
Finite Quasi-Frobenius Modules and Linear Codes

Marcus Greferath, Alexandr Nechaev∗, and Robert Wisbauer

August 12, 2003

Abstract

The theory of linear codes over finite fields has been extended by A. Nechaev to codes
over quasi-Frobenius modules over commutative rings, and by J. Wood to codes over (not
necessarily commutative) finite Frobenius rings. In the present paper we subsume these results
by studying linear codes over quasi-Frobenius and Frobenius modules over any finite ring. Using
the character module of the ring as alphabet we show that fundamental results like MacWilliams’
theorems on weight enumerators and code isometry can be obtained in this general setting.

Introduction

The foundations of classical algebraic coding theory over finite fields involve notions and results like
dual code, MacWilliams identity and extension theorem. In the papers [21, 22, 23, 15], Kuzmin,
Kurakin, Markov, Mikhalev, and Nechaev developed a theory of linear codes over finite modules
over commutative rings. It was shown that for such rings the basic results mentioned above may
be suitably generalized to codes over quasi-Frobenius modules. Moreover, it turns out that the
quasi-Frobenius module of a commutative ring is unique up to isomorphism.

The present article is a further contribution in this direction, based on the observation that every
finite (noncommutative) ring A possesses a quasi-Frobenius bimodule AQA . Even more, it can
be shown that this module is unique up to (left and right) isomorphism, if we claim its socle to be
cyclic, in which case we call it the Frobenius module of A . We show the the theory of linear codes
over commutative rings can be extended to suchmodules to a far extent. The results of Wood [31]
cover exactly the case where the given ring A is a Frobenius ring, i.e., where it is isomorphic to
Q as a left (and as a right) module. We feel that, in general, coding theory over a finite ring A
should involve the Frobenius module of A as alphabet rather than the ring A itself.

This article is organized as follows. Section 1 contains preliminaries and useful results concerning
injectivity and cogenerator properties of modules; Section 2 recalls the notions of quasi-Frobenius
and Frobenius bimodules and derives existence and uniqueness theorems about Frobenius bimodules
over finite rings. In Section 3 we introduce linear codes over modules and observe the equality of
the Hamming distance of a code and that of its socle (for the commutative case see [22]). As a
consequence, the Hamming distance of any linear code can be expressed by the Hamming distances
of linear codes over modules over simple rings. We provide an appropriate notion of the dual code
and generalize MacWilliams’ theorem (concerning the relationship between the weight enumerators
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of mutually dual codes) to linear codes over finite modules. Section 4 deals with the equivalence
of linear codes over Frobenius modules. After studying homogeneous functions on finite modules
(initiated in [4, 10, 12, 8]) we will prove that every homogeneous isometry and every Hamming
isometry between linear codes over the Frobenius module extends to a monomial transformation of
the ambient space.

1 Preliminaries from Module Theory

Let A be an associative ring with identitiy and denote by AM and MA the categories of unital left
and right A -modules, respectively. For M,M ′ ∈ AM and N,N ′ ∈ MA we write Hom(AM,AM

′)
and Hom(NA, N

′
A) for the set of homomorphisms between these modules, and End(AM) and

End(NA) for the corresponding endomorphism rings; suffixes (e.g., in AM ) are deleted if the
context is clear. We let morphisms of left modules act from the right side, and morphisms of right
modules act from the left; thus any M ∈ AM with B = End(AM) is an (A,B) -bimodule.

Given any (A,B) -bimodule AMB , there is a canonical ring homomorphism φ : A → End(MB)
and we call M left balanced provided φ is an isomorphism. Similariy right balanced bimodules are
defined and a bimodule is called balanced if it is left and right balanced.

J(A) denotes the Jacobson radical of A . If A is left or right artinian J(A) is a nilpotent ideal
and A = A/J(A) is a classical semisimple ring; that is, a finite direct sum of matrix rings over
division rings. If A is finite then all these division rings are fields (Wedderburn).

For any A -module M , the socle S(AM) is the sum of all minimal submodules of M ; clearly
S(AM) is annihilated by J(A) and hence can be considered as module over A = A/J(A) . For
artinian rings A , the socle of M is an essential submodule and is equal to the annihilator of the
radical,

S(AM) = {m ∈M | J(A)m = 0}.

Let M,N ∈ AM . The module N is called (finitely) M -generated if N is a homomorphis image of
a (finite) direct sum of copies of M . The full subcategory of AM whose objects are submodules of
M -generated modules is denoted by σ[AM ] . It is a basic fact that σ[AM ] = AM provided M is a
faithful A -module which is finitely generated as End(AM) -module (see [30, 15.4]). In particular,
for any finite faithful left A -module M we have σ[AM ] = AM and the ring A is finite.

Definition 1.1 Annihilators. For a module AM and the ring B = End(AM) we consider the
following annihilators. For subsets I ⊆ A, J ⊆ B and K ⊆M define

ρM (I) := {m ∈M | Im = 0} ≤ MB ,

λM (J) := {m ∈M | mJ = 0} ≤ AM,

ρB(K) := {b ∈ B | Kb = 0} ≤ BB, and

λA(K) := {a ∈ A | aK = 0} ≤ AA.

For particular subsets we have natural identifications

2



ρM (I) = Hom(A/I, AM), for left ideals I ≤ A,

λM (J) = Hom(B/J,MB), for right ideals J ≤ B,

ρB(K) = Hom(M/K, AM), for A-submodules K ≤M ,

λA(K) = Hom(M/K,MB), for B-submodules K ≤M , provided M is left balanced.

For A artinian, S(AM) = ρM (J(A)) = Hom(A, AM) .

Injective modules. Let M,N ∈ AM . M is called N -injective if for any submodule K ≤ N
any homomorphism K →M can be extended to a homomorphism N →M . If M is M -injective
then M is called self-injective (also quasi-injective).

Proposition 1.2 Let AM be self-injective with finitely generated essential socle. Then for any
submodule K ⊂M , monomorphisms f : K →M can be extended to automorphisms of M .

Proof : Denote by K̂ ⊂ M a maximal essential extension of K in M . Then f can be extended
to a monomorphism f̂ : K̂ →M . Furthermore K̂ is a direct summand (by [30, 17.7]) and hence
is M -injective and so is f̂(K̂) , i.e.,

M = K̂ ⊕ U = f̂(K̂) ⊕ V ∼= K̂ ⊕ V,

for suitable submodules U, V ⊂ M . By [30, 22.1], End(U) is semiperfect and hence by the
cancellation property (cf. [16, 20.11]) there is an isomorphism g : U → V . Now

f̂ ⊕ g : M = K̂ ⊕ U → f̂(K̂) ⊕ V = M

is an automorphism of M extending f . 2

Given M,N ∈ AM , the module M is said to be min-N -injective if for any simple submodule
K ≤ AN any homomorphism AK → AM can be extended to a homomorphism AN → AM . We
call M min-self-injective provided it is min-M -injective.

