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FINITE NON-NILPOTENT GENERALIZATIONS OF

HAMILTONIAN GROUPS

Zhencai Shen, Wujie Shi, and Jinshan Zhang

Abstract. In J. Korean Math. Soc, Zhang, Xu and other authors inves-
tigated the following problem: what is the structure of finite groups which
have many normal subgroups? In this paper, we shall study this question

in a more general way. For a finite group G, we define the subgroup A(G)
to be intersection of the normalizers of all non-cyclic subgroups of G. Set
A0 = 1. Define Ai+1(G)/Ai(G) = A(G/Ai(G)) for i ≥ 1. By A∞(G)

denote the terminal term of the ascending series. It is proved that if
G = A∞(G), then the derived subgroup G′ is nilpotent. Furthermore, if
all elements of prime order or order 4 of G are in A(G), then G′ is also
nilpotent.

1. Introduction

Let G be a finite group (all groups considered in this paper are finite). The
notation and terminology used in this paper are standard, as in [14-16]. It is
known that if G normalizes each subgroup of G, then G is a Dedekind group.
We know that if G normalizes all cyclic subgroups of G, then G normalizes
all subgroups of G. As a dual case, one can ask what can be said about
the finite groups G satisfying the following condition: G normalizes all non-
cyclic subgroups of G? Note that R. Baer and H. Wielandt in 1934 and 1958,
respectively, introduced the following concepts: N(G) denote the intersection
of the normalizers of all subgroups of G and ω(G) denote the intersection of the
normalizers of all subnormal subgroups of G. Those concepts were investigated
by many authors, for example, see [1-4, 5, 10, 12, 24 and 26]. In fact, the
generalization of the above problem had been considered by many authors, see
[6-9, 17, 18, 20-22, 25 and 27]. In this paper, we shall study this question in a
more general way. First of all, we give the following definition.
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Definition 1.1. Let A(G) be the intersection of the normalizers of all non-
cyclic subgroups of G. That is,

A(G) =
∩

H∈S(G)

NG(H),

where S(G) = {H|H is a non-cyclic subgroup of G}.

Obviously, A(G) is a characteristic subgroup of G.
The case that A(G) = 1 is possible for a solvable group G. For instance, the

symmetric group S4 on four letters satisfies A(S4) = 1.

Definition 1.2. For a groupG, there exists a series of characteristic subgroups:

1 = A0(G) ≤ A1(G) ≤ A2(G) ≤ · · · ≤ An(G) ≤ · · ·

satisfying Ai+1(G)/Ai(G) = A(G/Ai(G)) for i = 0, 1, 2, . . . and An(G) =
An+1(G) for some integer n ≥ 1. Write A∞(G) for the terminal term of the
ascending series.

Definition 1.3. A finite group G is called a A-group if G = A(G), that is, all
non-cyclic subgroups of G are normal.

Throughout the paper, we denote by Fdn the class of finite groups G with
G′ nilpotent. It is well-known that Fdn is a saturated formation containing
all supersolvable groups. In addition, for a p-group P and p a prime, we
denote Ω(P ) = Ω1(P ) if p > 2 and Ω(P ) = ⟨Ω1(P ),Ω2(P )⟩ if p = 2, where

Ωi(P ) = {x|xpi

= 1}. π(G) denotes the set of primes dividing |G|; Zn denotes
the cyclic group of order n; Q8 denotes the quaternion group of order 8; [H]K
means a split extension of a normal subgroup H by a complement subgroup K;
Gp denotes a Sylow p-subgroup ofG for p ∈ π(G); Φ(G) is the Frattini subgroup
of G; HG is the normal core of the subgroup H in G; lp(G) is p-length; Fp(G)
is the largest normal p-nilpotent subgroup of G; Op′(G) is the largest normal
p′-subgroup of G; Op′,p(G) is the original image of Op(G/Op′(G)).

2. Preliminaries

First, we give two examples on A(G), which are useful in Sections 3 and
5. Example 2.1 indicates that the subgroup A(G) may be non-supersolvable.
Example 2.2 shows that 1 < A(G) < G is possible when G is a solvable group.

