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(Communicated by Charles Pugh)

Abstract. Rigorous asymptotics for a basis of y" + g(x)y = 0 , x £[1, +oo),

is derived in the framework of Banach algebras. The key assumption is

ff°° xk\\g(x)\\dx < oo for k = 1 or k = 2. Such results improve and

generalize previous work on linear second-order matrix differential equations.

1. Introduction

In this paper we are concerned with linear second-order differential equations

like

(1) y" + g(x)y = 0,      jc€[1,+oo),

where the functions g and y take values in a given real or complex Banach

algebra 38 , with a unit element e , g £ C°([l, +oo);&), and g is "asymp-

totically small" in the sense that the first or the second moment of ||g|| is finite.

An important special class is encountered when g and y are aj x aj matrices.

This case is relevant to the asymptotic theory of linear second-order systems of

differential equations. Previous work on this subject, mainly motivated by the

investigation on nonoscillation properties of solutions, only concerned the case

of a symmetric or Hermitian matrix coefficient g (cf. [1,2, 7]). Under these
hypotheses and the finiteness of the first moment of ||g||, it was shown that

(1) has a recessive solution like u(x) = I + E(x), where / denotes the az x az
identity matrix, and the "error term" E(x) can be estimated explicitly [1, 2].

For the second (dominant) solution v , however, only the qualitative behavior

v(x) ~ xl, x —► +00, could be established.
The goal of the present paper is to obtain asymptotic approximations with

precise error bounds for a basis of the (right) ^-module of solutions to (1).

In fact, it is easily seen that such a module is free and has rank 2, by using

Hille's theory for first-order equations (cf., e.g., [4, Chapter 6]). Besides the

generalization of classical results to the framework of Banach algebras, that can

be of finite as well as of infinite dimension, either commutative or not, in this
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paper we shall remove the restriction of symmetry for g (indeed, the algebra

is not required to be involutory). Moreover, when the second moment of ||g||

is finite, we are able to obtain an asymptotic representation with an ^atca- bound

also for a dominant solution, thus improving, in particular, the available results
for the matrix case.

In [9] we studied recently similar problems for real scalar differential equa-

tions like (1), along with their discrete analogue (i.e., second-order linear differ-

ence equations). The spirit was that of complementing Olver's rigorous asymp-

totic results of the Liouville-Green (or WKBJ) type, valid in the case of g

not "asymptotically small" [5]. So far the only available contribution to the

Liouville-Green theory for the matrix case seems to be that of [8].

The key technique we employ below consists of obtaining differential equa-

tions satisfied by the error terms in the representations for u, v . Such equa-

tions are then converted into Volterra integral equations whose solutions are

estimated asymptotically by successive approximations. The integrals involved

are interpreted, in general, in the sense of Bochner [3, Chapter 3].

2. The asymptotic theorem

In this section we shall prove the main theorem, for which it is useful to

introduce the functions
/•+oo

(2) mk(x):= tk\\g(t)\\dt,        k = 0,1,2.
Jx

These functions are well defined (and are actually infinitesimal as x —> +00)

whenever the corresponding moments, mk (1), exist.

Theorem 2.1. Consider the linear second-order differential equation (1), with g

and y taking values in a given Banach algebra 38, with unit element e, and
g G C°([l, +00); 38). Suppose that

/+00

t\\g(t)\\dt< 00.

Then the right 38-module ofi solutions to (I) is generated by the pair (u(x), v(x)),
with

(4) u(x) = e + e(x),        v(x) - x(e + n(x)),

where

(5) ||e(x)|| <exp{m,(x)}-1,        ||e'(x)|| < AAz0(x)exp{AJz1(x)},

and n(x) - o( 1) as x —» +00.

When the stronger condition

/+00

t2\\g(t)\\dt<K

replaces (3), there exists a second solution ofi (I) ofi the form

(1) w(x) = xe + co(x),

where

\\co(x)\\ < m2(x)exp{mx(x)},

\\co'(x)\\ < mx(x) + m0(x)m2(x)e\p{mx(x)},

replacing v(x) in the pair (u(x), v(x)).
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Proof. Assuming that (3) holds, and looking for a solution of the form u(x) =

e + e(x), equation (1) yields the "error equation"

(9) s" + g(x)[e + e] = 0,        xg[1,+oc).

Now, it is easily verified that every C2-solution to the integral equation

/•+oo

(10) e(x)= /     (x-t)g(t)[e + e(t)]dt
Jx

satisfies (9). The integral in (10) is intended in the sense of Bochner [3, Chap-

ter 3], and all limits and differentiations can be interchanged with integration

according to the generalized version of the dominated convergence theorem (cf.