Proposition 1.3 Let M,N ∈ AM and B = End(AM) .

(a) The following are equivalent:

(i) M is min-self-injective;

(ii) for any simple A -module K , Hom(K,M) is either zero or a simple B -module.

(iii) for every maximal left ideal I ≤ A , ρM (I) is either zero or a simple B -module.

(b) If AM is faithful and min-self-injective then it is also min-A -injective.

(c) Let M be min-self-injective and U ≤ V ≤ N submodules with V/U simple. Then the B -
module Hom(N/V,M) can naturally be considered as submodule of Hom(N/U,M) and the
quotient module

Hom(N/U,M)/Hom(N/V,M)

is either zero or a simple right B -module.

Proof : (a) (i) ⇔ (ii) Let M be min-self-injective and K a simple A -module. Then for any
two morphisms f, g : K → M we have two isomorphic minimal submodules f(K) and g(K) of
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the module AM . The definition of min-self-injective module imply that there exists h ∈ B with
h ◦ g = f . Hence f ∈ gB . So any non-zero element g ∈ Hom(K,M) is a generating element of
Hom(K,M)B . The converse conclusion is seen similarly.

The equivalence (ii) ⇔ (iii) follows from the equality ρM (I) = Hom(A/I, AM) .

(b) As a faithful A -module, M cogenerates A . Hence for any simple left ideal i : K → A there
is a morphism h : A→M with h◦ i 6= 0 . Given any morphism f : K →M there is a g : M →M
such that f = g ◦ (h ◦ i) = (g ◦ h) ◦ i showing that M is min-A -injective.

(c) Since the functor Hom(−,M) is left exact the exact sequence of A -modules 0 → V/U →
N/U → N/V → 0 yields the exact sequence of B -modules

0 → Hom(N/V,M) → Hom(N/U,M) → Hom(V/U,M),

and the assertion follows from the fact that the last module is either simple or zero. 2

Cogenerator properties. We say that an A -module K is (finitely) cogenerated by an A -
module M if there exists a monomorphism K → MΛ , for some (finite) set Λ . M is called a
self-cogenerator if every factor module of M is cogenerated by M . The next proposition shows
that cogenerator properties correspond to annihilator conditions (see [30, 28.1]).

Proposition 1.4 For an A -module M with B = End(AM) , the following are equivalent:

(a) M is a self-cogenerator;

(b) for any submodule K ≤ AM , K = KeHom(M/K,M) =
⋂

{Ke f | f ∈ Hom(M/K,M)} ;

(c) for any submodule K ≤ AM , K = λM (ρB(K)) .

Under finiteness conditions min-injectivity can imply injectivity.

Proposition 1.5 For an A -module M of finite length, the following are equivalent:

(a) M is an injective cogenerator in σ[M ] ;

(b) M is a self-injective self-cogenerator;

(c) M is a min-self-injective self-cogenerator.

Proof : (a) ⇔ (b) follows by [30, 16.5, 16.3]; (b) ⇒ (c) is obvious.

(c) ⇒ (b) It is to show that for any submodule K ⊂ M , morphisms K → M can be extended
to endomorphisms. This can be proved by induction on the composition length of K . 2

2 Quasi-Frobenius and Frobenius modules

A bimodule AMB is called quasi-Frobenius bimodule (QF-bimodule)[1] , or duality context [7], if
for every maximal left ideal I ≤ AA its (right annihilator ρM (I) = {β ∈ M | Iβ = 0} in M is
zero or an irreducible B -module, and for every maximal right ideal J ≤ BB its left annihilator
λM (J) = {α ∈M | αJ = 0} in M is zero or an irreducible A -module.

A left A -module M is called quasi-Frobenius module, or QF-module for short (see [9, 30]), if for
any n ∈ N and finitely generated submodules U ≤ AM

n ,
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(i) the factor module Mn/U is cogenerated by M ,

(ii) the canonical map Hom(Mn,M) → Hom(U,M) is surjective.

An interesting property of such modules is that for a QF-module AM with B = End(AM) , the
module MB is also a QF-module and A is dense in the biendomorphism ring End(MB) of AM
(see [30, 48.2]).

Clearly a noetherian module M ∈ AM is QF if and only if M is a self-injective self-cogenerator
(injective cogenerator in σ[AM ] , see [30, 16.5]). Notice that AM noetherian does not imply
MB noetherian in general. However, if AM is finite and faithful then we have a priori finiteness
conditions on both sides and we have complete left-right symmetry for QF-modules.

2.1 Characterization of finite QF-modules.

Theorem 2.1 For a finite faithful left A -module M with B = AEnd(M) , the following conditions
are equivalent:

(a) AMB is a QF-bimodule;

(b) AM is a QF-module;

(c) AM is an injective cogenerator in AM ;

(d) AM and MB are cogenerators in AM and MB , respectively;

(e) M is a balanced (A,B) -bimodule and any of the following equivalent conditions holds:

(i) AM and MB are self-cogenerators;

(ii) for any submodules K ≤ AM and N ≤MB ,

K = λM (ρB(K)) and N = ρM (λA(N)); (2.1)

(iii) MB is an injective cogenerator in MB ;

(iv) AM and MB are (min-)self-injective;

(v) S(MB) = S(AM) =: S and for A = A/J(A) , B = B/J(B) , the bimodule ASB is
quasi-Frobenius;

(vi) S(MB) ⊂ S(AM) and for every semisimple submodule K ≤ AM , any homomorphism
ϕ : K →M extends to an endomorphism of M .

If the above conditions are satisfied, then for left ideals I ≤ AA and right ideals J ≤ BB ,

λA(ρM (I)) = I and ρB(λM (J)) = J. (2.2)

Proof : (b) ⇔ (c) is clear since σ[AM ] = AM ; (c) ⇔ (d) ⇔ (e.iii) follow from [30, 48.2]; (d) ⇒
(e.i) is a consequence of the density theorem; (e.i) ⇔ (e.ii) is pointed out in 1.4; (b) ⇒ (e.iv) is
clear from the implications mentioned before.

(e.i) ⇒ (e.iv) (min) Since every factor module of AM is cogenerated by M it follows from the
proof of [30, 47.7] that HomB(−,M) is exact on exact sequences 0 → L → M in MB , where L
is cyclic. This implies that MB is min-self-injective. Symmetrically AM is also min-self-injective.