Example 2.1. (1) Assume that G = A4. Then A(G) = G;
(2) Assume that G = [Q8]Z3 = SL(2, 3), where Z3 is a cyclic subgroup of

Aut(Q8) of order 3. Then A(G) = G and (A(G))′(= G′) = Q8 is non-abelian.

Proof. (1) Since the only non-cyclic subgroups of A4 are A4 and K4 (Klein
4-group), A(G) = G.

(2) The only non-cyclic subgroups of G are G and Q8. Hence A(G) = G,
and G′ is non-abelian. □
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Example 2.2. As Aut(Q8) ∼= S4 and D8 ≤ S4, we have the semidirect product
G = [Q8]D8. Then G is a 2-group of order 26 and 1 < A(G) < G.

Proof. The derived subgroup A of D8 acts faithfully on Q8, so A is non-normal
in G. Thus 1 < A(G) < G. □

The following basic properties of the subgroup A(G) are required in this
paper.

Lemma 2.3. Let G = A×B and (|A|, |B|) = 1. Then A(G) = A(A)×A(B).

Proof. Let H be any non-cyclic subgroup of G and let π be the set of primes
dividing the order of A. Then A is a normal Hall π-subgroup of G and B is
a normal Hall π′-subgroup of G. So H ∩ A is a normal Hall π-subgroup of H
and H ∩B is a normal Hall π′-subgroup of H. Therefore we have

H = (H ∩A)× (H ∩B).

Thus

NG(H) = NG((H ∩A)(H ∩B))

= NG((H ∩A)) ∩NG((H ∩B))

= (NA(H ∩A))×B) ∩ (A×NB(H ∩B))

= NA((H ∩A))×NB((H ∩B)).

Now the result follows. □

Proposition 2.4. If M ≤ G, then M
∩
A(G) ≤ A(M).

Proof. Clearly, M
∩
A(G) = M

∩
H∈S(G) NG(H) ≤ M

∩
H∈S(M) NG(H) =∩

H∈S(M) NM (H) = A(M). □

Proposition 2.5. Let N ≤ A(G) and N ⊴G. Then A(G)/N ≤ A(G/N).

Proof. It is clear by definition. □

3. A∞(G) and Fdn-groups

Proposition 3.1. For any finite group X, the subgroup A(X) is solvable.

Proof. Write G = A(X). Then G has the property: All non-cyclic subgroups
of G are normal in G. Consider a composition factor K of G. Then K is simple
and A(K) = K. If H is any proper subgroup of K, we have that H is cyclic.
Now the theorem of Miller and Moreno [19] yields that K is solvable and hence
abelian. Thus all composition factors of G are abelian, so G is solvable. □

Corollary 3.2. For any finite group G, the subgroup A∞(G) is solvable.

We can now characterize Fdn-groups.
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Proposition 3.3. Let G be a finite group. Then the following statements are
equivalent:

(i) G is an Fdn-group;
(ii) G/A(G) is an Fdn-group.

Proof. (i) ⇒ (ii): Clear. (ii)⇒ (i): We use induction on the order of G. If
A(G) = 1, then nothing needs to be shown. Suppose that A(G) > 1. So
we can find a minimal normal subgroup N of G such that N ≤ A(G). By
Proposition 3.1, A(G) is solvable, so N is an elementary abelian p-group for
some prime p.

Firstly let N ≤ Φ(G). By Proposition 2.5, A(G)/N ≤ A(G/N). It follows
that (G/N)/A(G/N) is in Fdn because G/A(G) ∈ Fdn. We thus have that
G/N satisfies the condition of the theorem. By induction, (G/N)′ = G′N/N
is nilpotent. As N ≤ Φ(G), it follows by [15, III, Satz 3.5] that G′N and hence
G′ is nilpotent, which gives G ∈ Fdn, as desired.

