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Finite-pulse waves for efficient suppression of evolving mesoscale dendrites in rechargeable batteries
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The ramified and stochastic evolution of dendritic microstructures has been a major issue on the safety

and longevity of rechargeable batteries, particularly for the utilization of high-energy metallic electrodes.

We analytically develop criteria for the pulse characteristics leading to the effective halting of the ramified

electrodeposits grown during extensive timescales beyond inter-ionic collisions. Our framework is based on

the competitive interplay between diffusion and electromigration and tracks the gradient of ionic concentration

throughout the entire cycle of pulse-rest as a critical measure for heterogeneous evolution. In particular,

the framework incorporates the Brownian motion of the ions and investigates the role of the geometry

of the electrodeposition interface. Our experimental observations verify the analytical developments, where the

dimension-free developments allows the application to the electrochemical systems of various scales.
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I. INTRODUCTION

Metallic anodes such as lithium, sodium, and zinc are ar-

guably highly attractive candidates for use in high-energy and

high-power density rechargeable batteries [1–3]. In particular,

lithium metal possesses the lowest density and smallest ionic

radius which provides a very high gravimetric energy density

and possesses the highest electropositivity (E0 = −3.04V

versus standard hydrogen electrode) that likely provides the

highest possible voltage, making it suitable for high-power

applications such as electric vehicles (ρ = 0.53 g cm−3) [4,5].

During the charging, the fast-pace formation of microstruc-

tures with relatively low surface energy from Brownian dy-

namics leads to the branched evolution with high surface to

volume ratio [6]. The quickening treelike morphologies could

occupy a large volume, possibly reach the counterelectrode,

and short the cell. Additionally, they can also dissolve from

their thinner necks during subsequent discharge period. Such

a formation-dissolution cycle is particularly prominent for the

metal electrodes due to lack of intercalation1 [7]. Previous

studies have investigated various factors on dendritic forma-

tion such as current density [8], electrode surface roughness

[9–11], impurities [12,13], solvent and electrolyte chemical

composition [14,15], electrolyte concentration [16], utiliza-

tion of powder electrodes [17] and adhesive polymers [18],

temperature [19], guiding scaffolds [20,21], capillary pres-

sure [22], cathode morphology [23], and mechanics [24,25].

Some of conventional characterization techniques used in-

clude NMR [26] and MRI [27]. Recent studies also have

shown the necessity of stability of solid electrolyte interphase

(SEI) layer for controlling the nucleation and growth of the

branched medium [28,29].

*aryanfar@caltech.edu.
1Intercalation: diffusion into inner layer as the housing for the

charge, as opposed to depositing in the surface.

An earlier model of dendrites had focused on the electric

field and space charge as the main responsible mechanism

[30], while the later models focused on ionic concentration

causing the diffusion limited aggregation (DLA) [31–33].

Both mechanisms are part of the electrochemical potential

[34,35], indicating that each could be dominant depending on

the localizations of the electric potential or ionic concentration

within the medium. Nevertheless, their interplay has been

explored rarely, especially in continuum scale and realistic

time intervals, matching scales of the experimental time and

space.

Dendrites instigation is rooted in the nonuniformity of

electrode surface morphology at the atomic scale combined

with Brownian ionic motion during electrodeposition. Any

asperity in the surface provides a sharp electric field that

attracts the upcoming ions as a deposition sink. Indeed, the

closeness of a convex surface to the counter electrode, as

the source of ionic release, is another contributing factor.

In fact, the same mechanism is responsible for the further

semi-exponential growth of dendrites in any scale. During

each pulse period the ions accumulate at the dendrites tips

(unfavorable) due to high electric field in convex geometry

and during each subsequent rest period the ions tend to diffuse

away to other less concentrated regions (favorable). The relax-

ation of ionic concentration during the idle period provides a

useful mechanism to achieve uniform deposition and growth

during the subsequent pulse interval. Such dynamics typically

occurs within the double layer (or stern layer [36]) which

is relatively small and comparable to the Debye length. In

high charge rates, the ionic concentration is depleted and

concentration on the depletion reaches zero [37]; Nonetheless,

our continuum-level study extends to larger scale, beyond the

double layer region [38].

