at a coarser stage.

[56] also discusses hierarchical merging methods using concepts of unimodal-
ity and misclassification. In this context, the notion of unimodality refers to
finding a partitioning of mixture components such that all clusters produced by
the partition have only one mode. At the same time, however, any merging of
distinguishable mixture components immediately leads to multimodal clusters.
Thus, for finding a clustered partition, it is sufficient to consider all pairs of ob-
tained individual components as two-component mixtures and investigate each
pair for unimodality. If some pair of components is deemed to be unimodal, the
two components are merged. The procedure continues until no further pairwise
merging produces a unimodal Gaussian component. In a k-component Gaussian
mixture, finding these reduced modes is achieved by analyzing the values of the
density lying on the so-called ridgeline surface [104] that are given for pair of
components with distributions Np(µi,Σi) and Np(µj ,Σj), by

x(α) =
[

(1 − α)Σ−1
i + αΣ−1

j

]−1 [
(1− α)Σ−1

i µi + αΣ−1
j µj

]

(5)

for α ∈ (0, 1). Interestingly, the ridgeline does not depend on the mixing propor-
tions πs. [56] also discusses some limitations of the ridgeline approach described
in [104] and remarks that their result solves the modality merging problem only
approximately. He also investigates several other procedures, such as a ridgeline
ratio method which also relies on ridgeline modality analysis with respect to
Gaussian mixtures.

Other approaches to merging mixture components for clustering have also
been suggested. [14] discussed a simple but attractive approach for choosing the
number of clusters based on merging. At the first stage, they suggest finding
the number of Gaussian components using BIC, which is a consistent and effi-
cient criterion for choosing the number of mixture components under Gaussian
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distributional assumptions for each of them [61]. In cases when specification of
Gaussian-distributed components is not supported by the data, a model with
more Gaussian components (than clusters) is typically proposed by BIC to ac-
count for the deviation from multinormality. The authors suggest postprocessing
the results using ICL in a second stage of their procedure to eliminate unnec-
essary components, and merging them hierarchically. In doing so, they use the
fact that the ICL is a version of BIC penalized by the mean entropy. Thus,
the resulting number of clusters proposed after the ICL step is implemented is
always smaller than or equal to that proposed by BIC. A similar but more so-
phisticated idea was proposed by [64], who suggested using multi-layer mixture
models where the individual clusters themselves are assumed to be well-modeled
from a Gaussian mixture distribution. This is an appealing feature in model-
based clustering because, as mentioned earlier, clusters can often be modeled
substantially better by representing some of them individually using a mixture
rather than a single distribution. The paper provides a detailed investigation of
multi-layer mixture models, with particular emphasis on choosing the optimal
number of components within each cluster, but there are several unresolved is-
sues. For example, finding the total number of clusters in the dataset is still not
completely resolved. There is also room for developing and studying alternative
methods for constructing clusters.

7.2. Nonparametric approaches to mixture modeling and

model-based clustering

A related approach to addressing the challenges posed by the lack of complete
correspondence between clustering and finite mixture modeling is to use non-
parametric mixture modeling [65]. In this setup, the observations are from a

mixture of densities, i.e., f(x) =
∑K

k=1 πkfk(x). The basic idea of the authors is
to associate every point not with a particular mixture component (using a Bayes
rule) but rather with a local maximum, or mode. In fact, clustering via mode
identification is a reasonable approach as it produces geometrically meaningful
results regardless of the structure of the data. The method relies on specifying
kernel density functions for fks and estimating each of them. Modal clustering is
applied to the dataset upon mixture density estimation. The exact mechanism
is an EM-type nonparametric algorithm called Modal EM introduced by [65]
that allows finding “hilltops” of the given density. The algorithm consists of two
steps that have to be repeated iteratively. In the first step, updated probabilities
pk for k = 1, 2, . . . ,K mixture components at the current modal estimate x(s)

have to be computed: pk = πkfk(x
(s))

f(x(s))
. The second step maximizes the target

function
∑K

k=1 pk log fk(x) with respect to x, yielding the updated x(s+1). Of
course, it is assumed that the target function has a unique maximum.