[3, Theorem 3.7.9, p. 83]). Introduce recursively the sequence

h0(x):=0,

(in r+°°
hs+i(x):= I     (x - t)g(t)[e + hs(t)]dt,        5 = 0,1,2,....

Jx

It is immediate to show by induction on 5 that such a sequence is well defined

and Ajj G C2([l, +oo); 38), in view of (3). Next we shall prove that the series

oo

(12) e(x):=Ylhs+i{x)-hs(x)]
5=0

converges uniformly in [1, -l-oc). In fact, the estimate

\\hs+i(x)-hs(x)\\<[^l™^
(13) v+n-

\mi(l)Y+x
< VJni   '        5 = 0, 1,2,..., xg[1,+oo),

(s+ 1)!

can be proved again by induction on 5. Details are standard (cf. [1], e.g., for

the matrix case). From (12) and (13) then the first estimate in (5) follows. As

h's+i(x)= /      g(t)[e + hs(t)]dt,
Jx

we get

\\h's+l(x)-h's(x)\\<m0(x)[-^l,

and hence the second estimate in (5).
A similar procedure for the second derivatives leads to the estimate

ll/z;+1(x)-Az;(x)ii<i|g(x)ii^i|^,

which shows that e G C2([l, +00);^), and ||e"(*)|| < ||g(x)||exp{m](x)}.

Finally, writing by (11), (12)

°° /- + 00

e(x) = hi(x) + Y        (x- t)g(t)[hs(t) - hs.i(t)]dt
s=lJx

p+00

= hx(x)+ /     (x-t)g(t)e(t)dt,
Jx

we see that the function e(x) in (12) indeed solves (10).
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Now we look for a second solution to (1) in the form

(14) v(x) = u(x) f f(t)dt,
Jx0

where Xo G [1, +oo) and the 38-valued function / have to be determined.

Differentiating twice, we obtain

v" = -gv + 2u'f+uf.

Now in view of the first inequality of (5), u(x) is invertible in 38 for all

x > Xi := inf{x : x > 1,  ||e(x)|| < 1}

(cf. [6, Theorem 10.7, p. 231]). Then, v satisfies (1) iff fi solves the first-order
differential equation

(15) fi' = -2u~xu'fi,        x>xx.

By a theorem of Hille [4, Theorem 6.4.4, p. 227], there exists in [xo, +00),

xo > Xi, a solution to (15) such that / —► e as x —> +00, provided that

||(m(x))_1m'(x)|| g L'([x0, +00)). This condition is fulfilled if

/•+OO /" + 00

/      \\u'(x)\\dx = /      \\e'(x)\\dx < 00,
Jx0 Jx0

i.e.,
/• + OO /- + OC     /     /-+00 \

/      m0(x)dx= ( \\g(t)\\dt) dx< 00,
Jxq J Xq \J X /

which is true by Fubini's theorem in view of (3). Finally, we get from (14) that

(16) 38- lim  ^1=38- lim  - / fi(t)dt = e,
X-.+00   x x-^+00 x JXq

as / —> e, in view of the generalized L'Hopital's rule as proved in [ 10] (cf. also

a well-known Abelian theorem in [3, Theorem 18.2.1, p. 505]). Therefore (4)

has been proved.
Suppose now that (6) holds. In this case a second solution, say w(x), can

be constructed of the form (7), (8). Again, an equation for the error term co(x)

is obtained,
to" + g(x)[xe + co\ = 0,

which is satisfied by every C2-solution of

/•+00

co(x) = (x- t)g(t)[te + co(t)] dt.
Jx

Proceeding similarly to the case of the first solution by successive approxima-

tions, we obtain w(x) as in (7), (8) and the additional estimate ||foA"(x)|| <

||g(x)||A«2(x)exp{AHi(x)}. Notice that, in (8), ||w'(^)|| = 0(mx(x)) as x —>

+00.

The last thing to be proved is that the pair (u(x),v(x)) in (4) [or

(u(x), w(x))] is a basis for the right 38-module of solutions to (1). Such a

module is free and has rank 2. Introducing the Wronskian matrix

(17) W(x):=(mMW    JW),        W(x)eM2m,
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we have that (u(x), v(x)) is a basis for (1) iff W(x) is invertible for every

X G [1 , +00).

Now it is easily proved, from their asymptotic behavior, that u(x) and v(x)

are linearly independent solutions to (1) and therefore that the linear opera-

tor W(x) is injective for each fixed x. In the special case 38 = Af„(R) or

38 = Mn(C), it follows immediately that W(x) is invertible. This is not true,

however, in the general case.