Pulse method has been qualitatively proved as a powerful

approach for the prevention of dendrites [39], which has

previously been utilized for uniform electroplating [40]. In the

preceding publication we have experimentally found that the
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optimum rest period correlates well with the relaxation time

of the double layer for the blocking electrodes [41] which

is interpreted as the RC time of the electrochemical system

[42]. We have explained qualitatively how relatively longer

pulse periods with identical duty cycles D (or idle ratio γ )

will lead to longer and more quickening growing dendrites.

We developed coarse grained computationally affordable al-

gorithm that allowed us reach to the experimental timescale

(ms). Additionally, in the recent theoretical work we indicated

that there is an analytical criterion for the optimal inhibition

of growing dendrites [43].

In this paper, we elaborate further in the range of accept-

able duty cycle D for suppression of stochastically grown den-

drites and we develop an insight for the effective rest period on

the curved boundary. Subsequently we carry out experimental

investigation to verify our analytical developments on the

pulse parameters. We perform dimensional analysis to set our

formulation applicable to the large range of electrochemical

devices.

II. METHODOLOGY

The electrochemical flux is generated either from the gra-

dients of concentration ( �∇C) or electric potential ( �∇φ). In

the ionic scale, the regions of higher concentration tend to

collide and repel more and, given enough time, diffuse to

lower concentration zones, following Brownian motion. In the

continuum scale, such intercollisions could be added up and

represented by the diffusion length δ�rD as [41] 2

δ�rD =
√

2D+δt ĝ, (1)

where �rD is diffusion displacement of individual ion, D+

is the ionic diffusion coefficient in the electrolyte, δt is the

coarse time interval,3 and ĝ is a normalized vector in random

direction, representing the Brownian dynamics. The diffusion

length represents the average progress of a diffusive wave in a

given time, obtained directly from the diffusion equation [45].

However, ions tend to acquire drift velocity in the elec-

trolyte medium when exposed to electric field and during the

given time δt their progress δ�rM is given as

δ�rM = μ+ �Eδt, (2)

where μ+ is the mobility of cations in electrolyte, and �E is the

local electric field, which is the gradient of electric potential

(�E = − �∇φ). Therefore, the total effective displacement δ�r
with neglecting convection4 would be

δ�r = δ�rD + δ�rM , (3)

as represented in the Fig. 1. The pulse charging in its simplest

form consists of trains of square active period tON, followed

2The diffusion coefficient D+ is generally concentration dependent

[44], due to electroneutrality within the considerable space in the

domain and we assume it is constant in the range considered.
3δt = ∑n

i=1 δti, where δtk is the intercollision time, typically in the

range of f s.
4Since Rayleigh number Ra is highly dependent to the thick-

ness (i.e., Ra ∝ l3), for a thin layer of electrodeposition we have

Ra < 1500, and thus the convection is negligible [46].

FIG. 1. The transport elements in the coarse scale of time and

space.

by a square rest interval tOFF in terms of current I or voltage

V as shown in Fig. 2. The period P = tON + tOFF is the time

lapse of a full cycle. Hence, the pulse frequency f is

f = 1

tON + tOFF

, (4)

and the duty cycle D represents the fraction of time in the

period P that the pulse is active:

D = f tON. (5)

Based on the Eqs. (4) and (5), defining two parameters will

uniquely characterize the pulse charge. We choose them as

duty cycle D (Sec. II A) and the relaxation (i.e., rest) period

tOFF (Sec. II B) as follows next.

A. Optimum duty cycle

The vector sum in Eq. (3) indicates that the diffusion, as

a random walk, can either contribute to electromigration or

prevents its progress, depending on the local orientation of the

gradients of concentration and electric potential { �∇C, �∇φ}.
From Fig. 1 it is visually obvious that the sum of individual

diffusional displacements after the n number of collisions

within the time interval δt always is larger (or equal to) than

the on-step displacement of diffusion front during the entire

FIG. 2. Square pulse wave.
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coarse time interval δt = ∑n
i=1 δti as

n
∑

i=1

√

2D+δti �

√

√

√

√2D+
n

∑

i=1

δti. (6)

We verify Eq. (6) by induction. The equation is obvious for

value of n := 1, therefore we need to prove that if Eq. (6) is

true for the n := k, then it should be true for n := k + 1:

k+1
∑

i=1

√

2D+δti �

√

√

√

√2D+
k+1
∑

i=1

δti. (7)

Assuming that δti = δt (i.e., equal segmentation) the in-

equality Eq. (7) can be broken down as

k
∑

i=1

√

2D+δti +
√

2D+δt �

√

√

√

√2D+
k

∑

i=1

δti + 2D+δt .

