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FINITE ORDER SOLUTIONS OF SECOND ORDER
LINEAR DIFFERENTIAL EQUATIONS

GARY G. GUNDERSEN

ABSTRACT. We consider the differential equation /" + A(z)f + B(z)f = 0
where A(z) and B(z) are entire functions. We will find conditions on A(z)
and B(z) which will guarantee that every solution / ^ 0 of the equation will
have infinite order. We will also find conditions on A(z) and B(z) which will
guarantee that any finite order solution / ^ 0 of the equation will not have
zero as a Borel exceptional value. We will also show that if A(z) and B(z)
satisfy certain growth conditions, then any finite order solution of the equation
will satisfy certain other growth conditions. Related results are also proven.
Several examples are given to complement the theory.

1. Introduction. Consider the second order linear differential equation

(1.1) f" + A(z)f' + B(z)f = 0
where A(z) and B(z) ^ 0 are entire functions, and where A(z) is transcendental.
It is well known that each solution / of equation (1.1) is an entire function, and
that if /i and f2 are any two linearly independent solutions of (1.1), then at least
one of fi,f2 must have infinite order (see [11 or 16, pp. 167-168]). Hence, "most"
solutions of (1.1) will have infinite order. On the other hand, there are some
equations of the form (1.1) that possess a solution / jé 0 of finite order; for example,
f(z) = e~z satisfies /" + ez f + (ez - 1)/ = 0.

Thus a natural question is: what conditions on A(z) and B(z) will guarantee
that every solution / ^ 0 of (1.1) has infinite order? In this paper we will exhibit
several general classes of equations of the form (1.1) that have the property that
each equation in each class possesses only nontrivial solutions of infinite order.

We mention that if P(z) and Q(z) are polynomials, then [23, p. 108] every
solution / of the equation

(1.2) f" + P(z)f' + Q(z)f = 0
has finite order. We also note that if A(z) is a polynomial and B(z) is a transcen-
dental entire function, then every solution / ^ 0 of /" + A(z)f + B(z)f = 0 has
infinite order (see [11] or Corollary 1 in §2).

Two related questions to the above question are: (i) If an equation of the form
(1.1) possesses a solution / ^ 0 of finite order, then how do the properties of A(z)
and B(z) affect the properties of /? (ii) What conditions on A(z) and B(z) in (1.1)
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416 G. G. GUNDERSEN

(or on P(z) and Q(z) in (1.2)) will guarantee that any finite order solution / ^ 0
of (1.1) (or (1.2)) will satisfy the condition that the exponent of convergence of the
zero-sequence of / equals the order of /? We will prove some results concerning
these two questions, plus we will prove some related results.

To complement our results, we shall give many examples of equations (1.1) and
(1.2).

2. Statement of the main results. For an entire function w(z), we will let
p(w) denote the order of w, and when w^Owe will let X(w) denote the exponent
of convergence of the zero-sequence of w. We will assume that the reader is familiar
with the fundamental results and the standard notations of R. Nevanlinna's theory
of meromorphic functions (see [15]).

We consider the differential equation

(2.1) f" + A(z)f' + B(z)f = 0
where A(z) and B(z) ^á 0 are entire functions.

Our first result shows, among other things, that if / ^ 0 is a finite order solution
of equation (2.1) where p(A) ^ p(B), then X(f) — p(f).

THEOREM 1. If f ^ 0 is a solution of equation (2.1) where p(f) < oo, then
exactly one of the following four cases must occur:

(i)X(f) = p(f).
(ii) A(/) < p(f), and A(z) and B(z) are both transcendental with p(A) — p(B).

Furthermore, T(r, A) = T(r,B) +0(logr) as r —» oo outside a set E that has finite
logarithmic measure.

(iii) 1 < A(/) < p(f), and A(z) and B(z) are both nonconstant polynomials that
satisfy deg(B) =2deg(A) > deg(4B - A2) and p(f) = 1 + deg(A).

(iv) / has only finitely many zeros, p(f) > 1, and A(z) and B(z) are both poly-
nomials. Furthermore, we must have exactly one of the following four situations:

(a) deg(B) > 2deg(A) and p(f) = 1 + (deg(S))/2.
(b) deg(B) = 2deg(A) and p(f) = 1 + deg(A).
(c) deg(B) < 2deg(yl) and p(f) = 1 + deg(B) - deg(A).
(d) deg(B) < 2deg(A) and p(f) = 1 +deg(A).
All cases in Theorem 1 can occur. For any a where 0 < a < oo, case (ii) in

Theorem 1 can occur with p(A) = p(B) = a, because if H(z) is any entire function
and k is any positive integer, then f(z) — exp(2fc) satisfies the equation

(2.2) /" + (H(z) - fcz*-1)/' - (k(k - l)zk~2 + kzk~1H(z))f = 0.

