
Finite Quantification in Hierarchic Theorem Proving

Peter Baumgartner1, Joshua Bax1, and Uwe Waldmann2

1 NICTA� and Australian National University, Canberra, Australia
2 MPI für Informatik, Saarbrücken, Germany

Abstract. Many applications of automated deduction require reasoning in first-
order logic modulo background theories, in particular some form of integer arith-
metic. A major unsolved research challenge is to design theorem provers that are
“reasonably complete” even in the presence of free function symbols ranging into
a background theory sort. In this paper we consider the case when all variables
occurring below such function symbols are quantified over a finite subset of their
domains. We present a non-naive decision procedure for background theories ex-
tended this way on top of black-box decision procedures for the EA-fragment
of the background theory. In its core, it employs a model-guided instantiation
strategy for obtaining pure background formulas that are equi-satisfiable with the
original formula. Unlike traditional finite model finders, it avoids exhaustive in-
stantiation and, hence, is expected to scale better with the size of the domains. Our
main results in this paper are a correctness proof and first experimental results.

1 Introduction

Many applications of automated deduction require reasoning in first-order logic mod-
ulo background theories, in particular some form of integer arithmetic. A major un-
solved research challenge is to design theorem provers that are “reasonably complete”
for quantified formulas, in particular in presence of free function symbols ranging into
a background theory sort (“free BG-sorted operators”, for short). Such formulas arise
frequently when reasoning on data structures with specific properties, e.g., symmetric
arrays over integers and sorted lists over integers. Modelling such data structures is
easy when full quantification and free integer-sorted function symbols are available to
axiomatize the array access function and the list head function respectively.

Unfortunately, (refutationally) complete theorem proving in the presence of free BG-
sorted operators is intractable in general. For instance, just adding one free predicate
symbol to linear integer arithmetic results in a Π1

1 -hard validity problem [12]. Theorem
proving approaches hence have to circumvent this problem in one way or the other.
On the one hand, SMT-solvers [18] generally use instantiation heuristics [10,16] for
reducing the input problem to a quantifier-free one, and these are complete only in
rather restricted cases [11]. On the other hand, approaches rooted in first-order theorem
proving either are incomplete; do not accept free BG-sorted operators at all [13,21,9,5]
or, are complete only for certain fragments or under certain conditions [3,1,14,6,7].

� NICTA is funded by the Australian Government through the Department of Communications
and the Australian Research Council through the ICT Centre of Excellence Program.

S. Demri, D. Kapur, and C. Weidenbach (Eds.): IJCAR 2014, LNAI 8562, pp. 152–167, 2014.
c© Springer International Publishing Switzerland 2014

Finite Quantification in Hierarchic Theorem Proving 153

In practice, lack of completeness is a major concern in, e.g., software verification
applications, which frequently require disproving non-valid proof obligations. In such
cases, incomplete theorem provers run out of resources or report “unknown” instead
of detecting non-validity. We address this problem by working with quantification over
finite segments of the background sorts, e.g., the integers. Our underlying methodology
assumes that from a user’s point of view, data structures over the integers can often be
supplanted by data structures over reasonably large finite segments of the integers, say,
from −Maxint to +Maxint, as good-enough approximations. As no other restrictions
apply, our method should be widely applicable in practice. Our method is also refuta-
tionally sound wrt. the standard semantics. That is, if our algorithm determines unsat-
isfiability wrt. finite domains, the given clause set is also unsatisfiable wrt. unbounded
domains. Because of that, our approach can be seen as an extension of current quantifier
instantiation heuristics by being able to determine satisfiability wrt. finite domains.

If all quantifiers range over finite domains, decidability can be recovered in a triv-
ial way by exhaustive instantiation and calling a suitable SMT-solver afterwards. Of
course, this naive approach does not scale with the domain size and cannot be expected
to work well in practice. This problem has often been observed in the context of finite-
model finding [22,23,15,8,4,20,19]. While our method is also based on instantiation, it
is (often) far less prolific than the naive method.

More precisely, our method accepts as input a set of finitely quantified clauses. A
clause is finitely quantified if every variable occurring below a free BG-sorted opera-
tor is quantified over a finite segment of its domain. The core idea is to give the free
BG-sorted operators a default interpretation that is then stepwise refined. This default
interpretation maps every free BG-sorted operator to a constant function, and refine-
ments are done by finding exceptions to that in a conflict-driven way. After each refine-
ment, the given clause set is transformed into a certain form whose satisfiability can
be decided by existing reasoners in a black-box fashion. Suitable reasoners are, e.g.,
theorem provers implementing hierarchic superposition [3,7] and, with one more sim-
ple transformation step, SMT-solvers for the EA-fragment of the background theory.
The procedure stops after finitely many (hopefully few) refinement steps, either with a
representation of a model or a set of ground instances obtained from exceptions which
demonstrates the unsatisfiability of the given clause set.

We preview our method with an example. Let N be the following clause set:

(1) read(write(a, i, x), i) ≈ x (4) 1 ≤ m ∧m < 1000
(2) read(write(a, i, x), j) ≈ read(a, j) ∨ i ≈ j (5) read(a,m) < read(a,m + 1)
(3) read(a, i) ≤ read(a, j) ∨ ¬(i < j) ∨ i � [1..1000i] ∨ j � [1..1000 j]

where t ∈ [l..h] abbreviates the formula l ≤ t∧ t ≤ h for any integer-sorted terms t, l and
h. Variables are typeset in italics, e.g, x, and operators in sans-serif, e.g., read, a and m.
The axioms (1) and (2) are the standard axioms for integer-sorted arrays with integer
indices. The axiom (3) states that the array a is sorted within the domain [1..1000] for i
and j. Annotating the upper bounds as 1000i and 1000 j facilitates replacing them with
different values for a given variable, see below. The clauses (4) constrains the integer
constant m to the stated range. The task is to confirm that N is satisfiable.

In order to check satisfiability with hierarchic superposition, the input clause set has
to be sufficiently complete (cf. Section 2). In the example, sufficient completeness means

154 P. Baumgartner, J. Bax, and U. Waldmann

that in every model of (1)-(5) wrt. pure first-order logic every ground read-term must
be equal to some background term. With the axioms (1) and (2) every write-term inside
of a read-term can be eliminated, and so the only critical terms are applications of read
to the array constant a. The clauses (3) and (5) constrain the interpretation of terms
of the form read(a, t) but do not enforce sufficient completeness. Achieving sufficient
completeness for ground clauses like (5) is easy, one just needs to add “definitions” like
(5b) read(a,m) ≈ n0 and (5c) read(a,m + 1) ≈ n1 where n0 and n1 are fresh integer-
sorted parameters (symbolic constants) and replace the clause (5) by (5a) n0 < n1.
Indeed, our transformation does all that (and so does our earlier calculus in [7]).