Taking to the power 2, with simplification, we get the

following:

2k(k + 1)D+δt � 0 �, (8)

which means that Eq. (7) is true for any consecutive value of

k → k + 1 and therefore indefinitely for any k ∈ N. In fact,

Eq. (6) represents the extended version of triangle inequality

in terms of mean-square diffusion distance [47]. During each

pulse period tON, both diffusion and migration are active

for the ionic displacements. Therefore, depending on their

individual orientation they can help or hurt each other. Thus,

the range of ionic displacement |δ�r|ON in the pulse period is

obtained as

μ+ �Eδt −
n

∑

i=1

√

2D+δti � |δ�r|ON � μ+ �Eδt +
n

∑

i=1

√

2D+δti,

(9)

where μ+ and D+ are the mobility and the diffusion coeffi-

cient of local ions and �E is the local electric field, respectively.

For Eq. (9) to be valid, considering Eq. (6), one must have

μ+ �Eδt −
√

2D+δt � |δ�r|ON � μ+ �Eδt +
√

2D+δt . (10)

Such a random walk is succeeded with the idle period tOFF

where the diffusion is the sole drive for the relaxation. To have

uniform electrodeposition, the average progress of diffusive

wave in the rest period tOFF has to be competitive enough with

the pulse interval tON, hence
√

2D+tOFF � μ+ �EtON ±
√

2D+tON. (11)

Without further look into Eq. (11), it is obvious that tOFF �

tON. For simplification, we define the idle ratio as γ := tOFF

tON

and further elaboration leads to

γ ± 2
√

γ + 1 − μ+| �E|2
2RT

tON � 0. (12)

The solution to Eq. (12) represents the idle ratio for effec-

tive fading as

γ �

(

1 ± |�E|
√

2μ+tON

RT

)2

, (13)

FIG. 3. The curved dendrites with the concentration gradient the

vicinity of surface.

and the duty cycle D in terms of the idle ratio γ is obtained as

D = tON

tON + tOFF

= 1

1 + γ
. (14)

Noting the Einstein relationship (D+ = μ+RT ), where R is

the universal gas constant and T is the temperature. the range

of acceptable duty cycle D would be

D �
1

(

1 + |�E|
RT

√

D+

2 f

)2

± 1

. (15)

B. Optimum relaxation

The dendritic tip in fact attracts a significant number of

ions due to high electric field. Given sufficient time, such ionic

concentration profile can disappear in the vicinity of curved

electrodeposits during subsequent idle period. Therefore, the

relaxation of concentration plays a key role for preventing

dendritic deposition. In fact, the oscillation of the concentra-

tion gradient repeatedly occurs during each pulse-rest period

[37]. Herein, we address a time measure for concentration

relaxation in the continuum scale with the curved boundary

rising from the tip of growing dendrites.

The schematics of the convex dendrites is shown in Fig. 3

with the surrounding double layer of thickness of κ and the

outer electro-neutral medium. The color gradient represents

the concentration profile in the double-layer region. The ra-

dius of curvature rd could vary from atomic radius (rd ≈
rLi+ → 10−9 m) [41] to nearly flat surfaces (rd → ∞). Such

a wide range makes orders-of-magnitude of difference in the

electric field and concentration dynamics, making it critical

factor to consider. We define the normalized dendrite radial

distance r̂ ∈ [0, 1] from the tip as

r̂ := r − rd

κ
, (16)

where r is the center of curvature. Subsequently, we can define

the normalized concentration Ĉ ∈ [0, 1] as

Ĉ(r̂) := C(r̂)

C∞
, (17)

where the index ∞ represent the ambient electroneu-

tral medium. The typical diffusion equation in polar 2D
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coordinates is defined as5

∂C

∂t
= �∇ · (D+ �∇C)