Next, let N ̸⊆ Φ(G). Then there is a maximal subgroup M of G such that
G = NM with N

∩
M = 1. By Proposition 2.4, M

∩
A(G) ≤ A(M). Thus,

by the hypothesis that G/A(G) ∈ Fdn, and as G/A(G) ∼= M/(A(G) ∩M), we
have M/A(M) ∈ Fdn. Hence M satisfies the condition. By induction, M ′ is
nilpotent. Now N ≤ A(G) and A(G) normalizes all non-cyclic subgroups of G.
If M is cyclic, then G′ ≤ N is a p-group and hence G ∈ Fdn. Suppose that M
is non-cyclic, and so N normalizes M . Thus M is normal in G and it follows
that G′ = N ′ ×M ′. Since M ′ is nilpotent, we conclude that G′ is nilpotent, as
desired. □

Proposition 3.4. Let G be a finite group and G = A∞(G). Then G ∈ Fdn.

Proof. As A∞(G/A(G)) = A∞(G)/A(G), by induction, G/A(G) ∈ Fdn. It
follows from Proposition 3.3 that G ∈ Fdn. □

Theorem 3.5. Let G be a finite group and Z(G) > 1. Then the following
statements are equivalent:

(i) G ∈ Fdn;
(ii) G = A∞(G).

Proof. We only need to prove (i) ⇒ (ii). Since Z(G) > 1, A(G) > 1. It is clear
that G/A(G) ∈ Fdn. Thus, by induction, we have G/A(G) = A∞(G/A(G)).
Moreover, A∞(G/A(G)) = A∞(G)/A(G) gives that G = A∞(G). □

4. A -groups

The following facts are clear from Definition 1.3:

Proposition 4.1. (i) The subgroups of a A-group are A-groups;
(ii) The quotient groups of a A-group are A-groups.

By Proposition 2.3, we have:
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Theorem 4.2. If G is a finite nilpotent group, then G is a A-group if and only
if all Sylow subgroups of G are A-groups.

Remark. Finite nilpotent A-groups were considered by Passman, Bozikov, Jan-
ko, Song and Qu, see [8, 22 and 25]. In addition, finite non-nilpotent A-groups
were considered by Zhang, Guo, Qu and Xu, see [27].

For convenience of the readers, we give the following:

Theorem 4.3. G is a finite non-nilpotent A-group if and only if G is one of
the following groups:

(i) [Zp]Zn, where p is a prime and Zn is not normal in G;
(ii) [Z2

p ]Zn, where p is a prime, (p, n) = 1 and Zn acts irreducibly on Z2
p ;

(iii) ([Q8]Z3m)× Zn, where (6, n) = 1 and Q8 is not normal in [Q8]Z3m .

5. Applications

Gaschütz and Itô proved that if all minimal subgroups of a group G are
normal (in which case G is called a PN-group), then G is solvable and the
Fitting length of G is at most 3 ([15, p. 436, Theorem 5.7 or 11, Theorem 1]).
In this section, the following dual problem is considered: study the finite group
G all of whose minimal subgroups normalize every non-cyclic subgroup of G.

Theorem 5.1. Let G be a p-solvable group. Suppose that all elements of G of
order p are in A(G). If p = 2, suppose in addition that all elements of G of
order 4 are in A(G). Then lp(G) ≤ 1.

Proof. We use induction on |G|. Clearly, G/Op′(G) satisfies the hypothesis and
lp(G/Op′(G)) = lp(G). So we may assume that Op′(G) = 1.

Let P be a Sylow p-subgroup of A(G). By Proposition 3.3, A(G)′ is nilpo-
tent. Thus Op′(G) = 1 implies A(G)′ is a p-group, and hence P is normal in G.
Also, Fp(G) = Op′,p(G) = Op(G). As G is p-solvable, by [23, p. 269, Theorem
9.3.1], we know

CG(Op(G)) ≤ Op(G).