The more difficult part concerns the non-ground clause (3). Our procedure gener-
alizes the above mechanism of introducing definitions and applying them to the non-
ground case (see Section 3). For that, it uses a candidate model which initially is the
default interpretation that maps all read-terms of a particular shape to the same arbi-
trary symbolic constant. This results in the following transformation of clause (3):

(3a) n3 ≤ n4 ∨ ¬(i < j) ∨ i � [1..1000i] ∨ j � [1..1000 j]
(3b) read(a, i) ≈ n3 ∨ i � [1..1000i] (3c) read(a, j) ≈ n4 ∨ j � [1..1000 j]

Clauses (3b) and (3c) are the definitions for the default interpretation, one per occur-
rence of a read-term in (3), and clause (3a) is clause (3) after applying these definitions.

The new clause set N1 = {(1), (2), (3a)−(3c), (4), (5a)−(5c)} now needs to be checked
for satisfiability. Because the clause set N1 is sufficiently complete and hierarchic su-
perposition decides the underlying fragment, we get a definite result.

The clause set N1 is in fact unsatisfiable. Because this only means that N is not
satisfied using the current model candidate, the search for a model needs to continue.
This is done by refining the default interpretation at a critical point that is responsible
for unsatisfiability. Our algorithm determines that point as an adjacent one to a maximal
sub-domain that results in satisfiability. In the example, this is the sub-domain [1..999i]
for the variable i and the point is 1000. That is, the set N2 obtained from N1 by replacing
everywhere 999i by 1000i is satisfiable, while adding back 1000 to [1..999i] makes
it unsatisfiable again. The refinement then is done by excluding the point 1000 from
the default interpretation and providing a separate definition for it. The corresponding
transformation of clause (3) hence looks as follows :

(3a1) n31 ≤ n4 ∨ ¬(i < j) ∨ i � [1..1000i] \ {1000} ∨ j � [1..1000 j]
(3a2) n32 ≤ n4 ∨ ¬(1000 < j) ∨ j � [1..1000 j]
(3b1) read(a, i) ≈ n31 ∨ i � [1..1000i] \ {1000} (3c) read(a, j) ≈ n4 ∨ j � [1..1000 j]
(3b2) read(a, 1000) ≈ n32

Clauses (3b1) and (3b2) provide the modified definitions and clauses (3a1) and (3a2)
are the correspondingly rewritten versions of (3). Let N3 = {(1), (2), (3a1) − (3c), (4),
(5a) − (5c)} be the result of the current transformation step.

The clause set N3 is still unsatisfiable. In the next round, the new upper bounds
required for the clauses in N3 to have satisfiability are 999 j and 1000i. Transforming
clause (3) wrt. the points 1000 for j and 1000 for i from the previous step gives:

Finite Quantification in Hierarchic Theorem Proving 155

(3a1) n31 ≤ n41 ∨ ¬(i < j) ∨ i � [1..1000i] \ {1000} ∨ j � [1..1000 j] \ {1000}
(3a2) n32 ≤ n41 ∨ ¬(1000 < j) ∨ j � [1..1000 j] \ {1000}
(3a3) n31 ≤ n42 ∨ ¬(i < 1000) ∨ i � [1..1000 j] \ {1000}
(3a4) n32 ≤ n42 ∨ ¬(1000 < 1000)
(3b1) read(a, i) ≈ n31 ∨ i � [1..1000i] \ {1000} (3b2) read(a, 1000) ≈ n32

(3c1) read(a, j) ≈ n41 ∨ j � [1..1000 j] \ {1000} (3c2) read(a, 1000) ≈ n42

Let N4 = {(1), (2), (3a1) − (3c2), (4), (5a) − (5c)} be the result of the current transfor-
mation step. This time, N4 is satisfiable, and so is N, with the same models. If I is any
such model we have I(m) = 999, I(read(a, i)) = k, for some integer k and all i = 1..999,
and I(read(a, 1000)) = l for some integer l > k. (We present the general model finding
procedure and its correctness results in Section 4.)

The example is solved after two iterations of transformation steps. In general, each
transformation step needs O(m · log(n)) prover calls to determine the sub-intervals and
the next point as explained above, where m is the number of variables in the given
clause set after making clauses variable-disjoint and n is the size of the largest domain.
In total, with m = 2 and n = 1000 this accounts for 2 · (m · log(n)) ≤ 40 theorem prover
calls, however each one rather simple. By contrast, the full ground instantiation of the
clauses (3)-(5) has a size of nm = 106 which, in general, grows too quickly for current
theorem provers or SMT solvers. In the worst case, though, our method also requires
full ground instantiation (but is not worse). This happens when the default interpretation
is unsuitable for the whole domain, so that separate definitions are needed for all points
to establish (un)satisfiability. In Section 5 we report on first experimental results.

Related Work

Related work comes from several directions. Procedures for computing models of first-
order logic formulas without background theories have a long tradition in automated
reasoning. MACE-style model finding [8] utilizes translation into propositional SAT
or into EPR [4] for deciding satisfiability wrt. a given candidate domain size k; SEM-
style model finding [22,23,15] utilizes constraint solving techniques, again wrt. k. The
main problem is scalability wrt. both the domain size k and the number of variables in
the input clause set, which severely limits the applicability of both styles in practice.
Recently, Reynolds, Tinelli, Goel, Krstić, Deters and Barrett proposed a finite model
finding procedure in the SMT framework that addresses this problem by on-demand
instantiation techniques [20,19]. This way, their work is conceptually related to ours,
but, unlike ours, they allow quantification only over variables ranging into the free sort.
An extension for quantifying variables over background domains such as the integers
does not seem straightforward and is left as future work in [20].

Heuristic instantiation is the state of the art technique for handling quantified formu-
las in SMT-solvers [10,16]. These heuristics perform impressively well in practice, but
in general are incomplete even for pure first-order logic. Ge and deMoura [11] propose
a technique where the ground terms used for instantiation come from solving certain set
constraints. They obtain completeness results for the fragment where every variable oc-
curs only as an argument of a free function or predicate symbol. Interestingly, they also

156 P. Baumgartner, J. Bax, and U. Waldmann

use the notion of a default interpretation in a similar way as we do. However, even with
certain extensions their approach remains incomparable to ours. For example, terms
like f(x+ y) are disallowed, but are acceptable in our approach when x and y are finitely
quantified.