=
(

∂

∂r
+ 1

r

∂

∂θ

)[

D

(

∂C

∂r
+ 1

r

∂C

∂θ

)]

= D+
(

∂2C

∂r2
+ 1

r

∂C

∂r

)

, (18)

where r and θ are the radial and azimuthal directions. Using

the chain derivative and noting Eq. (17), we get

∂C

∂t
= ∂C

∂Ĉ

∂Ĉ

∂t
= C∞

∂Ĉ

∂t
. (19)

Respectively, for the radial space derivative is obtained,

considering Eq. (16), as

∂C

∂r
= ∂C

∂Ĉ

∂Ĉ

∂ r̂

∂ r̂

∂r
= C∞

κ

∂Ĉ

∂ r̂
. (20)

The second radial derivative is, respectively, obtained as

∂2C

∂r2
= ∂

∂r

(

∂C

∂r

)

= ∂

∂r

(

C∞
κ

∂Ĉ

∂ r̂

)

= C∞
κ

∂

∂ r̂

(

∂Ĉ

∂ r̂

)

∂ r̂

∂r
= C∞

κ2

∂2Ĉ

∂ r̂2
. (21)

Therefore, replacing all the obtained terms from Eqs. (19),

(20), and (21) into Eqs. (18) and simplification leads to

κ2 ∂Ĉ

∂t
= D+

(

∂2Ĉ

∂ r̂2
+ κ

rd + κ r̂

∂Ĉ

∂ r̂

)

. (22)

Regarding the boundary conditions, while the concentra-

tion is depleted in the double layer, in the outer boundary

(r̂ → 1) it remains as the ambient value C∞:

Ĉ(1, t ) = 1. (23)

During the charge period, a constant reduction ionic flux

j is fed to the dendrite and, respectively, during the idle

period the net sum of the ionic flux between the dendrites and

electrolyte is zero due to equilibrium. Therefore,

∂Ĉ

∂ r̂
(0, t ) = κ

C∞

∂C

∂r
= − κ j

C∞D+ Pulse,

∂Ĉ

∂ r̂
(0, t ) = 0 Rest. (24)

Equation (22) can be solved numerically using a finite dif-

ference method where the Ĉ
j

i represents the concentration

in the radial direction r̂(i) and at the time t ( j). Performing

segmentation in the time δt and space δr̂ and utilizing the

scheme of forward-move in time and space (FTFS), we arrive

5The convection in the azimuthal direction θ̂ is neglected due to

below-threshold Rayleigh number (Ra < 1500).

at the following:

Ĉ
j+1

i − Ĉ
j

i

δt

= D+
[

1

κ2

Ĉ
j

i+1−2Ĉ
j

i +Ĉ
j

i−1

δr̂2
+ 1

κ (rd+κ r̂)

(

Ĉ
j

i+1−Ĉ
j

i

δr̂

)]

.

(25)

Equation (25) can be rearranged in terms of individual con-

centration terms as

C
j+1

i =
(

1 − 2

κ2

D+δt

δr̂2
− D+δt

(rd + κ r̂)κδr̂

)

C
j

i

+
(

D+δt

κ2δr̂2
+ D+δt

(rd + κ r̂)κδr̂

)

Ĉ
j

i+1 + 1

κ2

D+δt

δr̂2
Ĉ

j

i−1,

(26)

which can be simplified to the following:

Ĉ
j+1

i =
(

1 − 2Q1

δr̂2
− r̂

δr̂
Q2

)

Ĉ
j

i +
(

Q1 + r̂

δr̂
Q2

)

Ĉ
j

i+1

+ Q1Ĉ
j

i−1. (27)

The terms Q1 and Q2 are the dimension-free quotients, as

follows:

Q1 = D+δt

κ2

Q2 = D+δt

(rd + κ r̂)κ r̂
. (28)

Equation (27) should possess enough resolution in time δt

to capture the variations in space δr̂. Therefore, the stability

criterion requires for the coefficient of Ĉ
j

i to be nonnegative:

δr̂2 − D+δt

(rd + κ r̂)κ
δr̂ − 2D+δt

κ2
� 0, (29)

which is a parabolic equation in terms of δr̂. Therefore, noting

r̂max = 1, we have

δr̂ �
D+δt

2κ (rd + κ )
± 1

2

√

(

D+δt

κ (rd + κ )