We note that fi(z) = (sin2)exp(z2/2) and f2(z) = (cosz)exp(z2/2) both satisfy
the equation /" - 2zf + z2f = 0; hence case (iii) in Theorem 1 can occur. For a
more general example of Theorem l(iii), see Example 4 in §11. Situations (a)-(d)
in case (iv) of Theorem 1 can occur by Example 5 in §11. There are many examples
of case (i) in Theorem 1; e.g. f(z) = ez + 1 satisfies /" + ezf - ezf = 0.

Theorem 1 gives an extension of the following result of Bank and Laine: If / ^ 0
is a solution of /" + Q(z)f = 0 where Q(z) is a nonconstant polynomial, and if
X(f) < p(f), then / has only finitely many zeros (see [4, Theorem 1]). Regarding
cases (iii) and (iv) of Theorem 1, we mention the work of Pöschl [20] and Wittich
(see [24, pp. 69-70]).
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I do not know whether we need the exceptional set E in case (ii) of Theorem 1.
We mention that if a is any given real number that satisfies 0 < a < 1, then

there exist three transcendental entire functions A, B, and /, all of finite order,
such that /" + A(z)f + B(z)f = 0 and ¿(0, /) = a (see Example 3 in §11).

It is very easy to prove the following result.

THEOREM 2. If f ^ 0 is a solution of equation (2.1) where p(f) < oo, then as
r —7 oo,

(2.3) T(r,B)<T(r,A) + 0(logr).

COROLLARY 1. Let A(z) and B(z) be entire functions where either (i) p(A) <
p(B), or (ii) A is a polynomial and B is transcendental. Then every solution / ^ 0
o/(2.1) has infinite order.

Frei [11] proved Corollary 1 (ii)-
Our next result shows that if / ^ 0 is a finite order solution of (2.1) where the

growth of A(z) dominates the growth of B(z) in some angle, then / will satisfy
certain growth conditions in the angle.

THEOREM 3. Let A(z) and B(z) ^ 0 be entire functions such that for real
constants a,ß,9i,92, where a > 0, ß > 0, and 9i < 92, we have

(2.4) |¿(2)|>exp{(l + o(l))Q|^}

and

(2.5) [B(z)[<exp{o(l)\zf}
as z —+ oo in 9i < argz < 92. Let e > 0 be a given small constant, and let S(e)
denote the angle 9i + e < arg z < 92 — e.

If f ^ 0 is a solution of equation (2.1) where p(f) < oo, then the following
conclusions hold:

(i) There exists a constant b ^ 0 such that f(z) —» b as z —* oo in S(e). Fur-
thermore,

(2-6) \f(z)-b\<exp{-(l + o(l))a[zf}
as z —* oo in S(e).

(ii) For each integer k > 1,

(2.7) \f^(z)\<exp{-(l + o(l))a\zf}
as z —♦ oo in S(s).

Theorem 3 generalizes and improves some results of Ozawa (see [19, Theorem
2]) who considered a similar hypothesis to Theorem 3 except that he made the
additional assumption that B(z) is a polynomial. An illustration of Theorem 3 is:
for any constant b ^ 0, f(z) = ez + b satisfies

(2.8) /" + (ez - be-z + b - 2)/' + (1 - ez)f = 0.

This example shows that the inequalities (2.6) and (2.7) are both sharp in the sense
that neither of the two numbers "a" or "/?" in either (2.6) or (2.7) could be replaced
by a larger number. For more examples of Theorem 3 where (2.6) and (2.7) are
also sharp in this sense, see Example 2 in §11.
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418 G. G. GUNDERSEN

Even though the coefficients of / and /' in (2.8) have the same order, it turns out
that if we switch these coefficients, then every nontrivial solution of the resulting
equation will have infinite order, i.e., every solution / ^ 0 of

(2.9) /" + (1 - ez)f + (ez - be~z + b-2)f = 0

(where b ^ 0 is a constant) has infinite order.  This follows from the next result,
which can be contrasted with Theorem 3.

THEOREM 4. Let A(z) and B(z) be entire functions such that for real constants
a,ß,9i,92 where a > 0, ß > 0, and öi < 92, we have

(2.10) \B(z)\ > exp{(l + o(l))a\z\ß}

and

(2.11) \A(z)\<exp{o(l)\zf}

as z —» oo in 9i < arg z < 92.  Then every solution / ^ 0 o/(2.1) has infinite order.

Although Theorem 4 and Corollary 1 can be compared, there are differential
equations to which we can apply Theorem 4 but not Corollary 1. For example,
every solution / ^ 0 of either (2.9) or /" + exp(P(z))/' + exp(-P(z))/ = 0 (where
P(z) is a nonconstant polynomial) is of infinite order.

By combining Theorem 3 and the classical Phragmén-Lindelóf theorem, we will
easily obtain the following result.