Regarding related work in first-order theorem proving, the problem we are consid-
ering has been tackled in the framework of the hierarchic superposition calculus [3].
Weidenbach and Kruglow [14] consider the case when all background-sorted terms are
ground, similarly to our calculus in [7]. In [6] we have identified a certain syntactic
fragment that enables complete reasoning.

2 Hierarchic Theorem Proving

Hierarchic superposition [3,7] is a calculus for automated reasoning in a hierarchic
combination of first-order logic and some background theory, for instance some form
of arithmetic. We consider the following scenario:1

We assume that we have a background (“BG”) prover that accepts as input a set of
clauses over a BG signature ΣB = (ΞB, ΩB), where ΞB is a set of BG sorts and ΩB is
a set of BG operators. Terms/clauses over ΣB and BG-sorted variables are called BG
terms/clauses. The BG prover decides the satisfiability of ΣB-clause sets w. r. t. a BG
specification, that is, a class of term-generated ΣB-interpretations (called BG models)
that is closed under isomorphisms. We assume that ΩB contains a set of distinguished
constant symbols ΩD

B ⊆ ΩB that has the property that any two distinct d1, d2 ∈ ΩD
B are

interpreted by different elements in every BG model. We refer to these constant symbols
as (BG) domain elements. We also assume that ΣB contains infinitely many parameters,
that is, additional constants that may be interpreted freely by arbitrary elements of the
appropriate domain. In examples we use {0, 1, 2, . . . } to denote BG domain elements,
{+,−, <,≤} to denote (non-parameter) BG operators, and the possibly subscripted letters
{x, y} and {α, β} to denote variables and parameters, respectively. We assume that the BG
specification is the class of all models of linear integer arithmetic (LIA).

The foreground (“FG”) theorem prover accepts as input clauses over a signature
Σ = (Ξ,Ω), where ΞB ⊆ Ξ and ΩB ⊆ Ω. The sorts in ΞF = Ξ \ ΞB and the operator
symbols in ΩF = Ω \ΩB are called FG sorts and FG operators. The intended semantics
is that of conservative extensions of the BG specification, i. e., Σ-interpretations whose
restriction to ΣB is a model of the BG specification. Below we refer to satisfiability in
this sense as B-satisfiability.

We use {a, b, c, f, g} to denote FG operators. A Σ-term is an FG term if it is not a BG
term, that is, if it contains at least one FG operator or FG variable (and analogously for
equations, literals, or clauses). We emphasize that for an FG operator f : ξ1 . . . ξn → ξ0
inΩF any of the ξi may be a BG sort. Consequently, FG terms may have BG sorts. Every
FG operator f with a BG range sort ξ0 ∈ ΞB is called a free BG-sorted (FG) operator.

After abstracting out BG terms other than BG domain elements and variables that
occur as subterms of FG terms,2 the FG prover saturates the set of Σ-clauses using the

1 Due to a lack of space, we can only give a brief overview of the calculus and of the semantics
of hierarchic specifications. We refer to [7] for the details.

2 Abstracting out a term t that occurs in a clause C[t] means replacing C[t] by x � t ∨ C[x] for
a new variable x.

Finite Quantification in Hierarchic Theorem Proving 157

inference rules of hierarchic superposition, such as, e. g.,

Negative superposition
l ≈ r ∨C s[u] � t ∨ D

abstr((s[r] � t ∨ C ∨ D)σ)

if (i) neither l nor u is a BG term, (ii) u is not a variable, (iii) σ is an mgu of l
and u, (iv) σ maps all BG variables to BG terms, (v) rσ � lσ, (vi) (l ≈ r)σ is
strictly maximal in (l ≈ r ∨ C)σ, (vii) the first premise does not have selected
literals, (viii) tσ � sσ, and (ix) if the second premise has selected literals,
then s � t is selected in the second premise, otherwise (s � t)σ is maximal in
(s � t ∨ D)σ.

These differ from the standard superposition inference rules [2] mainly in that only the
FG parts of clauses are overlapped and that any BG clauses derived during the saturation
are instead passed to the BG prover. The BG prover implements an inference rule

Close
C1 · · · Cn

�

if C1, . . . ,Cn are BG clauses and {C1, . . . ,Cn} is
unsatisfiable w. r. t. the BG specification.

As soon as one of the two provers detects a contradiction, the input clause set has been
shown to be B-unsatisfiable.

There are two requirements for the refutational completeness of hierarchic superposi-
tion. The first one is sufficient completeness: We must be able to prove that every ground
BG-sorted FG term is equal to some BG term. Sufficient completeness of a set of Σ-
clauses is a property that is not even recursively enumerable. For certain classes of Σ-
clause sets, however, it is possible to establish a variant of sufficient completeness auto-
matically [14,7]: If all BG-sorted FG terms in the input are ground, it suffices to show
that each BG-sorted FG term in the input is equal to some BG term. This can be achieved
by adding a definition αt ≈ t for every BG-sorted FG term t occurring in a clause C[t],
where αt is a new parameter (BG constant); afterwards C[t] can be replaced by C[αt].

Since we can only pass finite clause sets to a BG prover, there is a second require-
ment for refutational completeness, namely the compactness of the BG specification. A
specification is called compact, if every set of formulas that is unsatisfiable w. r. t. the
specification has a finite unsatisfiable subset.

3 Finite Domain Transformation

We are interested in refutationally complete hierarchic theorem proving in the presence
of free BG-sorted FG operators. Unfortunately, just adding one free predicate symbol
to linear integer arithmetic results in a Π1

1 -hard validity problem. To circumvent this
problem, we work with a modified semantics and introduce a concept of finite quantifi-
cation of BG variables. This allows us to remove all free BG-sorted FG operators by a
finite domain transformation, introduced next, and use existing reasoning methods as
decision procedures on the result.

Let ξ ∈ ΞB be a BG sort. By a finite ξ-domain Δ we mean any possibly empty finite
set {d1, . . . , dn} ⊆ ΩD

B of ξ-sorted domain elements di. Set membership in Δ can be

158 P. Baumgartner, J. Bax, and U. Waldmann

expressed by a BG formula FΔ[x] in one free ξ-sorted variable x whose extension is
exactly the set Δ, in everyB-interpretation. One can always take FΔ[x] = x ≈ d1 ∨ · · · ∨
x ≈ dn, but if supported by the BG logic, as in the case of integer arithmetic, it may be
advantageous to use “compact” representations like FΔ[x] = 1 ≤ x ∧ x ≤ 20 instead.