)2

+ 8
D+δt

κ (rd + κ )
. (30)

Looking closer at the term 8 D+δt
κ (rd +κ )

, the nominator in fact

represents the square of the progress for the diffusive wave

during the time δt , which, to be captured, must fall inside

the double layer, with the scale of κ . In other words, D+δt �

κ2 < κ (rd + κ ) ⇒ D+δt
κ (rd +κ )

< 1. Thus, for Eq. (30) to be true,

simplification of the right-hand side will lead to

δr̂ �
2D+δt

(rd + κ )κ
, (31)

noting the outer radius rO we have rd + κ := rO from Fig. 3.

Equation (31) in fact inherits the scale-free time measure for

concentration dynamics as

δt̂ = D+δt

κ (κ + rd )
, (32)
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FIG. 4. The concentration profile during the rest period tOFF

(color) and the subsequent pulse interval tON (dots).

and the dimension-free space-time criterion for all r̂ ∈ [0, 1]

is obtained as

δt̂

δr̂
<

1

2
. (33)

The evolution of concentration profile Ĉ from Eq. (22)

during the entire cycle of pulse-rest has been shown in Fig. 4

with the constants given in Table I.

III. EXPERIMENTAL

The dendritic measurements have been carried out in a

manually fabricated electrolytic cell [49] that provides the

possibility of in situ observation of growing dendrites from the

periphery in real time, as shown in Fig. 5(a). The sandwich

cell consists of two Li0 foil disk electrodes (D = 1.59 cm)

with the interelectrode separation of L = 0.32 cm by means

of a transparent acrylic PMMA housing. The fabricated

cells were filled with 0.4 cm3 of LiPF6 in a the stoichio-

metric compound of EC : EMC ≡ 1 : 1. We performed the

operations in an argon-filled glovebox (H2O, O2 < 0.5 ppm).

TABLE I. Simulation parameters.

Parameter D+ κ j rd

Value 2.58 × 10−10 20 10−4 20

Unit m2/s μm C/m2s nm

Ref. [16] [30] [48] [48]

Multiple such cells were electrolyzed with current density

pulse trains consisting of a range of frequencies f , generated

by a programmable multichannel charger. After the passage of

48 mAh (≈173◦C) through the cells, three images within the

periphery of 120◦ were taken by means of Leica M205FA op-

tical microscope through the acrylic separator. The image pro-

cessing algorithm given in Fig. 5(c) is described as follows:

(1) The RGB image is read to the program by three values

of {R, G, B} ∈ [0, 255] and has been converted to a gray-scale

image I with individual values of range Ii, j ∈ [0, 1].

(2) The image is binarized from Otsu’s method. For this

purpose a critical grayness threshold Ic has been chosen to

approximate the gray-scale image I with a binarized image J

as follows:

Ji, j =
{

1 Ii, j � Ic

0 Ii, j < Ic

.

The threshold value Ic has been chosen to minimize the

weighted intraclass variance σ 2 defined as

σ 2 = ω0σ
2
0 + ω1σ

2
1 ,

ω0 + ω1 = 1,

where ω0 and ω1 are the total fraction of element divided by

the value of Ic and σ 2
0 and σ 2

1 are their respective variances

[50].

(3) The circular sandwich cell with the radius R has been

divided into three arcs with the angle of 2π
3

and width incre-

mental length of δx, which is supposed to be projected to a 2D

plane with the incremental width of δx′. From Fig. 5(a), due to

geometry, we have x = D
2

sin(θ ), → dx = D
2

cos(θ )dθ , where

FIG. 5. Experimental procedure. (a) Naked-eye observation of dendrites [19], (b) Sample tracking of the suppression for f = 100 Hz, and

(c) Extracting the dendrite measure from experimental images.
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TABLE II. Experimental parameters.

Parameter f i l R T C∞ |Ẽ|max
a

Value unit {25, 40, 100, 250, 1000} 1 3.175 0.795 298 1 108

mHz mA/cm2 mm cm K M N/m

aThe maximum value of electric potential (|Ẽ|max) is far more than the average electric filed in the interelectrode space, due to the closer

proximity of the dendritic microstructures to the counterelectrode, as well as the extremely high curvature of the dendrite, reachable to atomic

scale; i.e., |Ẽ|max ≫ �V

l
.

cos(θ ) =
√

1 − 4x2

D2 ; hence,

δx′ = δx
√

1 − 4x2

D2

,

where D is diameter of the sandwich cell [51].