THEOREM 5. Let A(z) and B(z) ^ 0 be entire functions, and let a > 0 and
ß > 0 be constants where p(B) < ß. Suppose that for any given e > 0, there exist
two finite collections of real numbers {(f>k} and {9k} that satisfy <j>i < 9i < 4>2 <
92 < ■ ■ ■ < 4>n < 9n < <t>n+i where 4>n+i = 4>i + 2ir, and

77

(2.12) J2^k+i-9k)<£,
fc=i

such that

(2.13) |.4(2)|>exp{(l + o(l)H2H
aaz-nx) in <f>k < arg¿ <9k (k = 1,2,... ,n).

Then every solution f ^ 0 of equation (2.1) has infinite order.

Ozawa [19, Theorem 3] proved Theorem 5 under the additional hypothesis that
B(z) is a polynomial. It follows from Theorem 5 that if B(z) ^ 0 is an entire
function and n > 1 is an integer, then every solution / ^ 0 of the following two
equations has infinite order:

(i)     f"+ sin(zn)f + B(z)f = 0       where p(B) < n;
(ii)    /" + cos(zn/2)f + B(z)f = 0   where p(B) < n/2.

Furthermore, given any real number p > 1, the Mittag-Leffler function can be used
to construct an entire function A(z) with p(A) = p such that if B(z) ^ 0 is entire
with p(B) < p, then the hypothesis of Theorem 5 will be satisfied (see [10, p. 50]).

From Theorem 2 we see that if an equation of the form (2.1) possesses a solution
/ ^ 0 of finite order, then it is necessary that p(B) < p(A). Given any a where
0 < a < co, there exist such examples where p(B) = p(A) = a (see (2.2)). Also,
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given any integer n > 1, there exist such examples where p(B) < p(A) = n (see
Examples 1 and 2 in §11). Thus a natural question is: If / ^ 0 is a solution of
an equation of the form (2.1) where p(B) < p(A) < oo and where p(A) is not a
positive integer, then is it necessarily true that p(f) = co? A partial result on this
question is given by the next result.

THEOREM 6. If f £ 0 t'a a solution of (2.1) where either (i) p(B) < p(A) <
1/2, or (ii) A(z) is transcendental with p(A) — 0 and B(z) is a polynomial, then
p(f) = CO.

Ozawa [19, Theorem 1] proved that Theorem 6 holds under the additional hy-
pothesis that B(z) is a polynomial.

Several authors have studied the question of whether the particular differential
equation

(2.14) f"+e-zf' + B(z)f = 0
(where B(z) ^ 0 is entire) can possess a solution / ^ 0 of finite order. Frei [12]
showed that if B(z) = C where C ^ 0 is a constant, then equation (2.14) will possess
a solution / ^ 0 of finite order if and only if C = —n2 where n is a positive integer
(and in this case f(z) is a polynomial in ez of degree n). Other proofs of Frei's
result can be found in [19, 25], and it might be mentioned that Wittich [25] showed
that if / ^ 0 is a finite order solution of /" + Pi(ez)f + P2(ez)f = 0 where Pi(z)
and P2(z) ^ 0 are polynomials, then f(z) = ebzQ(ez) where Q(z) is a polynomial
and 6 is a constant. A generalization of Frei's result was proven by Bank and Laine
[5] in their investigation into which equations of the form (2.14) (where B{z) is a
nonzero constant) can possess a solution / ^ 0 where X(f) < co. By completing
results of Ozawa [19], Amemiya and Ozawa [1], and the author [13], Langley [17]
has shown that if B(z) is a nonconstant polynomial, then every solution / ^ 0 of
equation (2.14) has infinite order. The author [13, Theorem 1] showed that if B(z)
is transcendental entire with p(B) ^ 1, then every solution / 9a 0 of (2.14) is of
infinite order. The case when p(B) = 1 is exceptional, since f(z) = ez satisfies
/" + e~2/' - (1 + e~z)f = 0. The next result will give a generalization of [13,
Theorem 1].

THEOREM 7. Let {4>k} and {9k} be two finite collections of real numbers that
satisfy (¡>i < 9i < 4>2 < 92 < ■ ■ • < <t>n < 9n < <f>n+i where <f>n+i = <t>i + 2ir, and set

(2.15) p=  max (<f>k+i -9k).
l<fc<n

Suppose that A(z) and B(z) are entire functions such that for some constant a > 0,

(2.16) \A(z)\=0(\z\a)
as z —♦ co in <pk < arg z < 9k for k = 1,..., n, and where B(z) is transcendental
with p(B) < ■ïï/p.

Then every solution f £0 of equation (2.1) has infinite order.

There are many examples of Theorem 7, and we mention the following two:
(i) Let Q(z) be a nonconstant polynomial, let h(z) ^ 0 be entire with p(h) <

deg(Q), and let B(z) be transcendental entire with p(B) ^ deg(Q).   Then from
Theorem 7 and Corollary 1, it follows that every solution / ^ 0 of the equation

f" + h(z)e^f' + B(z)f = 0
has infinite order. This generalizes [13, Theorem 1].
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(ii) If B(z) is transcendental entire with p(B) < 4/3, then from Theorem 7,
every solution / ^ 0 of the equation /" + {exp(;z2) + exp(iz2)}f + B(z)f = 0 has
infinite order.