We use set-theoretic expressions for finite ξ-domains, in particular of the form Δ \Γ,
where Γ is a finite set of domain elements of the proper sort. In the previous example,
e.g., FΔ\{3,5}[x] = 1 ≤ x ∧ x ≤ 20 ∧ x � 3 ∧ x � 5. Instead of FΔ[x] and FΔ\Γ[x]
we generally write x ∈ Δ and x ∈ Δ \ Γ, respectively, and x � Δ and x � Δ \ Γ for
their negations. We call these expressions domain predicates and treat them as literals
in clauses instead of expanding them.

Definition 3.1. A finitely quantified clause is a Σ-clause of the form D ∨ x1 � Δx1 ∨
· · · ∨ xn � Δxn such that D does not contain domain predicates, n ≥ 0, xi � x j for
1 ≤ i < j ≤ n, and every variable occurring below a free BG-sorted operator in D is
among x1, . . . , xn.

For example, f(x + 1) > α + y ∨ y > 0 ∨ x � [1..1000] is finitely quantified.

Example 3.2. Let N consist of the following two finitely quantified clauses:

(C1) f(x1) > x1 ∨ x1 � [1..1000]
(C2) f(x2 + 3) < 10 ∨ ¬(x2 > 2) ∨ x2 � [1..1000]

We formally have Δx1 = Δx2 = [1..1000], and in C1 the pseudo-literal x1 � [1..1000] is
short for ¬(1 ≤ x1 ≤ 1000). ��

Where x = (x1, . . . , xn), let Δx denote the x-indexed list (Δx1 , . . . , Δxn) of sets of
domain elements. We extend usual set operations pointwise to x-indexed lists Πx and
Δx of sets of domain elements. For instance Πx ⊆ Δx iff Πx ⊆ Δx, for each x ∈ x.

We are going to define the earlier mentioned finite domain transformation for evalu-
ating finitely quantified clauses under a given interpretation. It takes as input a finitely
quantified clause C[Δx] and sets of points Πx that provide possible exceptions to in-
terpreting the free BG-sorted operators as the constant function on the domains Δx as
specified by the default interpretation.

Definition 3.3 (Finite Domain Transformation). Let C[Δx] = D∨x1 � Δx1∨· · ·∨xn �
Δxn be a finitely quantified clause and Πx ⊆ Δx a list of sets of domain elements.

Let ClsC := ∅ and DefC := ∅ be initially empty sets of Σ-clauses. For every partition
{y1, . . . , yk} � {z1, . . . , zl} of {x1, . . . , xn} do the following:

For all substitutions γ = [z1 �→ d1, . . . zl �→ dl] such that dm ∈ Πzm :
1. Let E := Dγ
2. While E has the form E[t] where t is a minimal term with a free BG-sorted

operator at the top-level do the following:
(a) Let α be a fresh parameter
(b) Add to DefC the clause t ≈ α ∨ y1 � Δy1 \ Πy1 ∨ · · · ∨ yk � Δyk \ Πyk

(c) Set E := E[α]
3. Add to ClsC the clause E ∨ y1 � Δy1 \ Πy1 ∨ · · · ∨ yk � Δyk \ Πyk

Finite Quantification in Hierarchic Theorem Proving 159

The result is the pair FD(C, Πx) = (ClsC ,DefC), the finite domain transformation of C.

By the minimality of t in (2) we mean that no proper subterm of t is built with a free
BG-sorted operator. The finite domain transformation removes from the given finitely
quantified clause C every occurrence of a term t built with some free BG-sorted sym-
bol. Recall from Definition 3.1 that all variables in t are among x = (x1, . . . , xn). The
removal of t distinguishes whether xi is interpreted as an element of Δi \ Πi or as an
element di ∈ Πi. This is done in all possible ways by exhaustive partitioning of the
variables x and exhausting the substitution γ for all possible assignments for xi. The
set Δi \ Πi specifies those domain elements for which the interpretation of t is undistin-
guished, and the set Πi specifies those domain elements for which the interpretation of
t is distinguished, by taking different parameters α per substitution γ. In step (b) cor-
responding definitions for t are put into DefC . Step (c) applies these definitions to the
current clause E.

On complexity: the result FD(C, Πx) contains O(|x||Πx|+1) clauses. This is, because for
every xi ∈ x a choice is made for either instantiating xi exhaustively with all elements
from Πx if xi ∈ {z1, . . . , zn}, or otherwise not doing so, which explains the “ + 1”.
(Extracting out subterms does not affect the complexity.) In the worst case Πx = Δx and
all clauses stemming from the latter case are tautological. The complexity in this case
is O(|x||Πx |), which is the same as with ground-instantiation based MACE-style model
finders.

Example 3.2 (continued). Let Π(x1) = ({9}). Then FD(C1, Π(x1)) consists of the clauses

(C11) α1 > x1 ∨ x1 � [1..1000] \ {9} (C13) α2 > 9
(C12) f(x1) ≈ α1 ∨ x1 � [1..1000] \ {9} (C14) f(9) ≈ α2

where ClsC1 = {C11,C13} and DefC1 = {C12,C14}. The left clauses stem from partition-
ing {x1} as {y1} � ∅, and the right clauses from ∅ � {z1}. There are two occurrences of
Δx1 = [1..1000]. ��

There are no restrictions on nesting free BG-sorted operators, although none of our
examples shows that. For example, a literal like f(x + g(y, β)) � f (y) + y is perfectly
acceptable. The possible nesting of free BG-sorted operators necessitates the while-
loop in step (2) in Definition 3.3; removing all of them in a single step is not possible.

The sets of domain elements Δx occurring in clauses in FD(C, Πx) are all within
pseudo-literals of the form x � Δx \ Πx. Hence, both ClsC and DefC are of the form
ClsC[Δx] and DefC[Δx]. Moreover, in FD(C, Πx) , every free BG-sorted operator f occurs
only in a clause of the form f(t1, . . . , tn) ≈ α ∨ D in DefC where no ti and no literal in D
contains any free BG-sorted operator.

The finite domain transformation is generalized to clause sets by taking the union
of the finite domain transformations applied to its members. More precisely, let N =
{C1[Δx1], . . . ,Cm[Δxm]} be a finite set of finitely quantified clauses. Let us assume that
the clauses in N have been renamed apart, so that the lists of variables xi are pair-
wise disjoint, for all i = 1..m. By definition, each xi consists of pairwise different

160 P. Baumgartner, J. Bax, and U. Waldmann

variables, too. This allows us to take x as the concatenation of all xi’s and to write Δx

for the concatenation of all Δxm ’s. The clause set N hence is of the form N[Δx]. Now
let (ClsCi ,DefCi) = FD(Ci, Πx) and define FD(N, Πx) = (ClsN ,DefN) where ClsN =⋃

i=1..m ClsCi and DefN =
⋃

i=1..m DefCi .
Below, we usually denote FD(N, Πx) as a single clause set M[Δx] = ClsN ∪ DefN .