The authors argue that it is more appropriate to associate clusters with
bumps of the density and this is the cornerstone of the proposed methodol-
ogy. The suggested algorithm is then extended to hierarchical clustering. The
authors also introduce the Ridgeline EM algorithm devoted to finding the ridge-
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line between the modes of two clusters. The ridgeline for any two clusters with
densities f1(x) and f2(x) is given by

x(α) : (1− α)∇ log f1(x) + α∇ log f2(x) = 0.

When f1(x) and f2(x) are Gaussian densities, we obtain the explicit solution
given by (5) [104]. A different approach was provided by [93] who proposed a
visualizing tool called a mode tree. This tree is constructed so that the loca-
tions of the modes are related to the bandwidths at which the density estimates
are obtained. The use of the tool is illustrated by [93] to adaptively investigate
multimodality in datasets. Another nonparametric development was introduced
by [112] who considered graph-based estimation of a cluster tree called general-
ized single linkage clustering. The cluster tree is a fundamental concept and the
main target of nonparametric cluster analysis. The authors mention that cluster
tree, describing the modal structure of the density, can be computed exactly or
approximated. They also point out that some modes in the density estimate
can be spurious and, perhaps, should be disregarded. For this purpose, it is also
suggested to prune the cluster tree by using an excess mass threshold.

7.3. Semi-supervised clustering

In many situations, there is interest in grouping a sample of observations, but
there is some, perhaps uncertain, information available on the labels or classes
of some observations. This is the topic of semi-supervised clustering which arises
in a number of modern fields such as bioinformatics [117] or speech recognition
[57], and consequently has attracted some recent interest. The development of
“pairwise relations” [13, 75, 110] concerns the situation when some observations
are known to belong to the same group (positive relation) or different groups
(negative relation). Other approaches have involved adapting K-means [13, 12]
or the EM algorithm for finite mixture models [13, 58, 110]. We focus here on
adaptations to the EM algorithm.

The EM algorithm is easily derived for the case of semi-supervised cluster-
ing: the M-step is as before. However, there is a change in the E-step in that
the posterior probabilities for labeled data do not need to be updated. In fact,
the posterior probability vector for the ith observation with known labels con-
sists of K − 1 zeros and the unity in the position corresponding to the cluster
from which the ith observation has been originated. The other probabilities
corresponding to unlabeled data are computed as usual. In all the references
for model-based semi-supervised clustering listed above, it is assumed that the
classes represented in the labeled data are all the classes in the entire dataset so
that K known and model selection is not an issue. Initialization is also not an
issue for the group means, variances and frequencies of the labeled data can be
used as starting values for the EM algorithm. However several challenges arise
when the assumption of known K, or representation of all classes in the labeled
dataset is not a priori tenable. In the following discussion, we assume that K0

(out of K) classes are represented in the labeled data.
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In the case of initialization, one option is to ignore the labeled information
and to start the algorithm using the methods (for unsupervised clustering) dis-
cussed in Section 2.1.2. However, we can potentially improve performance by
considering both labeled and unlabeled data. One intuitive suggestion is to
use labeled observations for obtaining initial cluster centers. This is especially
important for initialization strategies involving starting the EM algorithm at
random points (emEM [17] and RndEM [78]). Initializing every cluster that
has labeled data with the average of all observations known to belong to this
particular cluster was suggested by [29]. The other components, having only
unlabeled observations, are initialized with random starting points as in the
case of unsupervised clustering. If there are K clusters and we take K starting
points for running the EM algorithm, there is roughly a K!