Next, we make the following observation. Even though at least one of every
two linearly independent solutions of equation (1.1) must have infinite order, it
is possible for an equation of the form (1.1) to possess two linearly independent
solutions /i and f2 where p(fi) < oo and X(f2) < oo; for example, if b ^ 0 is a
constant, then fi(z) = ez and f2(z) = exp{z + be~2z} both satisfy the equation

/" + 2be~2zf - (1 + 2be~2z)f = 0.

Other examples of this kind can be found in a result of Bank and Laine [5, Theorem
2]-

Last, we mention that there have been several recent results that concern the
question of whether an equation of the form /" + G(z)f = 0 where G(z) is tran-
scendental entire, can possess either (i) a solution / ^ 0 where A(/) < co, or (ii)
two linearly independent solutions /i and f2 where A(/i) < co and A(/2) < co?
See, for example, [3, 4, 5, 6, 7, 8, 17, 21, 22].

This paper is organized as follows. In §3 we give some lemmas which will be
used in the proofs of Theorems 1-7, while in §§4-10 we will prove Theorems 1-7.
In §11 we will give some more examples of equations of the form (2.1) which will
further exhibit the sharpness of some of our results, and which will also illustrate
some possibilities that can occur.

3. Some lemmas. We shall use Lemmas 1-6 below in the proofs of our results.

LEMMA 1 [14]. Letw be a transcendental entire function of finite order p, let
Y = {(ki, ji), (k2,j2),..., (km,jm)} denote a finite set of distinct pairs of integers
that satisfy ki > j, > 0 for i = 1,..., m, and let e > 0 be a given constant. Then
the following three statements hold:

(i) There exists a set Ei C [0,27r) that has linear measure zero, such that if
V>o G [0,27r) — Ei, then there is a constant Ro = Ro(ipo) > 0 so that for all z
satisfying argz = tp0 and \z\ > Ro, and for all i^,j) € Y, we have

(3.1) \ww(z)/w^(z)\ < \z\(k-JAP-i+c).

(ii) There exists a set E2 C (l,oo) that has finite logarithmic measure, such that
for all z satisfying \z\ &E2l) [0,1] and for all (k,j) G Y, the inequality (3.1) holds.

(iii) There exists a set E3 C [0, co) that has finite linear measure, such that for
all z satisfying \z\ qL E3 and for all (k,j) G Y, we have

\w^(z)/w^(z)\<\z^k-j){p+£).

REMARK. If w is a rational function then we can easily obtain better estimates
than those in Lemma 1.

LEMMA 2. Let w be an entire function of finite order n > 1 where X(w) < n.
Then there exists a constant b ^ 0 and there exists a set E C (l,oo) that has finite
logarithmic measure, such that

(3.2) w'(z)/w(z) = (l + o(l))bzn-1

as z —► oo, \z\ & E.
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PROOF. From the hypothesis and the Hadamard factorization theorem, it follows
that n is a positive integer and that w(z) — h(z)exp(czn) where, c ^ 0 is some
constant and h(z) is an entire function that satisfies p(h) < n. Then

(3.3) w'(z)/w(z) = h'(z)/h(z) + cnzn~x.

Since p(h) < n, it follows from Lemma l(ii) that there exists a set E C (1, co) that
has finite logarithmic measure, such that

(3.4) \h'(z)/h(z)\ = o(l)\z\n-1

as z —► co, |z| £ E. Combining (3.4) and (3.3) gives (3.2). This proves Lemma 2.
Concerning Lemma 2, we mention Lemma 1 in [8].

LEMMA 3 [9]. Let w be an entire function of order p where 0 < p < 1/2, and
let e > 0 be a given constant. Then there exists a set S C [0, co) that has upper
density at least 1 — 2p such that [w(z)\ > exp([z\p~£) for all z satisfying \z\ G S.

For the definition of "upper density" in Lemma 3, see [9, p. 679].

LEMMA 4. Let w be entire, and suppose that \w'(z)\ is unbounded on some
ray arg z = 9. Then there exists an infinite sequence of points zn = rnet6 where
rn —> co, such that w'(zn) —► co and

(3-5) \w(zn)/w'(Zn)\<(l+0(l))\zn\

as zn —> 00.

PROOF. Let M(r,w',9) = max\w'(z)\ over all z satisfying 0 < |z| < r and
arg z = 9. It follows that there exists an infinite sequence of points zn = rneie
where rn-»oo such that M(rn,w',9) = \w'(rneie)\ for all n. Then for each n, we
have

w(zn) = w(0) + /     w'(z) dz,
Jo

\w(zn)\<\w(0)\+rn\w'(zn)\.

Since w'(zn) —* co, we obtain (3.5).