The following result follows immediately:

Proposition 3.5. Let N[Δx] be a set of finitely quantified clauses and Πx ⊆ Δx. Then
FD(N, Πx) is sufficiently complete.

Proposition 3.5 is one of the ingredients that allows us to argue for hierarchic superposi-
tion [7] as a decision procedure forB-satisfiability of the clause sets FD(C, Πx). We also
need a termination argument for derivations (compactness, cf. Section 2, is unproblem-
atic then). This is easy, for instance, in the absence of non-ground FG-sorted operators
only finitely many superposition steps exist and all of these are between the clauses in
DefC , and then only at the top-level – that is, between the literals f(t1, . . . , tn) ≈ α. Alter-
natively one can use SMT-solvers after removing all free BG-operators by exhaustive
application of a superposition-like inference rule that from premises f(t1, . . . , tn) ≈ α∨D
and f(s1, . . . , sn) ≈ β∨E derives the clause s1 � t1∨· · ·∨ sn � tn∨α ≈ β∨D∨E. In gen-
eral, hierarchic superposition can be used if it is guaranteed to terminate on FD(C, Πx).
This applies, e.g., to the example in the introduction.

The notation M[Δx] makes it easy to modify the sets Δx in pseudo-literals in clauses
in M. More precisely, if Δx = (. . . , Δx, . . .) for some x ∈ x and Γ is a set of domain
elements with the same sort as x, we denote by Δx[x �→ Γ] the update of Δx at index
x by Γ, i.e., the list (. . . , Γx, . . .). Correspondingly, C[Δx[x �→ Γ]] is the clause that is
obtained from C[Δx] be replacing Δx by Γx everywhere. For clause sets N[Δx] we define
N[Δx[x �→ Γ]] analogously.

Example 3.2 (continued). The clause set N is of the form N[Δx] where x = (x1, x2)
and Δx1 = Δx2 = [1..1000]. Now let Πx = ({9}, {6}). Then M[Πx] = FD(N, Πx) =
(ClsC1 ∪ ClsC2) ∪ (DefC1 ∪ DefC2) where ClsC2 = {C21,C23}, DefC2 = {C22,C24} and

(C21) α3 < 10 ∨ ¬(x2 > 2) ∨ x2 � [1..1000] \ {6} (C23) α4 < 10 ∨ ¬(6 > 2)
(C22) f(x2 + 3) ≈ α3 ∨ x2 � [1..1000] \ {6} (C24) f(6 + 3) ≈ α4

The clause set M[Δx[x2 �→ ∅]] = M[({9}, ∅)] is obtained by replacing the two occur-
rences of Δx2 = [1..1000] in C21 and C22 by the empty interval []. ��

We conclude this section with some lemmas that will be needed in the proof of the
main correctness result, Theorem 4.2 below. In each of them, N[Δx] is a set of finitely
quantified clauses, Πx ⊆ Δx, (ClsN ,DefN) = FD(N, Πx), and M = ClsN ∪ DefN .

Lemma 3.7. ClsN ∪ DefN is B-satisfiable iff N ∪ DefN is B-satisfiable.

Finite Quantification in Hierarchic Theorem Proving 161

Proof. For the if-direction assume that N ∪ DefN is B-satisfiable. It suffices to show
that N ∪ ClsN ∪ DefN is B-satisfiable. Observe that all clauses in ClsN can be seen
to be obtained by paramodulation inferences from clauses in N ∪ DefN , which are all
logical consequences of N ∪ DefN .

For the only-if direction assume that ClsN ∪ DefN is B-satisfiable. The definitions in
DefN are exhaustive in the sense that any instance C of a finitely quantified clause in N
obtained by ground instantiation with domain elements is congruent with some clause
in ClsN obtained by paramodulation with clauses in DefN . This entails that N ∪ ClsN ∪
DefN is B-satisfiable, and hence so is N ∪ DefN . ��
Lemma 3.8. If M[∅x] is B-unsatisfiable then N and N′ are B-unsatisfiable, where N′
is obtained from N by removing from all clauses all domain predicates.

Proof. Assume that M[∅x] is B-unsatisfiable. Every clause in M[Δx] that contains a
pseudo-literal of the form x � Δx \ Πx, for some x ∈ x, becomes a tautology in M[∅x]
after replacing x � Δx \ Πx by x � ∅ \ Πx. Deleting all these tautologies leaves us with
a (B-unsatisfiable) set M′ ⊆ M[∅x]. All clauses in M′ are either ground definitions in
DefN of the form t ≈ α (cf. Definition 3.3), or clauses in ClsN that are obtained by (re-
peated) paramodulation of the sub-clause D of a clause C ∈ N (cf. again Definition 3.3)
such that all instantiated domain predicates in the instance Cγ are satisfied. Clearly,
adding such definitions to N preservesB-satisfiability. The B-unsatisfiability of both N
and N′ then follows from the soundness of paramodulation. ��
Lemma 3.9. Let Γx be a vector of sets of domain elements of the proper sorts. For every
x ∈ x and d ∈ Πx, if M[Γx] is B-satisfiable then M[Γx[x �→ Γx ∪ {d}]] is B-satisfiable.

Proof. All occurrences of Γx in clauses in M[Γx] are within pseudo-literals of the form
x � Γx \ Πx. We are given d ∈ Πx. It follows trivially that Γx \ Πx and (Γx ∪ {d}) \ Πx

are the same sets, which immediately entails the claim. ��
Example 3.2 (continued). Let M[Δ(x1)] = FD(C1, Π(x1)) from above. Let Γ(x1) =

([5..500]) and d = 9. Then M[Γ(x1)[x1 �→ Γx1 ∪ {d}]] consists of the clauses

(C′11) α1 > x1 ∨ x1 � ([5..500] ∪ {9}) \ {9} (C13) α2 > 9
(C′12) f(x1) ≈ α1 ∨ x1 � ([5..500] ∪ {9}) \ {9} (C14) f(9) ≈ α2

Lemma 3.9 requires d ∈ Πx. Adding d to Γx does not change anything, as d is again
removed from Γx ∪ {d}: the sets ([5..500] ∪ {9})\{9} and [5..500]\{9} are the same. ��

4 Checking Satisfiability

Next we define a procedure checkSAT for checking theB-satisfiability of sets of finitely
quantified clauses. It repeatedly applies the finite domain transformation wrt. growing
sets of exception points. It stops if a transformed set has been found that is either B-
satisfiable or serves to demonstrate B-unsatisfiability.