KK chance on the av-
erage to start with an initialization having one starting point in each cluster. Of
course, the importance for a dataset to be well-initialized depends on specific
features of the particular dataset; however, it might be crucial in some cases.
If K0 clusters have data with known labels, we need to initialize only K −K0

clusters. This increases the chance of obtaining one point in each cluster to ap-

proximately (K−K0)!
KK−K0

. A comprehensive simulation study was provided by [29]
for different numbers of clusters with labeled and unlabeled observations as well
as for various levels of proportions for labeled data. Thus, labeled observations
can substantially improve the performance of the EM algorithm by providing a
better initialization.

For model selection, [97] extended the penalized loglikelihood-based variable
selection procedure of [96] to the context of model-based semi-supervised cluster-
ing for gene expression data, but their approach was limited by the assumption
of uncorrelated variables. In the general case, [29] have advocated using the
quantitation map for choosing the model at desired significance and have shown
excellent performance on a range of simulation and classification datasets. We
refer to [29] for further details. Finally, we close our discussion here, that we
have assumed that the label information is complete and certain: this may not
be so: for example, the label information of an observation may be ambiguous
in that it may be known to come from a specific subset of clusters, but the exact
classification may be unknown. We note that the model-based framework can
be easily extended here also.

7.4. Constrained clustering

Most cases considered in the clustering literature address the issue of grouping of
each observation without any constraints. However, this may not always be the
case. Consider, for instance, the example of two-dimensional gel electrophoresis
data [94] where there are a given number of proteins and an equivalent number
of protein spots (observations). In example, interest centers on assigning each
observed spot to the protein. This brings in a constraint that no two spots can
be assigned to the same protein. Complications then arise in the estimation
of the posterior probability of the E-step where the usual formula (3) is not
applicable any more. To see this, we let i = 1, 2, . . . , n represent the number of
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gel replication and j = 1, 2, . . . , p stand for the protein index. Also let Xij be
the jth observation from the ith gel. Here, Xij is trivariate with observations
on isoelectric point, molecular weight and intensity. The log likelihood function
for the complete data is given by

l(ϑ;X,Z) =

n
∑

i=1

∑

ℓ∈ρ(p)

I(Zi = ℓ)

p
∑

j=1

log f(Xij ;ϑℓj ),

where X and Z represent n p-dimensional random variables Xi and n clas-
sification vectors Zi correspondingly, and ℓ = (ℓ1, ℓ2, . . . , ℓp)

′ ∈ ρ(p) denotes
the set of all permutations of 1, 2, . . . , p. Note that the vector Zi represents the
entire classification vector for the ith gel. Then, the posterior probabilities can
be obtained by evaluating

IPr(Zi = ℓ|X,ϑ(s−1)) =

∏p
j=1 f(Xij ;ϑ

(s−1)
ℓj

)
∑

ℓ′∈ρ(p)

∏p
j=1 f(Xij ;ϑ

(s−1)
ℓ′
j

)
,

which is obtained by calculating over all permutations over ρ(p). The most
intuitive choice of the mixing distribution f is the multivariate Gaussian distri-
bution. One critical restriction of this procedure is related to the fact that the
posterior probabilities can be obtained this way only if the number p is not very
large. Otherwise, enumerating all permutations of p elements is computationally
infeasible and Markov Chain Monte Carlo (MCMC) methods [48, 106] are the
only recourse. These are themselves not easy to implement: [91] has borrowed
ideas from the literature on conditional point process [9]. It is then possible to
construct a random walk process. Thus, incorporating MCMC schemes into the
E-step of the EM algorithm allows approximating the posterior probabilities
to proceed with the M-step in a usual fashion. We have addressed here a very
specific problem, but there are other applications where similar issues arise and
need to be addressed.