We now claim that G is q-nilpotent for any prime q ̸= p. Otherwise, there exists
a prime q such that G is non-q-nilpotent. Then there exists a subgroup K with
the following properties: K is non-q-nilpotent but all proper subgroups ofK are
q-nilpotent. By a theorem of Itô [23, p. 296, Theorem 10.3.3], K has a normal
Sylow q-subgroup Q and exp(Q) = q or 4. By above, Ω(Gp) ≤ P ≤ Op(G), so
Ω(Gp) = Ω(Op(G)). SinceK is non-cyclic, by hypothesis, Ω(Op(G)) normalizes
K. On the other hand, since Q ⊴ K, it follows that Ω(Op(G)) normalizes Q
and [Q,Ω(Op(G))] = 1. By [15, p. 437, 5.12], we get [Q,Op(G)] = 1. Thus
Q ≤ CG(Op(G)). As CG(Op(G)) ≤ Op(G) and Q is a p′-group, Q must be 1, a
contradiction.

Now let Gq′ denote the normal q-complement of G for every prime q ̸= p.
Then Gp ≤ Gq′ and Gp is the intersection of all Gq′ , hence Gp ⊴G, of course,
lp(G) = 1. The proof is now complete. □
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Theorem 5.2. Let G be a finite group. If all elements of G of prime order
are in A(G), then G is solvable.

Proof. Assume that the theorem is false and let G be a counterexample of
minimal order. If M is a proper subgroup of G, by Proposition 2.4 we have
M ∩A(G) ≤ A(M). Thus all subgroups of M of prime order are in A(M). So
M satisfies the condition. By the choice of G, M is solvable. Consequently,
G is a non-solvable group in which all proper subgroups are solvable, by [13,
Theorem 4.1], G/Φ(G) is a minimal simple group. As A(G) is normal in G and
solvable, it follows that A(G) ≤ Φ(G).

Let p be an odd prime dividing the order of G. We claim:
(1) Ω1(Gp)⊴G.
It is well known that Φ(G) is nilpotent, so all Sylow subgroups of Φ(G) are

normal in G. Let P be the Sylow p-subgroup of Φ(G). By the hypothesis, all
subgroups of G of order p are in A(G) and hence in P , so Ω1(Gp) = Ω1(P ).
Thus Ω1(Gp) char P ⊴G, (1) follows.

(2) CG(Ω1(Gp)) ≤ Φ(G).
By (1), Ω1(Gp) is normal in G, so it follows that CG(Ω1(Gp)) is normal

in G. Thus G/Φ(G) contains a normal subgroup CG(Ω1(Gp))Φ(G)/Φ(G). As
G/Φ(G) has no non-trivial normal subgroups, we have CG(Ω1(Gp))Φ(G) =
Φ(G) or CG(Ω1(Gp))Φ(G) = G. Suppose that the second case happens. Then
we have CG(Ω1(Gp)) = G, i.e., Ω1(Gp) ≤ Z(G). Thus all elements of G of order
p are in Z(G). Noting that p is an odd prime, we can apply the Itô lemma
[15, p. 435, Theorem 5.5] to see that G is p-nilpotent. Because the quotient
groups of a p-nilpotent group are also p-nilpotent, we see that G/Φ(G) would
be p-nilpotent. But G/Φ(G) has no non-trivial normal subgroup, which implies
that G/Φ(G) is a p′-group. However, by [15, III, Theorem 3.8], p | |G/Φ(G)|
holds whenever p | |Φ(G)|. This is a contradiction. We thus conclude that only
the first case is true, which implies (2).

Fix an odd prime p as above. Consider the subgroup

N = NG(Gp).

By the Schur-Zassenhaus theorem [23, p. 253, Theorem 9.1.2], N possesses a
Hall p′-subgroup H such that N = [Gp]H. By the condition, Ω1(Gp) ≤ A(G).

(3) H ′ ≤ Φ(G) and N ′ = G′
p ×H ′.