162 P. Baumgartner, J. Bax, and U. Waldmann

1 algorithm checkSAT(N[Δx])
2 // returns ”B-satisfiable” or ”B-unsatisfiable”
3 var Πx := ∅x // The current set of exceptions
4 while true {
5 let M = FD(N, Πx)
6 if M is B-satisfiable return ”B-satisfiable” // justified by Lemma 3.7
7 if M[∅x] is B-unsatisfiable return ”B-unsatisfiable” // justified by Lemma 3.8
8 let (x, d) = find(M)
9 Πx := Πx[x �→ Πx ∪ {d}]

10 }
1 algorithm find(M[Δx])
2 // returns a pair (x, d) such that x ∈ x and d ∈ Δx \ Πx

3 let (x1, . . . , xn) = x
4 for i = 1 to n {
5 if M[∅(x1 ,...,xi) · Δ(xi+1,...,xn)] is B-satisfiable {
6 let Γ ⊆ Δxi and d ∈ Γ such that
7 M[∅(x1 ,...,xi−1) · Γxi · Δ(xi+1 ,...,xn)] is B-unsatisfiable and
8 M[∅(x1 ,...,xi−1) · (Γ \ {d})xi · Δ(xi+1 ,...,xn)] is B-satisfiable // see text
9 return (xi, d) // from Lemma 3.9 it follows d ∈ Δx \ Πx as claimed

10 }
11 }

We tacitly assume that the B-satisfiability tests in checkSAT and find are effective.
This is always the case, e.g., if there are no FG operators other than free BG-sorted
operators and the EA-fragment of the background theory is decidable.

Let us go through the run of checkSAT(N), where N = {C1,C2} from Example 3.2.
Let Π1

x = (∅, ∅) be the initially empty set of exceptions set in line 3. For M1 =

FD(N, Π1
x) in line 5 none of the termination cases applies, hence find is called. The

condition in the for-loop in find is satisfied for i = 1. In line 6, a suitable set Γ is the in-
terval [1..9] and d = 9, as M1[([1..9], Δx2)] is B-unsatisfiable and M1[([1..9] \ {9}, Δx2)]
is B-unsatisfiable. The call of find(M1) hence returns the pair (x1, 9). (In the proof of
Lemma 4.1 below we show how Γ and d ∈ Γ can be found efficiently by binary search
in the case of (linear) integer arithmetic.)

The updated set Π2
x in checkSAT now is ({9}, ∅) and we get M2[Δx] = FD(N, Π2

x) in
the next iteration. Again, the termination tests do not apply and find(M2) is called. This
time M2[(∅, Δx2)] is B-unsatisfiable and the result of find(M2) is (x2, 6).

The updated set Π3
x hence is ({9}, {6}) and M3[Δx] = FD(N, Π3

x) consists of the
clauses C11–C14 and C21–C24 already shown above. In the next iteration, the set M3[∅x]
is built, which is obtained by replacing the sets Δx1 = Δx2 = [1..1000] everywhere by
the empty interval []:

(C′11) α1 > x1 ∨ x1 � [] \ {9} (C13) α2 > 9
(C′12) f(x1) ≈ α1 ∨ x1 � [] \ {9} (C14) f(9) ≈ α2

(C′21) α3 < 10 ∨ ¬(x2 > 2) ∨ x2 � [] \ {6} (C23) α4 < 10 ∨ ¬(6 > 2)
(C′22) f(x2 + 3) ≈ α3 ∨ x2 � [] \ {6} (C24) f(6 + 3) ≈ α4

Finite Quantification in Hierarchic Theorem Proving 163

By construction, all clauses affected by the replacement are tautological. Yet, the set
M3[∅x] isB-unsatisfiable, which can be seen easily from the clauses in the right column.
The algorithm returns “B-unsatisfiable”. This is indeed correct, as, by construction, the
remaining non-tautological clauses contain and use definitions for ground instances of
the f-terms only. Because of that, our method is sound wrt. B-unsatisfiability even for
non-finitely quantified clause sets as expressed in Lemma 3.8 above.

Notice that find searches for the set Γ wrt. the whole set M = FD(N, Πx) = ClsN ∪
DefN . It would be tempting to fix DefN and search only wrt. ClsN (or vice versa) but
this would be unsound. An example for that is the clause set N = { f (x) ≥ 0 ∨ x �
Δ, f (3) ≈ 3, f (4) ≈ 4}, where Δ = [0..1000]. Using the default interpretation we
get ClsN = {α1 ≥ 0 ∨ x � Δ, α2 ≈ 3, α3 ≈ 4} and DefN = { f (x) ≈ α1 ∨ x � Δ,
f (3) ≈ α2, f (4) ≈ α3}. While ClsN[∅] ∪ DefN is B-unsatisfiable, N is B-satisfiable.
Hence the procedure in that form would be unsound.

Lemma 4.1. Whenever find is called from checkSAT on line 8 then the if-clause in the
for-loop in find is executed for some i, and find returns a pair (xi, d) such that xi ∈ x
and d ∈ Δxi \ Πxi .

Proof. Assume find(M[Δx]) is executed and that x is of the form (x1, . . . , xn). Because
the test in line 7 in checkSAT has not applied it follows that the condition in line 5 in find
is satisfied for some i in 1, . . . , n. Among all these values, the if-clause is executed for
the least one. That is, M[∅(x1,...,xi) ·Δ(xi+1,...,xn)] is B-satisfiable and M[∅(x1,...,x j) ·Δ(x j+1,...,xn)]
is B-unsatisfiable, for all j with 1 ≤ j < i ≤ n. Because i ≥ 1 we can rewrite the former
and obtain that M[∅(x1,...,xi−1) · ∅xi ·Δ(xi+1,...,xn)] is B-satisfiable. Furthermore, M[∅(x1,...,xi−1) ·
Δxi · Δ(xi+1,...,xn)] is B-unsatisfiable: if i = 1 this follows from the fact that the test in line
6 in checkSAT has not applied, and if i > 1 this follows from the minimality of i. This
shows that Γ and a d ∈ Γ exists as claimed in lines 7 and 8.

In our main application of integer arithmetic the set Γ and d ∈ Γ can be determined
efficiently, as follows: We assume the set Δxi is an interval of the form [l..u] for some
numbers l and u with l < u. From the above it follows there is a maximal number u′
with l < u′ ≤ u such that Γ := [l..u′] is as claimed. The number u′ can be determined by
binary search in the interval [l + 1..u]. By maximality, u′ is the desired element d. ��

For termination of checkSAT, instead of determining the pair (x, d) in line 11 by the
call to find, one could choose any (x, d) such that the current setΠx grows. An advantage
of using find, however, is that the relevant ground instances of the clauses C1[x1] and
C2[x2], which are C1[9] and C2[6], have been found through semantic guidance by
refining the default interpretation in only two steps.