Here is a direct proof of the fact that indeed W(x) is invertible in a neigh-

borhood of +00 (and hence everywhere). Notice first that from (14), (16), and

(5) follows xe'(x) = o(l), and thus

v'(x) = e + o(l),        x —> +oc.

Splitting W(x) as

it is clear that the first summand, Wo(x), is invertible in M2(38) for x suffi-

ciently large, as such are its diagonal elements in view of [6, Theorem 10.7, p.

231]. Then, denoting by I the unit element of the Banach algebra M2(38),

W(x) = W0(x)[I + (W0(x))-1W,(x)].

Therefore, it suffices to show that

|||(Wo(x))-1W1(x)|||<l

for x sufficiently large; the (multiplicative) norm ||j • ||| in M2(38) is that

canonically induced by || • ||. This is true since we get by easy calculations

rw /yu-iw <v\- f-x[e + o(l)]e'(x)   0\
(W0(x))    W,(x)-[v[e + o(1)]_l£,(jc)    QJ,

in a neighborhood of +00, where it is clear that all entries are o( 1) as x —> +00.

The proof that (u(x), w(x)) is also a basis (when (6) holds) is completely

analogous.

3. Remarks and examples

Some remarks are now in order.

Remark 3.1. It is obvious, first of all, that equations like y"+yg(x) = 0, under

the hypotheses (3) or (6), can be treated similarly. Left ^-modules are involved

in this case.

Remark 3.2. We stress that the Wronskian matrix introduced in §2, while it

seems to be the natural choice in view of discussing that a given pair of inde-

pendent solutions generates the whole module, differs from that adopted in [ 1,

2, 7] for the matrix case. The latter definition preserves certain properties of the

scalar case but involves the adjoint matrix. Moreover, in [ 1, 2, 7] it is required

that the matrix coefficient g(x) he Hermitian.

Remark 3.3. Whenever the Banach algebra is a C*-algebra and g(x) is Her-

mitian, the second solution to (1) as given by (14) can be explicitly represented

in terms of the first solution as

(18) v(x) = u(x) [X(u(t))-X[u*(t)]-Xdt.
Jx0
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In fact, one can easily check that f(x) = (u(t))~x[u*(t)]~x  solves (15) and

fi' -» e . If, in a general Banach algebra, the property g(t)g(s) = g(s)g(t) holds

for all t, s sufficiently large, the second solution in (14) has the form

(19) v(x) = u(x) f (u(t))~2dt.
Jx0

Finally, we give some simple examples, for the purpose of illustration.

Example 3.4. Assuming that g(x) = 0(x~p) with p > 3, that is, ||g(x)|| <

Kx~p for some K > 0, it is easy to show by Theorem 2.1 that

/x2-p\ /x3-p\
u(x) = e + O ( —-= ) ,        w(x) = xe + 0( —■= 1 ,

(20)

"m-°(£t)-    -'w-^(^) + 0((^W^)

(cf. [9] for the scalar case). Note, as in [9], the double asymptotic nature with

respect to both the independent variable x and the parameter p . When 2 <

p < 3, the representations for u(x), u'(x) in (20) still hold true.

Example 3.5. Suppose that g(x) = ax~p , where a is a constant element in 38

and p > 3. Then the series in (12) leads to the representation

(21) u(x) = e + hs(x) + Rs(x),       5 = 0,1,2,...,

where

s

M*) = £(-l)ra'cr(p)x(2-p)'',

r=l

(22) cT{p) = {{p - 1)(F - 2)(2p - 3)(2p - 4)

■■■[rp- (2a- - l)](rp - 2a-)}"1 ,        r = 1, 2, 3, ... ,

and the remainder can be estimated, via (12), (13), by

(23) \\Rs(x)\\<e-^^[mx(x)Y-x

(cf. [9]). Similar expansions (with bounds) can be derived for v(x), as well

as for u'(x), v'(x). If 2 < p < 3 , all considerations concerning u(x), u'(x)

are still valid. Observe that all these series (and, in general, (12)) represent

the so-called Liouville-Neumann expansions for solutions to second-order linear

differential equations [5] zaj the context of Banach algebras.

This method could be applied to other much more involved instances, e.g.,

g(x) = D/Li ctjX~Pi, with aj G 38 and Pj > 3 for all j . In such cases symbolic

manipulations (computer algebra techniques) could be useful. The latter exam-

ple includes in a natural way the matrix case of g(x) = {ciijX~p"}" =1 where

the atj are real or complex constants and /?,■_,■ > 3 for i, j = 1,2, ... , n . In

fact, it suffices to split g(x) = Y^i,jaijhjX~PiJ , where I,; is the az x az matrix

whose only nonzero entry is in the (i, j) place.
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