(4) Starting from the electrode surface, the occupied space

by the dendrites has been calculated by the square site perco-

lation paradigm [52].

(5) The infinitesimal calculations have been integrated and

normalized to interelectrode distance (λ̂i := λi/l ) to get the

dendrite measure λ̄, as shown in Fig. 5(c), as

λ̄ = 1

πDl

3
∑

k=1

∫ + π
3

− π
3

λ̂k (θ )
D

2
dθ

= 1

πDl

3
∑

k=1

∫ + π
3

− π
3

λ̂k (x)dx
√

1 − 4x2

D2

. (34)

The integral Eq. (34) has been obtained by incremental sum

from experimental data. The optimal duty cycle D has been

considered where the sensitivity of dendrites metric λ̄ to duty

cycle D is less than 10%. Hence,

Dopt :≡
{

�λ̄

�D
� 0.1

}

.

FIG. 6. The regimes based on duty cycle D and frequency f

showing the safe/unsafe charging zones. ×, Experimental data; •,

theoretical limit.

Figure 5(b) shows such investigation for the sample pulse

frequency of f = 100 Hz.6 The experimental parameters for

further data are given in the Table II.7

IV. RESULTS AND DISCUSSION

A. Duty cycle

Figure 6 visualizes the range of acceptable duty cycle D

for the suppression of microstructures. In fact, its theoretical

limit can be obtained when the pulse frequency f is increased

indefinitely as8

Dmax = lim
f →∞

1
(

1 + |�E|
RT

√

D+

2 f

)2

+ 1

= 1

2
.

Additionally, in Fig. 6, the Controlled region shows the

safe zone for pulse charging where the ionic progress in the

idle period is competitive enough with the pulse duration.

Vice versa, the Runaway region represents the regime where

the average ionic lead during pulse wave takes over the rest

period, and therefore the dendritic growth would be exacer-

bated. Nonetheless, the Intermediate region shows the role of

random walk where the certainty is less than the other areas.

The experimental observations in this figure also illustrate a

very high agreement with the analytical trend.

Additionally, it is obvious that the pulse duty cycle D

correlates inversely with the diffusion coefficient D+ and to

a higher extend to the magnitude of the electric field | �E|. Both

parameters exacerbate the growth kinetics and in tradeoff, the

duty cycle would have to become more conservative. In fact,

the augmentation of electric field in the dendritic tips during

the real-time growth causes the quickening growth behavior,

which has been addressed before [31,43].

B. Concentration profile

Looking closer at the depletion-accrual cycle of concentra-

tion during full pulse-rest period shown in Fig. 4, we have the

6While the resolution of some images would not be quite high due

to observation conditions from postexperiment acrylic separator, they

suffice for binarization purpose shown in Fig. 5(c) and extracting the

figure of merit λ̄.
7Note that the current density i and the ionic flux j are correlated

with i = zF j, where z is the valence number of charge carriers and

F = 96.5kC/mol is Faraday’s constant, representing the amount of

charge per mole.
8Note that the lower bound has been considered for the inequality

to be true in all instances.
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TABLE III. The role of curvature on concentration dynamics versus flat surface.

Curvature Convex (dendrites) Concave (pores)

Period
∂2C

∂r2

1

r

∂C

∂r

∂C

∂t

1

r

∂C

∂r

∂C

∂t

Pulse (formation) − + Slower − Faster

Rest (relaxation) + + Faster − Slower

following inequality:
∫ 1

0

Ĉ(r̂, t )dr̂ � 1. (35)

The comparison of the dynamics of ionic concentration,

versus the dendrite growth rate indicates that the electrodepo-

sition occurs in a significantly faster kinetics than dendrites

growth:

∂Ĉ

∂t
≫ ∂λ̂

∂t
.