In general terms, checkSAT/find realizes a heuristic that tries to search for a model
by deviating from the current interpretation only when a conflict arises. The conflict
is identified by the point d for the variable xi in Line 8 of find. The next round of
checkSAT continues with the correspondingly updated current interpretation by adding
d to Πxi , which may stop now with “satisfiable”, “unsatisfiable” or continue the search.

We summarize the essential properties of checkSAT in our main result as follows.

Theorem 4.2 (Correctness of checkSAT). For any set N of finitely quantified clauses,
checkSAT(N) terminates with the correct result “B-satisfiable” or “B-unsatisfiable”

164 P. Baumgartner, J. Bax, and U. Waldmann

for N. Moreover, in case of “B-unsatisfiable” the non-domain restricted version of N
is B-unsatisfiable, which is obtained from N by removing from all clauses all domain
predicates.

Proof. Termination follows from the fact that find always returns some pair (x, d) such
that x ∈ x and d ∈ Δx \ Πx, as shown in Lemma 4.1. Hence, the set Πx grows monoton-
ically in line 12 in checkSAT and there are only finitely many elements in Δx available
for that. Correctness follows from the lemmas in Section 3 as referenced in the com-
ments in checkSAT. ��

5 Experimental Results

We have implemented the checkSAT/find algorithm on top of the hierarchic superposi-
tion prover Beagle [7].3 The implementation is prototypical and currently serves only
to try out the ideas in the paper. Table 1 summarizes the experiments we carried out.

Table 1. Experimental results. Problem 4 is {f(x) � x ∨ x � Δ, f(5) ≈ 8, f(8) ≈ 5}

Problem |Δ| #Iter #TP Time
1 f(x) > 1 + y ∨ y < 0 ∨ x � Δ any 1 1 <1

2 g(x) ≈ x ∨ g(x) ≈ x + 1 ∨ ¬(x ≥ 0)
g(x) ≈ −x ∨ ¬(x < 0)
f(x) < g(x) ∨ x � Δ

10 9 32 5.5
20 20 86 55

3 f(x1, x2, x3, x4) > x1 + x2 + x3 + x4 ∨
x1 � Δ ∨ x2 � Δ ∨ x3 � Δ ∨ x4 � Δ

any 1 1 <1

4- see caption 5- see Section 1 6- see Example 3.2 6alt- see text
|Δ| #Iter #TP Time #Iter #TP Time #Iter #TP Time #Iter #TP Time
10 2 5 <1 3 15 2.3 3 12 <1 5 25 1.5
20 2 6 <1 3 17 2.6 3 14 <1 15 87 4.4
50 2 8 <1 3 19 2.8 3 19 1.1 34 239 23

100 2 9 <1 3 21 2.8 3 21 1.1 59 456 181
200 2 10 <1 3 23 2.8 3 23 1.2
500 2 11 <1 3 25 2.9 3 24 1.2

1000 2 12 <1 3 27 3.0 3 26 1.3
2000 2 13 <1 3 29 3.0 3 28 1.4
5000 2 15 <1 3 33 3.5 3 32 1.5

We have tried six problems, some of them with varying domain sizes. The problems
(1) and (6) areB-unsatisfiable, the othersB-satisfiable. The “Problem” column contains
the individual clause sets. The column “|Δ|” gives the size of the finite domains uni-
formly used in the problem clauses, e.g., |Δ| = 50 means the range [1..50]. The column
“#Iter” is the number of while-loop iterations in checkSAT needed to solve the problem
for the given Δ. The column “#TP” is the number of theorem prover calls (Beagle calls)

3 http://users.cecs.anu.edu.au/˜baumgart/systems/beagle/

http://users.cecs.anu.edu.au/~baumgart/systems/beagle/

Finite Quantification in Hierarchic Theorem Proving 165

stemming from the variousB-satisfiability checks in checkSAT/find. Finally, “Time” is
the total CPU time needed to solve the problem. All experiments were carried out on a
Linux desktop with a quad-core Intel i7 cpu running at 2.8 GHz. For comparison, we
have also run Microsoft’s SMT-solver Z3 [17], version 4.1, on our examples, using the
obvious formula representation of the domains Δ.

Some comments on the individual problems. Problem (1) is trivially solved, for any
Δ. In fact, the default interpretation is sufficient for that. Notice that the variable y is not
finitely quantified (and does not need to be). Z3 reports “unknown” on problem (1), but,
surprisingly it solves the essentially same problem f(x) > y ∨ y < 0 quickly. Problem
(2) is meant to showcase our algorithm in conjunction with Beagle’s theorem proving
capabilities. The function symbol g is “sufficiently complete” defined by the first two
clauses, and only the third clause containing the function symbol f needs finite quantifi-
cation. Z3 could not solve this problem within three minutes. We devised problem (3)
to get some insight into Z3’s capabilities on the problems we are interested in. While
it is trivial for our approach, Z3 seems to instantiate the clause in problem (3). Clearly,
there is a scalability issue here, as for about |Δ| > 60 the problem becomes unsolvable
in reasonable time.

As a side note, we found Z3s performance impressive, and it could solve problems
(4)–(6) in very short time. Indeed, we plan to integrate Z3 in our approach and expect
much better performance on many problems (Beagle’s theory reasoning component is
a rather slow implementation of Cooper’s quantifier elimination algorithm.)

Problem (4) is a simple test of the default interpretation/exception mechanism. Prob-
lem (5) is the one in the Introduction, and problem (6) is our running example.

The problems (4), (5) and (6) scale very well, as expected. The first two are proven
satisfiable using the default interpretation and a fixed number of exception points. In
problem (4) these are easily discovered from the problem and in (5) the exceptions are
quickly discovered by the search. Similarly, in problem (6) the definition for f(9) is
found quickly, which is the only one needed to establish unsatisfiability. However, this
requires to search first the domain of x1, then x2 (cf. Example 3.2). With the other way
round we obtain much worse scaling behavior, cf. the entry “6alt” in Table 1.

6 Conclusions

We have presented a method for deciding hierarchic satisfiability, or satisfiability
modulo theories, of first-order clause sets where all variables are quantified over fi-
nite subsets of background domains. The method tries to construct a model by stepwise
amending a default interpretation in a conflict-driven way by utilizing a decision proce-
dure for the EA-fragment of the background theory. It may also terminate with a set of
ground instances witnessing that no model exists. For space reasons and for clarity we
have focused in this paper on the basic principles and leave extensions for future work.
Here are some ideas.