(e.iv) ⇒ (e.ii) For this an argument from the theory of noetherian QF-rings can be adapted
(compare [17, Theorem 16.2]).
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(e.i) ⇒ (c) Since we know that (e.i) implies (e.iv) (min) we can apply Proposition 1.5 to prove
our assertion. This also yields self-injectivity in (e.iv) .

(e.iv) ⇒ (e.v) The properties of A/J(A) and B/J(B) are just the characterisations of the
endomorphism rings of self-injective modules with essential socles, e.g., End(S(AM)) ∼= B/J(B)
(see [30, 22.1]). Then the coincidence of the socles follow from the fact that every finitely generated
semisimple module is semisimple as module over its endomorphism ring.

(e.v) ⇒ (e.vi) Since S(MB) ⊆ S(AM) , every semisimple submodule N ≤ AM is a submodule
N ≤ AS(AM) , any homomorphism ϕ : AN → AM is a homomorphism ϕ : AN → AS and hence
there exists some b ∈ B such that for all x ∈ N , ϕ(x) = xb = xb , proving our assertion.

(b) ⇔ (e.vi) is shown in [1, Proposition 3].

The annihilator conditions (2.2) follow from the cogenerator property of AM and MB .

Finally note that in view of Proposition 1.3 (a) ⇔ (e.iv) , so (a) ⇔ (b) . 2

Note that characterization (e.v) was announced in [24] without proof.

Note also that for any bimodule AMB and two-sided ideal I of A , the annihilator ρM (I) is a
subbimodule of AMB , and J = ρB(ρM (I)) is a two-sided ideal of B . So ρM (I) is a left and
right faithful (Ã, B̃) -bimodule for Ã = A/I , B̃ = B/J . Moreover (see e.g. [7, 23.17(c)]):

Proposition 2.2 Let M be a finite QF-module and refer to the notation above. Then for any
two-sided ideal I of A the module Ã(ρM (I))B̃ is a QF-bimodule.

2.2 A QF-module for a given finite coefficient ring.

It is well known (cf. [7]) that for every commutative finite (artinian) ring A there exists a unique
(up to isomorphism) QF-module AQ and it satisfies the condition End(AQ) = A . This fact has
been the basis for the results in [22, 15]. The following facts about character groups will help to
generalize this existence theorem to finite not necessarily commutative rings.

Proposition 2.3 For a left A -module AM , M [ = Hom(ZM,Q/Z) is is a right A -module, and
for a right A -module MA , M [ is a left A -module. In particular, A[ = Hom(ZA,Q/Z) is a left
and right A -module and is an injective cogenerator in AM and MA (e.g., [30, 16.8]).

If the module M is finite, then (M [,+) ∼= (M,+), and there is a natural module isomorphism

M ∼= M [[, m 7→ [ω 7→ ω(m)].

Summarizing these observations we have:

Theorem 2.4 For any finite ring A , the character module AA
[ is a finite QF-module with

AEnd(A[) ∼= A , i.e., AA
[
A is a QF-bimodule.

This result can be writen in slightly different form referring to properties of character modules. For
this consider a finite group (M,+) . For subgroups N ≤M and W ≤M [ define annihilators by

N⊥ := {ω ∈M [ | ω(x) = 0 for all x ∈ N} ' Hom(M/N,Q/Z),
W⊥ := {x ∈M | ω(x) = 0 for all ω ∈W} = Ke W.
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Then W⊥ ≤ ZM , N⊥ ≤ ZM
[ and we have the equalities

N⊥⊥ = N and W⊥⊥ = W.

Applied to finite A -modules these notions yield:

Lemma 2.5 Let AM be a finite module. Then:

(i) For every submodule N ≤ AM , the annihilator N⊥ is a submodule of M [
A .

(ii) For every submodule W ≤M [
A , the annihilator W⊥ is a submodule of AM.

Moreover, in this case N⊥ ∼= (M/N)[ is an isomorphism of right modules.

It is worth noting that in case M = A the foregoing statement can be applied to AA as well as
AA , and hence the annihilator of a left (right) ideal of A is a right (left) submodule of A[ . But
even more is true, as the following statement shows which are easily proved.

Proposition 2.6 For any submodules I ≤ AA and J ≤ AA ,

ρA[(I) = I⊥, λA[(I) = J⊥.

Symmetrically, for submodules L ≤ AA
[ and N ≤ A[A ,

ρA(L) = L⊥, λA(N) = N⊥.

Note that Theorem 2.4 can also be deduced from the last proposition, the double annihilator
properties mentioned before Lemma 2.5, and characterizations of QF-modules in Theorem 2.1.

Remark 2.7 The preceding results may be obtained partially from [31, Th. 3.2] where instead of

M [ the module M̂ of all complex characters ξ : (M,+) −→ (C×, ·) is considered. In that paper
the action of elements a ∈ A is defined by the rule ξa(x) := ξ(ax) , if M is a left A -module, and
aξ(x) = ξ(xa) , if M is a right A -module. It is evident, that M [

A
∼= M̂A where the isomorphism

comes from the natural embedding

(Q/Z,+) −→ (C×, · ), z 7→ exp(2πiz).

Now, the result [31, Th. 3.2] states that for every finite ring A the functor M 7→ M̂ is a duality
functor between the category AF of all finite left A -modules and the category FA of all finite
right A -modules.

2.3 Finite Frobenius and symmetric rings.

As noted above (cf. [7]), if A is commutative, then any two QF-modules over A are isomorphic.
For non-commutative rings this is no longer true, even if A is a finite quasi-Frobenius ring, i.e. if

AAA is a QF-bimodule. In this case QF-bimodules AAA and AA
[
A are not necessarily isomorphic.

In order to derive a uniqueness result, we need further conditions.

It is known (see e.g. [13, Th. 13.4.2]) that a finite ring A is a QF-ring if and only if S(AA) = S(AA)
and for any primitive idempotent f of the ring A , the ideals fS(A) and S(A)f are irreducible
(right resp. left) modules.
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Classically a Frobenius ring is defined as a QF-ring A for which A(A/J(A)) ∼= AS(AA) and
(A/J(A))A ∼= S(AA)A . In the finite context this can be simplified. It has been shown in [11] that
if the left socle of a finite ring is a left principal ideal then it is also a right principal ideal and
coincides with the right-socle, moreover we have from [11]:

Theorem 2.8 A finite ring A is a Frobenius ring if and only if S(AA) is a principal left ideal.