Since the dendrites are the boundary condition for the

concentration development per se, such a distinction implies

that the concentration profile would occur in the quasi-steady-

state regime in the double layer region. This is particularly

true during stage of instigation of microstructures, where

the nucleation rate is negligible. Therefore, the concentration

profile would be obtained by solving the right-hand side of

Eq. (22) as

∂2Ĉ

∂ r̂2
+ κ

rd + κ r̂

∂Ĉ

∂ r̂
≈ 0. (36)

Setting the boundary condition from Eq. (24) as
∂Ĉ
∂ r̂

(0, t ) = − κ j

C∞D+ , one gets

dĈ

dr̂
≈ −κrd j

C∞D+(rd + κ r̂)
.

Integrating again and having Ĉ(1, t ) = 1 leads to

Ĉ(r̂, t ) ≈ 1 − rd j

C∞D+ ln

(

rd + κ

rd + κ r̂

)

. (37)

For linearization, Eq. (37) can be rearranged as

Ĉ(r̂, t ) ≈ 1 + rd j

C∞D+ ln

(

1 − κ − κ r̂

rd + κ

)

.

For the mesoscale dendrite the thickness of the double

layer κ is negligible relative to the radius of the dendrite

rd (i.e., κ ≪ rd ). Therefore, κ−κ r̂
rd +κ

→ 0 and log term can be

approximated with the first term of Taylor expansion as9

Ĉ(r̂, t ) ≈ 1 − rd j

C∞D+
κ (1 − r̂)

rd + κ

≈ 1 − κ j

C∞D+ (1 − r̂). (38)

Such a linear concentration profile has been addressed in the

past for the flat electrodes as well [31]. This profile has been

illustrated in Fig. 4 as well. It is obvious that at the reaction

9By Taylor expansion ln(1 + ǫ) ≈ ǫ , where 0 < ǫ≪1.

sites (r̂ → 0) the concentration correlates inversely with the

ionic flux j. To have complete depletion in the reduction sites,

we should have the following:

j∗ = D+C∞
κ

,

which resembles the flux from the linear concentration distri-

bution throughout the entire span of double layer and has been

expressed as the critical current density, where the electrode

concentration goes to zero [53,54].

C. Relaxation time

Equation (33) in fact resembles the Van Neumann stability

criterion for the typical diffusion equation as [55]

D+δt

δr2
�

1

2
. (39)

The implication shown in Eq. (32) suggests that the relax-

ation time correlates with the geometric mean of the thickness

of the double layer κ and the outer radius rO = κ + rd . The

relaxation profile during this time has also been shown in

Fig. 4, where the marginal deviation from the absolutely

uniform concentration distribution (i.e., where tOFF → ∞)

could be due to the round off error as well as truncation error

during the discrete computation [56]. The geometric mean

correlation for the relaxation time has been addressed before

as the RC time of the system for blocking flat electrodes [42],

which implies that the regime of relaxation time would vary

across the morphology of the electrodeposits with varying

radius of curvature from atomic scale in the dendritic tips, to

the completely flat surface in smooth areas (rd ∈ [ratom,∞]).

Therefore, the homogenized relaxation time would have the

following span10:

κ (κ + rd )

D+ � t
opt

OFF �
κl

D+ . (40)

Nevertheless, the overall relaxation time of the heteroge-

neous morphology is determined by the longest relaxation

time as the most conservative case, belonging to the flat zones.

D. Geometry

As shown in Fig. 3, the convex boundary of dendritic

interface is exposed to expanded space in the double-layer

medium (rO > rd ). Such geometry alters the dynamics of

concentration gradient relative to flat surface during the pulse-

rest cycle. During the pulse period (i.e., formation of con-

centration gradient) the dendritic sites have limited space

10The counterelectrode does not geometrywise interfere with the

double layer; i.e., κ ≪ l .
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FIG. 7. The time regime for concentration gradient in the convex

dendrites.

for the higher feed of ions from the largest space. Hence,

the depletion of concentration occurs in slower rate, whereas

during the relaxation, there will be larger free domain to

diffuse into, relative to flat surface. Therefore, the relaxation

occurs with faster rate for convex surfaces. This is also

obvious from Eq. (22), where the term 1
r

∂
∂r

would alter the

concentration dynamics as illustrated in Table III. The sign of

the second derivative ∂2C
∂r2 is easily discernible from curvature

of the concentration profile in Fig. 4, which is identical for

all morphologies concerned [57,58]. For convex dendrites,

the curvature term slows down the formation of concentration

gradient, whereas it accelerates the relaxation rate. Following

the same phenomenology, the relaxation in concave surfaces

(i.e., pores) occurs at faster dynamics, as the concentrated

atoms have relatively less space to diffuse into. Respectively,

the curvature would resist the relaxation for the pores due to

lack of space. Such dynamics translates into the number of

iterations for convergence in our computations.