Richer input language: One important extension concerns foreground-sorted variables
and operators, like the array-sorted variable a and the write-operator in clauses (1) and
(2) in the introduction. In the example we got away without further modifications be-
cause the axioms (1) and (2) do not pose problems for sufficient completeness and for

166 P. Baumgartner, J. Bax, and U. Waldmann

termination of hierarchic superposition. The question is under which conditions this is
possible in general. One could also try to enumerate finite segments of the foreground
domains in a Herbrand fashion, similarly as with background domains.

Our method can also be applied to certain richer syntactic fragments that require a
full-fledged theorem prover for hierarchic specifications instead of a decision procedure
for the background theory. However, this would “reverse” the common architecture by
invoking that foreground reasoner from within an outer loop. This is problematic, how-
ever, because the foreground reasoner might not terminate or be incomplete. To fix that,
it should be possible, under certain conditions, to instead integrate the checkSAT as an
inference rule into, say, hierarchic superposition and apply it only to finitely quantified
clauses as defined above. (This would directly generalize the Define-rule in [7].)

Alternative default interpretation: Taking the constant function as the default interpre-
tation for free BG-sorted operators is not always a good choice. For example, for the
clause f(x) ≈ x ∨ x � [1..1000] our method needs to amend the default interpretation
at every point. Fortunately, any interpretation can be used as a default, and the identity
function as the default interpretation for f leads immediately to a model. (On the other
hand, in this example f is already sufficiently defined and could possibly be excepted
from the transformation in the first place.)

Bernays-Schönfinkel fragment: The hierarchic superposition calculus can immediately
be instantiated with, say, an instance-based method for deciding background theories
that are given as a set of EPR-clauses. Our method, or the extensions above, could
possibly be used to integrate arithmetic reasoners, instance-based methods and super-
position in a beneficial way.

References

1. Althaus, E., Kruglov, E., Weidenbach, C.: Superposition modulo linear arithmetic SUP(LA).
In: Ghilardi, S., Sebastiani, R. (eds.) FroCoS 2009. LNCS (LNAI), vol. 5749, pp. 84–99.
Springer, Heidelberg (2009)

2. Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with selection and
simplification. Journal of Logic and Computation 4(3), 217–247 (1994)

3. Bachmair, L., Ganzinger, H., Waldmann, U.: Refutational theorem proving for hierarchic
first-order theories. Appl. Algebra Eng. Commun. Comput 5, 193–212 (1994)

4. Baumgartner, P., Fuchs, A., de Nivelle, H., Tinelli, C.: Computing finite models by reduction
to function-free clause logic. Journal of Applied Logic 7(1), 58–74 (2009)

5. Baumgartner, P., Tinelli, C.: Model evolution with equality modulo built-in theories. In:
Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS (LNAI), vol. 6803, pp.
85–100. Springer, Heidelberg (2011)

6. Baumgartner, P., Waldmann, U.: Hierarchic superposition: Completeness without compact-
ness. In: Kosta, M., Sturm, T. (eds.) MACIS (2013)

7. Baumgartner, P., Waldmann, U.: Hierarchic superposition with weak abstraction. In:
Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 39–57. Springer, Heidelberg
(2013)

8. Claessen, K., Sörensson, N.: New techniques that improve MACE-style finite model build-
ing. In: Baumgartner, P., Fermüller, C.G. (eds.) CADE-19 Workshop: Model Computation –
Principles, Algorithms, Applications (2003)

Finite Quantification in Hierarchic Theorem Proving 167

9. Ganzinger, H., Korovin, K.: Theory instantiation. In: Hermann, M., Voronkov, A. (eds.)
LPAR 2006. LNCS (LNAI), vol. 4246, pp. 497–511. Springer, Heidelberg (2006)

10. Ge, Y., Barrett, C.W., Tinelli, C.: Solving quantified verification conditions using satis-
fiability modulo theories. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603,
pp. 167–182. Springer, Heidelberg (2007)

11. Ge, Y., de Moura, L.: Complete instantiation for quantified formulas in satisfiabiliby mod-
ulo theories. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 306–320.
Springer, Heidelberg (2009)

12. Halpern, J.: Presburger Arithmetic With Unary Predicates is Π1
1 -Complete. Journal of Sym-

bolic Logic 56(2), 637–642 (1991)
13. Korovin, K., Voronkov, A.: Integrating linear arithmetic into superposition calculus. In: Du-

parc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 223–237. Springer, Heidel-
berg (2007)

14. Kruglov, E., Weidenbach, C.: Superposition decides the first-order logic fragment over
ground theories. In: Mathematics in Computer Science, pp. 1–30 (2012)

15. McCune, W.: Mace4 reference manual and guide. Technical Report ANL/MCS-TM-264,
Argonne National Laboratory (2003)

16. de Moura, L., Bjørner, N.S.: Efficient E-matching for SMT solvers. In: Pfenning, F. (ed.)
CADE 2007. LNCS (LNAI), vol. 4603, pp. 183–198. Springer, Heidelberg (2007)

17. de Moura, L., Bjørner, N.S.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J.
(eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)

18. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories: from
an abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T). Journal of the
ACM 53(6), 937–977 (2006)

19. Reynolds, A., Tinelli, C., Goel, A., Krstić, S.: Finite model finding in SMT. In: Sharygina,
N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 640–655. Springer, Heidelberg (2013)

20. Reynolds, A., Tinelli, C., Goel, A., Krstić, S., Deters, M., Barrett, C.: Quantifier instantiation
techniques for finite model finding in SMT. In: Bonacina, M.P. (ed.) CADE 2013. LNCS
(LNAI), vol. 7898, pp. 377–391. Springer, Heidelberg (2013)

21. Rümmer, P.: A constraint sequent calculus for first-order logic with linear integer arithmetic.
In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330, pp.
274–289. Springer, Heidelberg (2008)

22. Slaney, J.: Finder (finite domain enumerator): Notes and guide. Technical Report TR-ARP-
1/92, Australian National University, Automated Reasoning Project, Canberra (1992)

23. Zhang, J., Zhang, H.: SEM: a system for enumerating models. In: Mellish, C. (ed.) IJCAI
1995. Morgan Kaufmann (1995)

	Finite Quantification in Hierarchic Theorem Proving
	1 Introduction
	2 Hierarchic Theorem Proving
	3 Finite Domain Transformation
	4 Checking Satisfiability
	5 Experimental Results
	6 Conclusions
	References