LEMMA 5. Let g(r) and h(r) be monotone nondecreasing functions on [0,co)
such that g(r) < h(r) for all r £ E U [0,1] where E C (l,oo) is a set of finite
logarithmic measure. Let a > 1 be a given constant.

Then there exists an ro — r0(a) > 0 such that g(r) < h(ar) for all r > ro-

PROOF. We will reason as on p. 519 of [2]. From the hypothesis on E, it follows
that there exists an r0 = r0(a) > 0, such that for any r > r0, the interval [r,ar]
must contain a point ri where ri ^ E U [0,1]. Then g(r) < g(ri) < h(ri) < h(ar).
This proves Lemma 5.

LEMMA 6. Let w be analytic on a ray arg z = 9, and suppose that for some
constant a > 1 we have

(3.6) \w'(z)/w(z)\ = 0(\z\-a)

as z —► oo along arg z — 9.  Then there exists a constant c ^ 0 such that w(z) —> c
as z —► oo along arg z = 9.

PROOF. From (3.6) it follows that there exists an Tío > 0 and a simply connected
domain D such that w'/w is analytic on D and where if z satisfies arg z = 9 and
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|z| > Po then z G D. Hence there exists an analytic function F(z) on D such
that F' = w'/w on D. If 21 = ri exp(i9) and z2 = r2 exp(i9) are large, where
Po < ri < i"2, then by consideration of

and (3.6), it can be deduced that there exists a constant b such that F(z) —* b as
z —7 00 along arg z = 9. It follows that there exists a constant c ^¿ 0 such that
w(z) ->casz->oo along arg z = 9.

4. Proof of Theorem 2. Suppose that / ^ 0 is a solution of (2.1) where
p(f) < 00. From (2.1) we have

B(z) = -f"/f-A(z){f'/f).
Hence from Nevanlinna's fundamental estimate of the logarithmic derivative, we
obtain that m(r,B) < m(r,A) +0(logr) as r —» co.    Q.E.D.

5. Proof of Theorem 1. Suppose that / ^ 0 is a solution of equation (2.1)
where p(f) < 00. We will assume that A(/) < p(f).

Set n = p(f). Then n > 1 is an integer. From (2.1),

(5.1) A(z) = -B(z){f/f')-f"/f.
From Lemma 2, there exists a constant b ^ 0 and a set E C (1,00) that has finite
logarithmic measure, such that

(5.2) f'(z)/f(z) = (l + o(l))bzn-1

as z —♦ 00, \z\ <£ E. From (5.2), (5.1), and the fundamental estimate of the
logarithmic derivative, we obtain

m(r, A) < m(r, B) + 0(log r)

as r -7 co, r <£ E. Since T(r,B) < T(r,A) + O(logr) as r -» co from (2.3), we
obtain that

(5.3) T(r,A)=T(r,B) + 0(logr)

as r —> 00, r ^ E.
First suppose that B(z) is transcendental. Then A(z) is transcendental from

(5.3). Since the Nevanlinna characteristic is a nondecreasing function of r, we can
deduce from (5.3) and Lemma 5 that p(A) = p(B). This is case (ii).

Now suppose that B(z) ^ 0 is a polynomial. Then A(z) is a polynomial from
(5.3). We will use the well-known transformation

(5.4) w(z) = f(z)exp(±JA(z)dzS)

which, when substituted into (2.1), gives

(5.5) w" + G(z)w = 0

where G(z) = B(z) - (A(z))2/4 - A'(z)/2. If G(z) £ 0, then (see [4, Theorem 1])

(5.6) pM = l + deg(G)/2.
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Since A(/) < p(f), we also have that

(5.7) f{z) = h(z)e^

where h(z) is either a canonical product or h(z)/z is a canonical product, Q(z) is
a polynomial, and p(h) = X(f) < p(f) = deg(Q). Substitution of (5.7) into (2.1)
gives

(5.8) h"/h + (2Q' + A)h'/h + Q" + (Q1)2 +AQ' + B = 0.
For convenience, we set a = deg(^4) and ß = deg(P).

First suppose that ß > 2a. Then by applying the Wiman-Valiron theory [23] to
equation (2.1), we obtain that p(f) = 1 + /Î/2. Thus p(w) — p(f) from (5.6). Since
from (5.4), X(w) — X(f) < p(f) = p(w), it follows from (5.5) and [4, Theorem 1]
that w has only finitely many zeros. Hence / has only finitely many zeros. This is
case (iv)(a).

Now suppose that ß < 2a. Then by applying the Wiman-Valiron theory to
equation (2.1), we obtain that p(f) < 1 + a. From (5.6), p(w) = 1 + a. Thus
p(w) > p(f) > X(f) = X(w), and so once again we obtain from (5.5) and [4,
Theorem 1] that w and / each have only finitely many zeros. If p(f) = 1 + a,
then we obtain case (iv)(d). Now suppose p(f) < 1 + a. From (5.7), deg(Q') =
p(f) — 1 < a, and h is a polynomial. Then by letting z —► co in (5.8), we deduce
that deg(AQ') = deg(B). This yields a + p(f) - 1 = ß. This is case (iv)(c).