7.5. Massive datasets

Automated collection methods have meant a surfeit of data in many cases. This
has meant that available computational resources are not always able to handle
such datasets. A simple-minded approach which involves clustering a sample
of the dataset and then classifying the rest of the observations does not make
use of the available riches inherent in a large dataset and may potentially miss
groups with fewer representations [77] unless the number of groups is known
in advance. For the latter situation, [38] used a sample to obtain an initial
model, then they fit the entire dataset to get the classification vector. The
well-classified observations are retained and the procedure repeated again until
all observations become well-classified. [24] developed a method in which they
divide all observations into three different categories: certain, uncertain and
compressed observations. The latter implies that the observations are known to
belong to the same group.
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For the case with unknown K, [77] provided a multi-staged scheme which
first clusters an initial sample. Observations in the dataset that are not in the
sample but can reasonably be classified into any of these identified groups are
filtered out using a likelihood ratio test. The remainder are again sampled, clus-
tered and the procedure iterated until all cases have either been clustered or
classified. Final estimates of the class probabilities and model parameters are
obtained from these multi-staged groupings. Although seen to work well in a
number of cases, the likelihood ratio test used to identify representativeness of
the identified clusters at each stage used a homogeneous dispersion assump-
tion. This limits applicability of the approach. Another iterative model-based
approach in the same spirit was developed by [43]. Their approach first fits a
sub-sample of observations with some underfitted model. Then observations in
the dataset having the lowest 1% mixture density values are identified. These
points potentially represent a new potential component that is poorly fit by the
current mixture and model therefore a new round of EM is started with these
observations in one group and representatives from the other 99% observations
classified according to the (underfitted) model. If the new fitted model shows
an improvement in BIC, it is preferred in place of the underfit model and a new
group of observations with 1% lowest mixture density values is identified. The
algorithm then proceeds, terminating only when there is no substantial BIC im-
provement associated with introducing an additional component. [43] illustrated
performance of their algorithm on one very well-separated simulated example
with fourteen clusters but our experience shows substantially poor performance
with overlapping components. Indeed, we have noticed that if two clusters are
located very close to each other and one of them is picked up by the underfit-
ting model, there is a very small chance that the neighboring cluster is detected.
Instead, the procedure prefers selecting points from the fringes of the selected
components resulting in spurious components: consequently the additionally
identified clusters do not improve BIC and the procedure terminates. Thus, we
consider model-based clustering of massive datasets to be a persistent challenge.

7.6. Diagnostics

Influential and outlying observations impact performance of many model-based
clustering algorithms. Identifying them has been a long-standing issue in the
literature, but has received scant attention. In general, there are no approaches
that we know of to identify influential observations. For the case of identifying
outliers, [87] describe two distinct approaches in the literature. The first method
[89] suggests creating what they called an atypicality measure that can be ap-
plied to a new or a suspicious observation with respect to all clusters to see if
the observation is really atypical for all groups. The atypicality measure is com-
puted after assigning observations to the estimated components and then using
a measure such as the Mahalanobis distance. If this measure is large, we have
evidence to conclude that the analyzed point is an outlier. [119] however pointed
out that this approach does not provide satisfactory control over the overall sig-
nificance level. Instead, they [119] proposed using a modified likelihood ratio
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test comparing two models. The first model is constructed with all n observa-
tions included into consideration while the second model concerns only n − 1
observations that complement the tested observation. Therefore, the modified
likelihood ratio test statistic represents the ratio of the maximized likelihood
function with all n observations over the maximized likelihood function with
n − 1 observations included. Parametric or nonparametric bootstrap is recom-
mended for assessing the null distribution of the obtained test statistic. The
authors also suggest a modification of bootstrap which is less computationally
demanding. The idea is to resample only the last, nth, observation every time.
[119] demonstrated that for large datasets this approach is reasonable. We note
that [119] developed their methodology for when the number of components in
the finite mixture model is known. Further, they demonstrated their case in the
context of semi-supervised clustering: they mention that complications such as
initialization may arise when there is no labeled data in the setup. Thus, the
issue of identifying outliers is at best partially resolved.