We call a character ε ∈ A[ left generating1 if Aε = A[ . The last equality is equivalent to the
condition λA(ε) = 0 which means that ε(xr) is a nonzero character for any r ∈ A \ 0 , i.e., the
kernel ε⊥ of ε does not contain a nonzero left ideal (the definition of left distinguished character).
A character that is left and right generating is called a generating character. From [31, Th.3.10,
Th.4.3] and partly [18, sec. 3.2, Lemma 1] we have useful characterizations of finite Frobenius rings.

Proposition 2.9 For a finite ring A every left (or right) generating character is generating, and
the following statements are equivalent:

(a) A is a Frobenius ring.

(b) A has a (left) generating character ε .

(c) There exists an isomorphism ϕ : AA→ AA
[ .

(d) There exists an isomorphism ψ : AA → A[A .

Under the condition (b) of 2.9 the isomorphisms in (c) and (d) can be chosen in the form

ϕ(a) = aε and ψ(a) = εa, for a ∈ A.

For a quasi-Frobenius ring A there are at least two QF-bimodules, AAA and AA
[
A . However,

even in this case we cannot show that AAA and AA
[
A are isomorphic as bimodules since the

isomorphisms ϕ and ψ may be different.

Definition 2.10 A finite ring A is called symmetric if AAA ∼= AA
[
A as bimodules.

Of course any symmetric ring is Frobenius (by 2.9). In order to obtain an internal characterization
of a symmetric ring A let K(A) be the subgroup generated by all commutators in A , i.e.,

K(A) := Z〈ab− ba | a, b ∈ A〉.

Proposition 2.11 A finite ring A is symmetric if and only if it has a generating character ε ∈ A[

such that ε(K(A)) = 0 .

Proof : Let ε be a generating character with the desired property. In order to prove the above
bimodule isomorphy it is sufficient to prove that the isomorphisms ϕ and ψ coincide. Indeed for
any a ∈ A we have ψ(a) = aε ∈ A[, ψ(a)(x) = ε(xa) . Since ε(K(A)) = 0 we have

ε(xa) = ε(xa+ (ax− xa)) = ε(ax) = (εa)(x) = ϕ(a)(x).

Therefore ψ = ϕ and our claim is true.

1These characters are called (left) distinguished character in [22], and (left) admissible character in [2].
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Conversely, let ϕ : A → A[ be an isomorphism of bimodules and let ε := ϕ(1) . Then ε is a
generating character, and we have aε = ϕ(a) = εa for all a ∈ A . Now ε(ba − ab) = (aε)(b) −
(εa)(b) = 0 for all a, b ∈ A and hence K(A) ⊆ Ker(ε) . 2

Corollary 2.12 If A is a symmetric ring then K(A) does not contain any nonzero left or right
ideals of A .

The converse of the latter statement is an open question.

Examples 2.13 The following rings are symmetric: Finite commutative Frobenius rings, ring-
direct products of symmetric rings, full matrix rings over symmetric rings A with generating
character ε (consider the trace composed with ε ), finite group rings over symmetric rings (see
[31]).

Finally note that there exist finite Frobenius non-symmetric rings.

Example 2.14 For a non-prime suitable q ∈ N consider the field Fq and the non-trivial auto-
morphism σ of Fq . Let Fq[x;σ] be an Ore polynomial ring with multiplication defined for a ∈ Fq
by xa = σ(a)x . Then A = Fq[x;σ]/(x2) is a finite local principal ideal (hence Frobenius) ring
consisting of elements α = a0 + a1z, a0, a1 ∈ Fq, z = x+ (x2) [26]. The unique proper ideal of
A is J(A) = Az = Fqz . For a pair of elements α ∈ A and β = b0 + b1z ∈ A we have

αβ − βα = (a1(σ(b0) − b0) + b1(σ(a0) − a0))z.

Now it is evident that the set of all such differences is Fqz = Az , and K(A) = J(A) is a nonzero
ideal. So A is not a symmetric ring.

2.4 Finite Frobenius modules.

We now concentrate on uniqueness conditions for QF-modules. For our main definition we need
the following observations.

Proposition 2.15 For every finite ring A , S(AA
[) = S(A[A) =: S(A[), and for A = A/J(A) ,

there is an isomorphism of bimodules

AAA
∼= A S(A[)A.

Furthermore AS(A[) and S(A[)A are cyclic modules and there exists a common generator ω of
these modules such that rω = ωr for all r ∈ A .

Proof : According to Lemma 2.5 we have

S(AA
[) = ρA[(J(A)) = J(A)⊥ and S(A[A) = λA[(J(A)) = J(A)⊥ .

This implies the identity of left and right socle, as required.

The isomorphism in Lemma 2.5, J(A)⊥ → A
[
, is an isomorphism of bimodules AJ(A)⊥

A
∼= AA

[
A ,

that is, we have

A S(A[)A
∼= AA

[
A.
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Since A is semisimple and hence symmetric (cf. Examples 2.13), there exists an isomorphism

of bimodules AA
[
A

∼= AAA . Together with the foregoing observation this implies the required
isomorphy. For the remaining statement choose ω ∈ S(A[) as the character corresponding to
1 ∈ A under this isomorphism. 2

Definition 2.16 We call a finite QF-bimodule AQA (QF-module AQ ) a Frobenius bimodule
(Frobenius module), if ( End(AQ) = A and) there are module isomorphisms

AA
∼= AS(Q), and AA

∼= S(Q)A;

and we call Q a symmetric Frobenius bimodule if, in addition,

AAA
∼= AS(Q)A as bimodules.

From Proposition 2.15 we see that A[ is indeed not only Frobenius but even a symmetric Frobenius
bimodule for every finite ring A . Note also that the bimodule AAA from Example 2.14 does not
satisfy the above bimodule isomorphy, so it is a Frobenius but not a symmetric Frobenius bimodule.

Our final theorem will now show that the Frobenius module of a finite ring A is unique up to left
and right A -linear isomorphism.

Proposition 2.17 For a QF-module AQ with A = End(AQ) and A = A/J(A) , the following
conditions are equivalent:

(a) AQA is a Frobenius bimodule.

(b) AS(Q)A is a Frobenius bimodule.

(c) S(Q) is a left and right cyclic A -module.

(d) AQ ∼= AA
[ and QA

∼= A[A .

Proof : (a) ⇒ (b) ⇒ (c) follow immediately from Definition 2.16.

(c) ⇒ (d) Let S = S(Q) = Aω for some ω ∈ S . Then S = Aω and we have an epimorphism
of left A -modules

ϕ :A A −→ AS, r 7→ rω.