Now suppose that ß = 2a = deg(4B-A2) and G(z) = 0 in (5.5). Then A(z) £ 0
(since B(z) ^ 0). Then from (5.5) and (5.4), it follows that / has only finitely many
zeros and that p(f) = 1 -I- a. This is case (iv)(b).

Next suppose that ß = 2a = deg(4P - A2) and G(z) £ 0. Then p(w) = 1 + a
from (5.6). By applying the Wiman-Valiron theory to (2.1), we get p(f) < 1 + a.
Thus p(w) > p(f) > X(f) = X(w), and so (as above) w and / each have only
finitely many zeros. If p(f) = 1 + a then we get case (iv)(b). If p(f) < 1 + a, then
as above we can deduce from (5.7) and (5.8) that deg(Q') = p(f) — 1 < a, h is
a polynomial, and deg(AQ') = deg(B), which yields a + p(f) — 1 = ß. But this
contradicts ß = 2a and p(f) < 1 + a.

Last, we assume that ß = 2a > deg(47J — A2). Then p(w) < 1 + a from (5.6)
and (5.5). Then from (5.4), we obtain that p(f) = 1 + a. If / has only finitely
many zeros then we have case (iv)(b). If / has infinitely many zeros, then from
(5.4), (5.5), (5.6), and [4, Theorem 1] we deduce that A(/) = X(w) = p(w) > 1.
This is case (iii).

The proof of Theorem 1 is now complete.

6. Proof of Theorem 3. Set p — p(f). From Lemma l(i), there exists a set
E C [0,27r) that has linear measure zero, such that if tpo G [0,2n) — E, then

(6.1) i/"(*v/'(*)i=0(i)i*r
as z —► co along arg 2 = ^o-

Now suppose that |/'(2)| is unbounded on some ray arg z — <j>o where 4>o G
[9i,92\ — E. Then from Lemma 4, there exists an infinite sequence of points zn =
rn exp(z'(/>o) where rn —» co, such that f'(zn) —>■ co and

(6.2) \f(zn)/f'(zn)\<(l+0(l))\Zn\
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as zn —7 co. From (2.1),

(6.3) i¿(*)i<ir/miB(*)n///'i.
By using (6.2), (6.1), (2.4), and (2.5), we will obtain a contradiction in (6.3) as
zn —* oo. Therefore, |/'(z)| is bounded on any ray argz — <f> where <f> G [9i,92\ — E.
It then follows from the classical Phragmén-Lindelof theorem [18, p. 214] that there
exists a constant M > 0 such that

(6-4) \f'(z)\ < M
for all z G S(e).

If f?o € [9i + e, 62 - e] - E, then when arg z = 9q, we obtain from (6.4) that

< |/(0)| + M\z\.(6.5) \f(z)\< |/(0)| + I f f'(u)du
\Jo

From (6.5), (6.1), and (2.1), we obtain that

(6.6) \A(z)\ \f'(z)\ < o(l)\f'(z)\ \z\« + |£(*)|{|/(0)| + M\z\}
as z —> co along argz — 90. From (6.6), (2.4), and (2.5), we can deduce that

(6-7) |/'(z)|<exp{-(l + 0(l))a|z|"}

as z —» co along argz = 90.   By using an application of the Phragmén-Lindelof
theorem on (6.7), it can be deduced that

(6-8) \f'(z)\<exp{-(l+o(l))a\zf}

as z —> co in S(2e). This gives k = 1 in (2.7).
Now let z G S(3e) where |z| > 1, let 7 be a circle of radius one with center at z,

and let k > 1 be an integer. Then from the Cauchy integral formula and (6.8), we
obtain as z —► 00 in S(3e),

- (fc-1)!   /   !/'(")!   u-i .-r    ti   ,   „r-i ̂ „.1-i/Ji
2tt      J1 \u - "I*

|/(fc,(^)| < ^V^1      r^^T \du\ < exp{-(l + o(l))a\zf}.

This proves (2.7).
Now fix 9 where 9i + e < 9 < 92 — e, and set

ye dt,
rOO

(6.9) o0 = /     f'(teu
Jo

where we note that a0 G C from (2.7). Let z = \z\el,i> where 9\ + e < tp < 92 - e.
Then from Cauchy's theorem and (6.9) we obtain

r-Z /»OO

(6.10) f(z)-f(0)-ao=       f'(u)du- f'{teie)e'edt
Jo Jo

rip /»OO

= /    f'([z\e^)i[z[elid7- f (teie)e%e dt.
Je J\z\

From (6.10) and (2.7), it can be deduced that

(6.11) |/(z)-&|<exp{-(l+0(l))a|zf}
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as z —> co in S(e), where b = f(0)+ao- (Note: It follows that a0 in (6.9) is
independent of 9.) Since (6.11) is the inequality (2.6), it remains only to show that
6/0.