7.7. Robust and skewed mixture models

While identifying outliers as described in the previous section is important,
it may sometimes be important to develop mixture models that are robust to
outliers. Indeed, [87] remark that while it is usually not necessary to have precise
estimates of covariance matrices in Gaussian mixtures, the presence of outliers
can dramatically affect all estimates. Therefore, [99] proposed using a mixture of
multivariate t-distributions instead of multivariate Gaussians. The idea is that
since a t distribution has heavier tails than does a normal distribution, using
t-components would have the potential for better modeling data with outlying
observations. Another recent development related to modeling non-Gaussian
patterns in data is that of finite mixtures of skewed distributions. One popular
choice of component in this regard is the skew normal distribution of [7]. The
density of the univariate skew normal distribution introduced by [6] has the
form given by

ψ(x;µ, σ, λ) =
2

σ
φ

(

x− µ

σ

)

Φ

(

λ
x − µ

σ

)

,

where φ(·) is the probability density function of a standard univariate normal
distribution, while Φ(·) is the corresponding cumulative distribution function.
The parameters µ and σ here have meaning similar to their counterparts for the
normal distribution while λ represents the skewness parameter. The multivari-
ate skew-normal distribution introduced by [8] generalizes the univariate case.
A convenient property of this generalization is that the marginal distributions
are scalar skew-normal distributions. Another class of multivariate skew-normal
distributions was proposed by [51]. Finite mixtures (of univariate skew-normal
distributions) were first analyzed by [71]. More recently, [70] investigated fi-
nite mixtures of multivariate skew-normal distributions and established the E-
and M-steps of the EM algorithm. Recently, [69] developed methodology for
performing supervised learning in these multivariate mixtures in the presence of
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missing information. As we can see, there has lately been a great deal of interest
in the area of modeling robust and skewed mixtures.

7.8. Dependent data

In this section, we consider an approach for analyzing dependent data that are
marginally distributed from the mixture model (2). Suppose that we have n
observations Y = (Y1, Y2, . . . , Yn)

′ consisting of univariate normally distributed
observations following an autoregressive AR(1) model. The AR(1) model as-
sumes a correlation structure given by

R(ρ) =













1 ρ ρ2 . . . ρn−1

ρ 1 ρ . . . ρn−2

ρ2 ρ 1 . . . ρn−3

. . . . . . . . . . . . . . .
ρn−1 ρn−2 ρn−3 . . . 1













.

Also assume that there are K components with means µk, k = 1, 2, . . . ,K and
common (marginal) variance σ2. The origin of every observation, however, is not
known. We again introduce missing information – group memberships, which
can be given in the form of the matrix

X =









I11 I12 . . . I1K
I21 I22 . . . I2K
. . . . . . . . . . . .
In1 In2 . . . InK









,

where every Iik represents the indicator function I(Yi ∈ k − th cluster). Then,
the entire sample can be written in the form Y ∼ MVN(Xβ, σ2R(ρ)) if the
class memberships of observations are known. Thus, the complete likelihood
as well as Q-function can be obtained and corresponding expressions for the
M-step of the EM algorithm can be derived, however expressions for the EM
iterations are more complicated and involve taking derivatives of R−1(ρ) with
respect to ρ, for which closed-form expressions may not be available. As a result,
while the EM algorithm can be set up and used for parameter estimation in the
same way as usual, estimation becomes far more difficult. This is especially
true for the case when the dependence between observations is of a form more
complicated than an AR(1) structure. Model-fitting presents another challenge
as does variance estimation: note also that the methods detailed in Section 2.1.3
are for independent identically distributed observations and are inapplicable for
dependent data. Thus, new approaches are needed.

8. Conclusions

This paper provides a detailed overview of mixture models with specific reference
to model-based clustering. In addition to descriptions of several existing and
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well-known results and methods, we provide details on simulation and evaluation
of clustering algorithms as well as on graphical illustration of mixtures. Two
applications involving non-Gaussian mixtures are presented. We also list some
available software in the field. Finally, some additional topics such as semi-
supervised clustering, constrained clustering, massive datasets, diagnostics and
dependent observations are presented and unresolved challenges outlined. As
seen here, the field has attracted a lot of interest, but there are still many
questions and issues that have to be addressed. Therefore, we hope that this
survey will provide readers with a good understanding of the issues involved
and spur further interest and development in this field.
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