The concentration gradient �∇C plays the major role for

nonuniform localization of dendritic structures and has a non-

linear behavior in time. During pulse period, as �∇C decreases,

the rate of relaxation decreases as well and vanishes when

converging to equilibrium (i.e., uniform profile). We define

the depletion measure �(t ) for tracking its dynamics as

�(t ) := 1 − Ĉi(t ), (41)

where Ĉi(t ) is the concentration of the interface (i.e., surface

of the dendrite). The variation of depletion measure �(t )

during the full pulse-rest period is shown in Fig. 7, assuming

that the depletion current density meets the critical value

(i.e., j � j∗) [53]. As is discussed in Table III, the formation

of such gradient occurs in a longer time period than the

Sand’s time [59], whereas the relaxation occurs faster rate

(i.e., shorter time) than the flat electrode. This is also obvious

from Eq. (40).11

11Obviously based on the geometry of the electrochemical cell.

The interelectrode distance is the largest dimension among all the

parameters considered. Therefore, rd + κ � l .

FIG. 8. Extended range of random walk during pulse interval,

compared with the progress of diffusion wave in the rest period.

Looking at the extended range of diffusion-migration dy-

namics at provided more insight to the range of duty cy-

cle. The diffusion length scales with square root of time

(δ�rD ∝ t
1
2 ), whereas the migration lead scales linearly with it

(δ�rM ∝ t). Therefore, one expects that given a sufficient time

δteq, the migration front would take over the diffusion lead.

The hypothetical comparison of the progress of sole-diffusive

and sole-migrative waves is possible from Eqs. (1) and (2)

combined with the Einstein relationship (D+ = μ+RT ) [34]:

δteq = 2RT

μ+| �E|2
, (42)

where R is gas constant12 and T is temperature. Closer look

at the dynamics of progress during pulse and rest periods

from Eq. (9) leads to Fig. 8. It is clear that during the initial

moments, the progress in the rest period could be more com-

petitive with the pulse time. From the Eq. (13), initially, the

idle ratio γ decays exponentially versus the dimension-less

charge period tON. The exponential decay behavior indicates

that relatively shorter amount of idle ratio is needed so that

the diffusion lead would catch up the progress during applied

pulse period. This is also obvious from Eq. (12), as the term√
γ is comparable and in the order of γ . As the pulse period

tON increases, by neglecting the lower order terms, we reach to

the limit γ ∝ tON, which directly means tOFF ∝ t2
ON, therefore

for higher applied pulse period tON, the equivalent idle period

tOFF for concentration relaxation has to be significantly higher.

As well in Eq. (15) if tON increase indefinitely, the correlation

of the needed rest period tOFF for the given pulse period tON

will move toward linear relationship from exponential decay

behavior. On the other extreme, the application of indefinitely

high pulse frequency f (i.e., tON → 0) might not let the

ions reach the reaction sites. Therefore, the fine-enough pulse

period would make the applied rest period for the charge

relaxation easier to be competitive with it, as depicted in

Fig. 6.

12R = 8.314 J/mol K
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V. CONCLUSIONS

In this paper, we have performed analytical developments

from stochastic ionic dynamics for the effective suppression

of growing dendritic microstructures during electrodeposi-

tion. We defined such square pulse charging parameters in

terms of the range of pulse duty cycle D and the respective

idle time period tOFF. Our model considers the localizations

of both ionic concentration and electric field within the in-

terface of the electrochemical cell, where the nonlinear role

of the dendrite curvature on the relaxation is demonstrated

in terms of cell geometry and the transport property of the

electrolyte solution. The results are useful for estimating the

effective charging for dendrite-prone electrochemical environ-

ments, particularly those of involving metallic electrodes (i.e.,

lithium, etc.).
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