We show I = Kerϕ = 0 . Since ASA is a QF-bimodule it is faithful, hence λA(ω) = λA(S) =
0 . But ω ∈ ρS(I) , thus λA(ρS(I)) = 0 . Since ASA is a QF-bimodule we have ρS(I) =
ρS(λA(ρS(I))) = ρS(0) = S thus I = 0 . It remains to note that an isomorphism of modules

AS(AQ) ∼= AA can be extended to an isomorphism of the injective hulls AQ ∼= AA
[ .

(d) ⇒ (a) By (d) , AS ∼= AS(A[) and SA
∼= S(A[)A . Now (a) follows from 2.15. 2

3 Linear codes over modules

Let A be a finite (not necessarily commutative) ring with identity 1 = 1A , and let AM be a
finite faithful module. A submodule K ≤ AM

n is called a linear n -code over AM . As usual the
Hamming weight of a word ~α ∈ Mn is the number wH(~α) of its nonzero coordinates, and the
Hamming distance d(K) of a code K ≤ AM

n is

d(K) := min{wH(~α− ~β) | ~α, ~β ∈ K, ~α 6= ~β} = min{wH(~α) | ~α ∈ K \ ~0}.
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We suggest some simplification for the computation of d(K) .

For any left A -module M the socle S(M) is a module over the semisimple ring A . Let A =
A1 ⊕ ·⊕An be a composition into simple rings (matrix rings over fields) Ai and let εi be identity
of the component Ai . Then ε1 + ...+ εt = 1A and S(M) has a fully invariant decomposition into
homogeneous components

S(M) = S1 ⊕ . . .⊕ St,

where each Si = εiS, i ∈ {1, · · · , t}, is a module over Ai .

For the computation of the distance d(K) of a code K the following observation is useful.

Proposition 3.1 Let M be a left A -module and K ≤M n be a linear code, n ∈ N .

(i) The socle S(K) is a linear code over the socle of the base module S(M) ,

S(K) = K ∩ (S(M))n ≤ AS(M)n.

(ii) For the Hamming distance of K we have the equality

d(K) = d(S(K)).

(iii) If S(K) = L1 ⊕ . . . ⊕ Lt is a fully invariant decomposition into homogeneous components
Li = εiL , then Li is a linear n -code over a module Ai

Si and

d(K) = min{d(L1), . . . , d(Lt)}.

Proof : (i) is clear by general properties of the socle.

For (ii) we first note that d(K) ≤ d(S(K)) since S(K) ⊆ K . Now consider any ~α ∈ K with
wH(~α) = d(K) . Since S(K) is essential in K there exists a ∈ A with 0 6= a~α ∈ S(K) . This
implies d(S(K)) ≤ wH(a~α) ≤ wH(~α) = d(K) proving our assertion.

Finally we observe that (iii) is a consequence of (ii). 2

So the computation of the Hamming distance of any linear code over an arbitrary finite module
reduces to the same problem for codes over modules with simple coefficient rings Ai .

Let us remark that 3.1 extends results of [22, Prop. 5,6] for commutative rings A .

For the following consideration we need a notion of dual codes. There is more than one way to
define this. We will follow the line in P. Delsarte [6].

3.1 Duality defined via the character module

Let M be a finite abelian group. Any subgroup K ≤ M n is called an additive n -code over M .
We define the code dual to K as additive n -code over the group M [ .

Consider any row ~ϕ = (ϕ1, . . . , ϕn) ∈ (M [)n as element of (Mn)[ , acting on elements ~α =
(α1, . . . , αn) ∈Mn by the rule

~ϕ(~α) := ϕ1(α1) + . . .+ ϕn(αn) ∈ Q/Z.

Then (M [)n = (Mn)[ .

11



For every additive code K ≤Mn we define its dual code in Delsarte form by

K⊥ := {~ϕ ∈ (M [)n | ~ϕ(~α) = 0 for all ~α ∈ K}.

Then of course K ⊆ K⊥⊥ for all K ≤ Mn and referring to [20, 6] we observe the following facts.
As we have seen earlier, if AM is a finite module and K is a linear code over AM , then K⊥ is a
submodule of (M [)nA , that is, a right linear code over M [

A .

Proposition 3.2 For any additive code K ≤ M n , we have the equality K⊥⊥ = K and a group
isomorphism K⊥ ∼= Mn/K . In particular, |K⊥| · |K| = |M |n .

Similar to codes over rings generator matrices are defined for codes over modules.

Definition 3.3 Let K be a linear code of length n over the finite module AM . A (k×n) -matrix
G with entries in M , whose rows form a generating set of the module AK , is called a generator
matrix of K . A generator matrix of the code K⊥ over M [ is called a check matrix for K .

Let ~ϕi = (ϕi1, . . . , ϕin) ∈ (M [)n , i ∈ {1, · · · , l} , be a generating system of the module AK
⊥ .

Then Φ = (ϕij)l×n is a check matrix of the code K . We consider Φ as a group homomorphism
Φ : Mn → (Q/Z)l into the group of all l -columns over Q/Z , acting on ~α ∈ M n by the rule
Φ(~α) = (~ϕ1(~α), . . . , ~ϕl(~α))T . As in the classical case we have (in analogy to [22]):

Proposition 3.4 K = KerΦ .

As for linear codes over a field we can characterize the Hamming minimum distance of a code
K ≤ AM

n by inspecting a check matrix Φ for K . Any column Φj, j ∈ {1, · · · , n}, of the matrix
Φ is a homomorphism Φj : M → (Q/Z)l . We say that a system Φj1 , . . . ,Φjk of k columns of Φ
is linearly independent over M , if Φj1(α1) + . . . + Φjk(αk) 6= 0 for any (α1, . . . , αk) ∈Mk \ {~0} .

We define the guaranteed rank κM (Φ) of the matrix Φ relative to M as maximal k ∈ N such
that any system Φj1 , . . . ,Φjk of k columns of Φ is linearly independent over M . Then (as in
[22]) we have the following generalization of a well known classical result.

Proposition 3.5 Let K ≤ AM
n be a linear code with check matrix Φ . Then d(K) = κM (Φ)+1 .

Finally note that any linear code over a QF-bimodule AQA has a check matrix over A , and
certainly the foregoing results hold for these codes. For the commutative case this has been observed
in [22] and for further references see [15].

Let AM be a finite module of m elements and let K be a linear code of length n over AM . For
a vector x = (xs : s ∈ M) of m indeterminates we define the complete weight enumerator of K
as

WK(x) :=
∑

~α∈K

∏

s∈M

xσs(~α)
s ∈ Z[x], where σs(~α) = #{i ∈ 1, n | αi = s}.