From Lemma l(i), there exists a ray argz = ipi where 0i + e < ipi < 92 - e,
such that

(6.12) |/"(z)//(z)| = 0(l)|z|2"

as z —► oo along argz = ipi (where p = p(f)). Then from (6.12), (2.4), (2.5), and
(2.1), we obtain that

(6.13) m
/(*)

B(z)
A(z) + ^«^Xp{-(1+0(1))rf}

as z —» co along argz = ipi.   By applying Lemma 6 to (6.13), and noting that
f(z) —» b as z —► oo in S(e) from (6.11), we see that 6/0.

Thus part (i) is proved, and the proof of Theorem 3 is now complete.

7. Proof of Theorem 5. Suppose that / / 0 is a solution of equation (2.1)
where p(f) < co. Let e > 0, {(f>k}, and {9k} be as in the hypothesis. From (2.13)
and p(B) < ß, it follows from Theorem 3(i) that |/(z)| is bounded in each angle
</>fc + £ < argz < 9k — £ (k = 1,2,...,n). Since e can be arbitrarily small, it
follows from (2.12) and the Phragmén-Lindelof theorem that |/(z)| is bounded in
the whole finite plane. Thus / is a nonzero constant from Liouville's theorem, and
this contradicts (2.1).

8. Proof of Theorem 4. Suppose that / / 0 is a solution of equation (2.1)
where p(f) < co. Set p — p(f). Then from Lemma l(i), there exists a real constant
^o where 9i < xpo < 92, such that

(8.1) |/"(z)//(z)| = 0(l)|z|2"    and    \f'(z)/f(z)\ = o(l)\z\"

as z —* co along argz = yj0. Then from (8.1) and (2.1) we obtain that

|P(z)|<o(l)|zn^(z)|+0(l)|z|2"

as z —7 co along argz = tp0, and this contradicts (2.10) and (2.11).

9. Proof of Theorem 6. Let / / 0 be a solution of equation (2.1). If A(z)
is transcendental with p(A) < 1/2 and B(z) is a polynomial, then Ozawa [19,
Theorem 1] showed that p(f) = co.

Now suppose that p(f) < co and p(B) < p(A) < 1/2. We assume first that /
has an infinite number of zeros. From integration of /'// around circles |z| = r, it
follows from the residue theorem that there exists a constant R > 0 such that for
each r > R there must be a point zr that satisfies |zr| = r and

(9.1) l/'(*r)//(*r)| > 1/kl-
Now let p be a constant that satisfies p(B) < p < p(A).  Then from Lemma 3,
there exists a set S C [0, co) that has positive upper density such that

(9.2) L4(z)|>exp(|zn
for all z satisfying |z| G S. (For the definition of "upper density", see [9, p. 679]).
Also, by Lemma l(iii), there exists a set E C [0, co) that has finite linear measure,
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such that for all z satisfying |z| ^ E we have

(9-3) \f"iz)/f(z)\ < \z\°
where a = 2p(f) + 1.

Using (2.1), (9.1), (9.2), and (9.3), we see that there exist arbitrarily large z such
that

e-^P < \M*)/'(*)<\B(z)\ +
f"(z)
m <\B(z)\ +

/(*)
and this contradicts that p(B) < p.

Next we assume that / has a finite number of zeros. Then / = Pe^ where P / 0
and Q are polynomials. Substituting this into (2.1) gives

(9.4) P" + 2Q'P' + Q"P + (Q')2P + A(z)(P' + Q'P) + B(z)P = 0.
Since p(B) < p(A), it follows from (9.4) that P' + Q'P = 0. Thus Q' = 0 and
P' = 0. Then / is a nonzero constant which contradicts (2.1).

Thus it is impossible to have p(f) < co and p(B) < p(A) < 1/2. The proof of
Theorem 6 is now complete.

10. Proof of Theorem 7. Suppose that / / 0 is a solution of equation (2.1)
where p(f) < co. Set ß = p(f). From Lemma l(i), there exists a set E C [0,27r)
that has linear measure zero, such that if tpo € [<j>k, Ok] — E for some k, then

(10.1) \f'(z)/f(z)\ = 0(\zf)    and    |/"(z)//(z)| = 0(\z\^)
as z —► co along argz = tpo- From (10.1), (2.16), and (2.1), we obtain that

(10.2) \B{z)\ < \A(z)\ \f'(z)/f(z)\ + \f"(z)/f(z)\ = 0(\z\")
as z —► co along argz = i/jo, where a = a + 2ß. Now let e > 0 be a small constant
that satisfies p(B) < tr/(p + 2e) (this is possible since p(B) < ir/p). By using
the Phragmén-Lindelof theorem on (10.2), it can be deduced that for some integer
m > 0,

(10.3) \B(z)\=0(\z\m)
as z —* oo in (¡>k + £ < arg z < 9k — e for k = 1,..., n. Now for each k, we have
from (2.15) that (pk+i + £ — (9k — £) < p + 2e, and so p(B) < 7r/(<^fc+i — 9k+ 2e).
Hence from using the Phragmén-Lindelof theorem on (10.3), we can deduce that
|P(z)| = 0(|z|m) as z —7 co in the whole complex plane. This means that B(z) is
a polynomial which contradicts our hypothesis. This proves Theorem 7.