Case 1. If H is cyclic, then N ′ ≤ G′
p. Moreover, as Gp is a subgroup of N ,

it follows that G′
p ≤ N ′. Thus G′

p = N ′.
Case 2. If H is non-cyclic, then by the hypotheses Ω1(Gp) normalizes H. On

the other hand, by (1), we have Ω1(Gp)⊴N . Thus [Ω1(Gp), H] ≤ Ω1(Gp)∩H =
1 and H acts trivially on Ω1(Gp) by conjugation. Hence H ≤ CG(Ω1(Gp)) ≤
Φ(G) and of course, H ′ ≤ Φ(G). Moreover, by [15, p. 437, 5.12], H acts trivially
on Gp. That is, GpH = Gp ×H, so N = Gp ×H and

N ′ = G′
p ×H ′.

(4) G′
p ≤ Φ(G), in particular, N ′ ≤ Φ(G).
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As G is non-solvable, there exists another odd prime q dividing the order
G such that q ̸= p. Let Gq be a Sylow q-subgroup of G. By (1), we have
Ω1(Gq) ⊴ G. Also, by the hypothesis, Ω1(Gq) ≤ A(G). If Gp is cyclic, then
G′

p = 1 ≤ Φ(G). If Gp is non-cyclic, then Ω1(Gq) normalizes Gp. Thus
Ω1(Gq)Gp = Ω1(Gq)×Gp, and hence CG(Ω1(Gq)) ≥ Gp. Applying (2), we see
that Gp ≤ Φ(G). Therefore, G′

p ≤ Φ(G), as desired.
(5) The final contradiction.
Let G = G/Φ(G). Then Gp = GpΦ(G)/Φ(G) is a Sylow p-subgroup of

G/Φ(G). Write NG(Gp) = M/Φ(G). Then GpΦ(G)⊴M and Gp is a Sylow p-
subgroup of GpΦ(G). By the Frattini argument M = NM (Gp)Φ(G). Therefore

NG(Gp) = NG(Gp)Φ(G)/Φ(G). Now, NG(Gp) ∼= NG(Gp)/(NG(Gp) ∩ Φ(G)),
and, by (4), NG(Gp)

′ = N ′ ≤ Φ(G), so NG(Gp)/(NG(Gp) ∩ Φ(G)) is abelian.

Consequently, NG(Gp) is abelian. By a theorem of Burnside [15, IV, Theorem

2.6], G is p-nilpotent. This is impossible because G is a minimal simple group.
The proof now is complete. □

Theorem 5.3. Let G be a finite group. If all elements of G of prime order or
order 4 are in A(G), then G′ is nilpotent.

Proof. Let p be any prime dividing |G| and let P be a Sylow p-subgroup of
G. As G is solvable, it is p-solvable. According to Theorem 5.1, we have
Fp(G) = Op′,p(G) = Op′(G)P , the maximal normal p-nilpotent subgroup of G.
Next, by the Frattini argument G = NG(P )Op′(G). On the other hand, by the
Schur-Zassensaus theorem [23, p. 253, Theorem 9.1.2], NG(P ) = [P ]M , where
M is a Hall p′-subgroup of NG(P ) and hence G = Fp(G)M .

If M is cyclic, then G′ ≤ Fp(G)M ′ = Fp(G) and G′ is p-nilpotent.
If M is non-cyclic, by the hypothesis, Ω1(P ) and Ω2(P ) normalize M . Hence

M centralizes Ω1(P ) and Ω2(P ), and thus centralizes P . Since CG(P ) ≤ Fp(G)
by [23, p. 269, Theorem 9.3.1],

M ≤ Fp(G).

Now G = Fp(G)M , so it follows that G = Fp(G). Of course, G′ is p-nilpotent.
Hence G′ is nilpotent. □

Theorem 5.4. Let G be a finite group. If all elements of G of prime order or
order 4 are in A(G), then

(i) G is solvable;
(ii) lp(G) ≤ 1 for every prime p, and
(iii) the Fitting length of G is bounded by 2.

Proof. This follows from Theorems 5.1, 5.2 and 5.3. □

Let us compare Theorem 5.4 with the following well-known result: If all the
cyclic subgroups of a group G of prime order or order 4 are normal, then G
is supersolvable [11]. The previous Example 2.1 shows that the supersolvable
conclusion cannot be expected under the condition of Theorem 5.4.
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