Similarly for a linear code L ≤ (M [)nA over the module M [
A (of same cardinality m ), and for a

vector y = (yτ : τ ∈M [) of m indeterminates we have the complete weight enumerator

WL(y) :=
∑

~ω∈L

∏

τ∈M[

yστ (~ω)
τ ∈ Z[y], where στ (~ω) = #{i ∈ 1, n | ωi = τ}.
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With this preparation we can show that one of the major formulas for linear codes holds in our
more general situation.

Theorem 3.6 (MacWilliams’ identity) Let AM be a finite module with m elements and let
K ≤ AM

n be a linear code with complete weight enumerator WK(x) . Then the complete weight
enumerator of K⊥ is given by

WK⊥(y) =
1

|K|
WK(yA),

where A = (aτs) is the square (m × m) -matrix with aτs := exp(2πi τ(s)) for all s ∈ M and
τ ∈M [ .

Proof : We can essentially follow the proofs in [20] and [22] (for commutative rings). First we have

WK⊥(y) =
∑

~ω∈K⊥

f(~ω), where f(~ω) :=
∏

τ∈M[

yστ (~ω)
τ for all ~ω ∈ (M [)n.

Let us consider the Fourier transform f̂ of the function f defined as

f̂(v) =
∑

~ω∈(M[)n

exp [2πi ~ω(v)] f(~ω) for all v ∈Mn,

where ~ω(v) =
∑

i∈1,n ωi(vi) , and show that

WK⊥(y) =
1

|K|

∑

~α∈K

f̂(~α). (3.1)

We obtain
∑

~α∈K

f̂(~α) =
∑

~ω∈(M[)n

∆(~ω)f(~ω), where ∆(~ω) =
∑

~α∈K

exp [2πi ~ω(~α)] .

If ~ω ∈ K⊥ then clearly ∆(~ω) = |K| , and otherwise ∆(~ω) = 0 since K := {~ω(~α) | ~α ∈ K} is a
non-trivial subgroup of Q/Z with exp(2πiK) 6= 1 . From this we obtain (3.1).

Now we expand f̂(~α) in a different way, namely

f̂(~α) =
∑

~ω∈(M[)n

exp
[
2πi

n∑

j=1

ωj(αj)
]
f(~ω) =

∑

~ω∈(M[)n

n∏

j=1

exp [2πi ωj(αj)]
∏

τ∈M[

yστ (~ω)
τ

=
∑

~ω∈(M[)n

n∏

j=1

exp [2πi ωj(αj)] yωj
=

n∏

j=1

∑

τ∈M[

exp[2πi τ(αj)]yτ

=
∏

s∈M

[ ∑

τ∈M[

exp[2πi τ(s)]yτ

]σs(~α)
=

∏

s∈M

[
(yA)s

]σs(~α)
,

where (yA)s is the s -th coordinate of the row (yA) . Together with (3.1) this finally leads to

WK⊥(y) =
1

|K|

∑

~α∈K

∏

s∈M

[
(yA)s

]σs(~α)
=

1

|K|
WK(yA),
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as was our claim. 2

The Hamming weight enumerator of a linear code K ≤ AM
n is defined as

WH
K (x, y) :=

∑

~α∈K

xn−wH(~α)ywH(~α)

and satisfies the equality
WH

K (x, y) = WK(x, y, . . . , y︸ ︷︷ ︸
m-1 times

).

This enables us to obtain the following result from [6] as a consequence.

Corollary 3.7 Let AM be a finite module with m elements, and let K ≤ AM
n be a linear code

with Hamming weight enumerator WH
K . Then the Hamming weight enumerator of K⊥ is given by

WH
K⊥(x, y) =

1

|K|
WH

K (x+ (m− 1)y, x− y).

These results are generalizations of previous results in [22] (for A a commutative ring) and results
in [31] (for M = A a Frobenius ring).

3.2 Duality defined via the Reciprocal Module

An alternative, but equivalent notion of a dual code is based on the following idea. For a faithful
module AM let M× = Hom(AM,AA

[) . As A[ is also a right A -module we again obtain a right
A -module structure on M× where the product µr ∈ M× of µ ∈ M× and r ∈ A is defined by
(µr)(α) = µ(α)r , for all α ∈M . So by definition, (µr)(α) ∈ A[ is a function on A of the form

(µr)(α)(x) = µ(α)(rx), for x ∈ A.

We call M×
A the reciprocal module to AM (in [7] it is called the Morita-dual) and observe that

there is a natural module isomorphism (see [30, Prop. 16.8])

τ : M×
A →M [

A, µ 7→ [m 7→ µ(m)(1A)].

As a corollary of this isomorphism and (2.3) we have

(M×,+) ∼= (M,+), |M×| = |M |.

Let us define a product of α ∈M and µ ∈ M× as α×µ = µ(α) ∈ A[ . Then for a fixed α ∈ M ,
the correspondence µ → α×µ induces a homomorphism AM

× → A[ belonging to the left A -
module M×× = HomA(M×, A[) . We can identify this homomorphism with α . Then we have the
equality AM

×× = AM . Note that by our definition we have

(α×µr)(x) = (α×µ)(rx) and (rα×µ)(x) = (α×µ)(xr) for all r ∈ A . (3.2)

Now, as in section 3.1 we consider any element of (M n)× = HomA(Mn, A[) as row

~ψ = (ψ1, . . . , ψn) ∈ (M×)n = HomA(M,A[)n,
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acting on elements ~α = (α1, . . . , αn) ∈Mn by the rule

~ψ(~α) := ~α×~ψ = α1×ψ1 + . . .+ αn×ψn ∈ A[. (3.3)

So we have a natural identification (Mn)× = (M×)n . For a linear code K ≤ AM
n we then define

the dual code (over the reciprocal module) as right linear code K⊗ ≤ (M×
A )n over the module M×

A

of the form
K⊗ = ρ(M×)n(K) = {~ψ ∈ (M×)n | K×~ψ = 0}. (3.4)

These conventions give rise to the inclusions K⊗⊗ < (Mn)×× = Mn , K ⊆ K⊗⊗ . However note
that the latter inclusion, unlike the inclusion K ⊆ K⊥⊥ , is strict if K is only a subgroup but not
an A -submodule of M . Indeed, from the definitions (3.4), (3.3) and properties (3.2) it follows
that K⊗ is a submodule of (M×

A )n (and correspondingly K⊗⊗ is a submodule of AM
n ) for any

subset K ⊆Mn . However for linear codes over AM we have

Proposition 3.8 For any linear code K ≤ AM
n the coordinatewise extension

τn : (M×)nA → (M [)nA

of the isomorphism τ is induced by restricting the isomorphism σ : K⊗
A → K⊥

A , σ = τn|K⊗ .