11. More examples. We will now give some more examples which will illus-
trate some possibilities that can occur and which will also exhibit the sharpness of
some of our results.

EXAMPLE 1. Let Q be any nonconstant polynomial, let B ^ 0 be any entire
function with p(B) < deg(Q), let / be any antiderivative of e^ that satisfies A(/) =
deg(Q), and set A = -Q' - Bfe~Q. Then p(B) < p(A) = deg(Q) = p(f), and
/" + A(z)f + B(z)f = 0.

This shows that it is possible to have a finite order solution / / 0 of an equation
of the form (2.1) where p(B) < p(A) and where p(A) may be any positive integer.
In contrast, we have Theorem 6.

EXAMPLE 2. Let P be a polynomial with degree > 2, such that P' has only sim-
ple zeros, and where P'(z) / 0 whenever exp(—P(z)) = 1. Let Q be a polynomial
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such that
P"(z)Q(z) = -P(') -1

whenever P'(z) = 0. Then Q / 0. For example, Q can be Lagrange's interpolation
polynomial where deg(Q) < deg(P) - 2 (see [18, pp. 67-71]). Set

Q(e-^-l)-P"-(P')2
A- p, -

and set / = ep - 1. Then A is entire, p(A) — deg(P) = p(f), and

f" + A(z)f' + Q(z)f = 0.

This gives another example like Example 1 (i.e. where up(B) < p(A)" and ...),
and it also gives an illustration of Theorem 3 where the inequalities (2.6) and (2.7)
are both sharp in the sense that neither of the two numbers "a" or "/3" in either
(2.6) or (2.7) could be replaced by a larger number.

EXAMPLE 3. Let a be any real number that satisfies 0 < a < 1. We will show
that there exist three transcendental entire functions /, A, B, all of finite order,
such that equation (2.1) holds, and where <5(0, /) = a.

Equation (2.2) easily gives the assertion when a = 1.
Now suppose that a < 1. Set ß = (1 — a)-1. It can be verified that f(z) =

exp(ßz) + exp((ß — l)z) satisfies the equation

/" + (eßz + e(ß~l)z + 1 - 2/3)/' + (ß2 - ß + (1 - ß)ei0-^z - ße0z)f = 0.

We have that N(r, 0, /) = (1 + o(l))r/7r as r —► co. Since ß > 1, it can be found
that T(r, f) = (l + o(l))ßr/n as r -► co. Therefore ¿(0, /) = a.

The assertion is proved.
EXAMPLE 4. We will now construct a general example of case (iii) in Theorem

1. Let Q(z) be any nonconstant polynomial. Then [4, Theorem 1] there exists a
solution w / 0 of the equation

(11.1) w" - ^y^w = 0

that satisfies X(w) = p(w) = (1 + deg(Q))/2. Then f(z) = w(z) exp(-| f Q(z)dz)
satisfies the equation

(11.2) /" + QW/' + Ä/ = 0,

and 1 < A(/) = (1 + deg(Q))/2 < p(f) = 1 + deg(Q).
Furthermore, if equation (11.1) possesses two linearly independent solutions wi

and w2 where A(u;t) = p(wi) = (l + deg(Q))/2 for i = 1,2, then equation (11.2) will
possess two linearly independent solutions /i and f2 where 1 < A(/¿) < p(fi) for
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* = 1,2. For example, when Q(z) = 2z, we obtain that /i(z) = (sinhz)exp(-z2/2)
and f2(z) = (coshz)exp(-z2/2) both satisfy the equation /" + 2z/' + z2/ = 0.

EXAMPLE 5. We now give examples of each of the four situations (a), (b), (c),
and (d) in Theorem l(iv).

If P is a polynomial of degree n > 1, then f = ep satisfies equation (2.1) where
A = 0 and B = -P" - (P')2. When n > 2, we have 2deg(,4) = 0 < deg(P) =
2n - 2 and p(f) = n — 1 + (deg(B))/2, which is case (a). When n = 1, we have
2deg(A) = deg(P) = 0 and p(f) = 1 = 1+ deg(A), which is case (b).

Let k > 1 be an integer. Then f(z) = exp(zfc) satisfies equation (2.2) where
77(z) = z , and this is an example of case (c).

Let k > 2 be an integer. Then f(z) = exp(zfc) satisfies equation (2.2) where
77(z) = 0, and this is an example of case (d).
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