This result together with Proposition 3.2 implies the following statement.

Proposition 3.9 For every linear code K ≤ AM
n , there is a group isomorphism

K⊗ ∼= Mn/K,

and hence |K⊗| · |K| = |M |n , K⊗⊗ = K .

For the reciprocal dual we now have the following fundamental formula.

Theorem 3.10 (MacWilliams’ duality) Let AM be a finite module with m elements and K ≤

AM
n a linear code with complete weight enumerator WK(x) . Then the complete weight enumerator

of K⊗ is given by

WK⊗(y) =
1

|K|
WK(yB),

where B = (bτs)m×m is the (m×m) -matrix with bτs := exp(2πi τ(s)(1)) for all s ∈M , τ ∈M× .

Proof : For the proof of this theorem we may repeat the proof of 3.6 with the following modifications.
Instead of the vector ~ω ∈ (M [)n and the functions

f(~ω) =
∏

τ∈M[

yστ (~ω)
τ , f̂(~α) =

∑

~ω∈(M[)n

exp [2πi ~ω(~α)] f(~ω), ∆(~ω) =
∑

~α∈K

exp [2πi ~ω(v)] ,

we consider the vector ~ψ ∈ (M×)n and the functions

f(~ψ) =
∏

τ∈M×

yστ (~ψ)
τ , f̂(~α) =

∑

~ψ∈(M×)n

exp
[
2πi ~ψ(~α)(1A)

]
f(~ψ),

∆(~ψ) =
∑

~α∈K

exp
[
2πi ~ψ(~α)(1A)

]
.
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Then the equality ∆( ~ψ) = 0 for ~ψ ∈ (M×)n\K⊗ is proved in the following way. Since ~α× ~ψ 6= 0 for
some α ∈ K , we have (~α×~ψ)(r) 6= 0 for the same α and some r ∈ A . But then ((r~α)×ψ)(1A) 6= 0
and rα ∈ K because K ≤ AM

n . Therefore K = {(~α×ψ)(1A) | ~α ∈ K} is a nonzero subgroup of
Q/Z . Now continue as in the proof of 3.6. 2

4 Equivalence of Linear Codes

The classical notion of code equivalence is based on a theorem by F. J. MacWilliams [19] who
proved that Hamming isometries between linear codes over finite fields can be extended to monomial
transformations of the ambient vector space. This theorem is the basis of the equivalence notion for
classical algebraic coding theory and has been extended to the ring-linear context in different ways
(cf. [5, 31, 32, 33, 14]). The article by M. Greferath and S. E. Schmidt [8] combines these results
and gives monomial representations of homogeneous and Hamming isometries between linear codes
over finite Frobenius rings. The preparation in the foregoing section allows us to generalize these
results to linear codes over Frobenius modules.

4.1 Homogeneous functions on finite Modules

The notion of homogeneous weight has first been established on integer residue rings by Heise and
Constantinescu [3, 4] and was generalized in two different ways. On the one hand the approach in
Honold-Nechaev [12] introduced a weight on what they call a weighted module. This is a module
with a cyclic socle satisfying further conditions that make the resulting weight strictly positive
and let it satisfy the triangle inequality. On the other hand the approach in Greferath-Schmidt [8]
defines a more liberal notion of homogeneous weight on every finite ring regardless of the structure
of its socle and also dropping postulates like positivity and triangle inequality. The preferred notion
in the present article will adopt features of both of these approaches. We will call these mappings
homogeneous functions rather than weights, and most of the following results are proved in the
same way as their counterparts in [12, 8].

Definition 4.1 A real-valued function w on the finite module AM is called (left) homogeneous,
if w(0) = 0 and the following is true:

(H1) If Ax = Ay then w(x) = w(y) for all x, y ∈M .

(H2) There exists a real number γ such that
∑

y∈Ax

w(y) = γ |Ax| for all x ∈M \ {0} .

Remark 4.2 In [12] the definition of homogeneous function instead of (H2) involves the condition

(H2’)
∑

y∈U w(y) = γ |U | for all nonzero U ≤ AM.

The number γ may be called the average of w on one-generated submodules of M . Note that
homogeneous functions (in the sense of 4.1) exist on every finite module. If we exchange condition
(H2) by (H2’) the existence of these functions depends on further conditions. Of course homoge-
neous functions in sense of [12] with property w(0) = 0 are homogeneous in the sense of Definition
4.1.
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In order to derive an existence result and characterization for homogeneous functions we will use
the following theorem by Bass (see e.g. [16, Th. 20.9]). Let A∗ denote the set of units of A .

Theorem 4.3 For all x, y ∈ AM the equality Ax = Ay is equivalent to the equality A∗x = A∗y .

Recall also briefly the Möbius inversion on a finite partially ordered set 2 (P,≤) as discussed in
detail in [29], [27],[28, ch. 3.6]. For a finite poset (P,≤) the Möbius function µ : P × P −→ Q is
implicitly defined by µ(x, x) = 1 , µ(x, y) = 0 if x 6≤ y ,and

∑

y≤t≤x

µ(t, x) = 0 if y < x.

This function induces for arbitrary pairs of real-valued functions f, g on P the following equiva-
lence, referred to as Möbius inversion:

∀x ∈ P : g(x) =
∑

y≤x

f(y) ⇐⇒ ∀y ∈ P : f(y) =
∑

x≤y

g(x)µ(x, y).

Let now AM be a finite module and (unless stated otherwise) µ be the Möbius function on the
set P = {Ax | x ∈ M} of its cyclic submodules (partially ordered by set inclusion). The Möbius
inversion allows the following statement.

Theorem 4.4 A real-valued function w on the finite module AM is homogeneous if and only if
the following holds:

(H) There exists a real number γ such that w(x) = γ (1 − µ(0,Ax)
|A∗x| ) for all x ∈M .

Proof : The proof repeats the proof of [8, Theorem 1.3] (see also [12, Proposition 5]). First of all
we observe that by Möbius inversion we have

|A∗x| =
∑

Ay≤Ax

|Ay|µ(Ay,Ax),

for all x, y ∈ M . For a given weight w let us always assume (H1) from definition 4.1 because
this condition results from (H) by use of the initial observation. If now (H2) or (H) holds with
respect to a positive real number γ , then the expression f(Ax) := (γ−w(x)) |A∗x| is well-defined
for all x ∈M , and it follows f(0) = 0 as well as

∑

Ay⊆Ax

f(Ay) =
∑

y∈Ax

(γ − w(y))

for all x ∈ M . Now (H2) is equivalent to
∑

Ay⊆Ax f(Ay) = 0 for all x ∈ M \ {0} which by
Möbius inversion is seen to be equivalent to f(Ax) = γ µ(0, Ax) for all x ∈ M . The latter is
finally equivalent to (H). 2

Below we use the following result of [12, Prop.4, Prop.5] (see also [8, Lemma 1.5] for the case
M = A ), which gives a criteria of the equivalence of the conditions (H2) and (H2’).

2These are also called posets.
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Proposition 4.5 For a finite module AM and a homogeneous function w on M of average value
γ the following are equivalent:

(a) S(AM) is cyclic.

(b) For all nonzero U ≤ AM there holds
∑

y∈U w(y) = γ |U | .

In [12] a module AM with S(AM) cyclic is called a friendly module.

4.2 Monomial Representation of Homogeneous Isometries

In this section we will make use of the existence of a Frobenius module AM for every finite ring
A , as we have discussed in Section 2.

As a general preparation let us fix the homogeneous function on a finite module AM as:

whom : M −→ P, whom(x) = 1 −
µ(0, Ax)

|A∗x|
.

As common in coding theory, we tacitly extend whom additively to a function on Mn . Furthermore
let πi denote the projection of Mn onto its i -th coordinate.

As a direct consequence of Proposition 4.5 we state:

Lemma 4.6 If AM is a finite module with a cyclic socle then for every A -linear code K over
M there holds

1

|K|

∑

~c∈K

whom(~c) = |{i | πi(K) 6= 0}|.

Proof : Let K be a linear code of length n over AM . By an application of Proposition 4.5 we
obtain |K ∩ Ker(πi)|

∑
x∈πi(K) whom(x) = |K| provided πi(K) 6= 0 , and it follows

∑

~c∈K

whom(~c) =
n∑

i=1

∑

~c∈K

whom(πi(~c)) =
n∑

i=1

|K ∩ Ker(πi)|
∑

x∈πi(K)

whom(x) = |K| · |{i | πi(K) 6= 0}|.

2

Definition 4.7 Let K be a linear code of length n over AM . A linear mapping K
ϕ

−→ Mn is
called homogeneous isometry if whom(ϕ(~c)) = whom(~c) for all ~c ∈ K .

We will now prove the Nullspaltenlemma from [5] which will be a basic ingredient of the proof of
Theorem 4.10.

Lemma 4.8 Let AM be a finite module with cyclic socle and let K be a linear code of length n
over AM . Then for every linear homogeneous isometry K

ϕ
−→Mn ,

|{i | πi(K) = 0}| = |{i | πiϕ(K) = 0}|.

Proof : By |K| = |ϕ(K)| · |Ker(ϕ)| we obtain

1

|K|

∑

~c∈K

whom(~c) =
1

|ϕ(K)|

∑

~d∈ϕ(K)

whom(~d),
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which yields our claim by Lemma 4.6. 2

Definition 4.9 For an A -module M with endomorphism ring B and n ∈ N , a linear mapping
of the form

T : AM
n −→ AM

n, (x1, . . . , xn) 7→ (xσ(1)b1, . . . , xσ(n)bn),

where σ is a permutation on 1, n and bi ∈ B∗ , for all i ∈ 1, n , is called a monomial transformation
of AM

n .

Note that according to Proposition 1.2, if AMB is a QF-bimodule then every embedding in AM
is the restriction of a monomial transformation of AM and this will be crucial for the inductive
proof of the subsequent theorem.

Theorem 4.10 Let AMA be a Frobenius bimodule, and let K be a left A -linear code of length n
over M and K

ϕ
−→ AM

n be an A -linear embedding. Then the following are equivalent:

(a) ϕ is a homogeneous isometry.

(b) ϕ is the restriction of a monomial transformation of AM
n .

Proof : First observe that monomial transformations T preserve the homogeneous function whom

on AM since for any x ∈ M and u ∈ A∗ there exists a natural isomorphism of A -modules
Ax ∼= Axu and therefore µ(0, Ax) = µ(0, Axu) , |A∗x| = |A∗xu| and whom(x) = whom(xu) .

Conversely, let K
ϕ

−→ AM
n be a linear injective homogeneous isometry. If n = 1 then there is

nothing to show because of Proposition 1.2. For general n ≥ 2 we may assume, by Lemma 4.8,
that K and L := ϕ(K) do not possess zero coordinates. We now choose a coordinate i ∈ 1, n ,
for which πi(K) is of minimal cardinality and set Ki := K ∩ Ker(πi) . Again by Lemma 4.8, the
code ϕ(Ki) ⊆ L has (at least) one zero coordinate, say j , and we obviously have ϕ(Ki) ⊆ Lj .
The latter containment is even an equality, because otherwise Ki would be a proper subcode of
ϕ−1(Lj) which has again (at least) one zero coordinate (by Lemma 4.8). This however would
contradict our minimality assumption on the cardinality of πi(K) . So ϕ(Ki) = Lj and we have

πi(K) ∼= K/Ki

ϕ
∼= L/Lj ∼= πj(L),

and hence, by Proposition 1.2, we obtain a unit u ∈ A = End(AM) with

(ϕ(~c))j = πjϕ(~c) = πi(~c)u = ciu for all ~c ∈ K .

We now consider the projections πi(K) and πj(L) of K and L onto the coordinates different
from i and j respectively. Our goal is to show that ϕ induces a homogeneous isometry ϕ ′ :
πi(K) −→ πj(L) . As these codes are of smaller length, our claim will then follow by induction on
the code length n .

All we have to do is to show that ϕ(Ki) ⊆ Lj where we have defined πi to be the projection onto
the coordinates different from i and Ki := K ∩ Ker(πi) (accordingly Lj := L ∩ Ker(πj) ). It is
clear again by Lemma 4.8 that there exists k ∈ {1, . . . , n} with Ki ⊆ Lk . In case k = j we are
done, otherwise we have Lk ⊆ Lj and hence Lk = 0 . But then Ki = 0 which shows that we have
ϕ(Ki) ⊆ Lj nevertheless. 2
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4.3 Monomial Extension of Hamming Isometries

We first recall (following to [8]) the inversion principle for functions on unital modules with values
in some fixed subfield P of the complex number field C . Following the proofs in [8] will allow us
to derive the equivalence theorem for Hamming isometries stated in Theorem 4.15.

For a given finite module AM consider the vector space over P

F (AM,P) = {f : M −→ P | ∀x, y ∈M (Ax = Ay) ⇒ (f(x) = f(y))}.

It is evident that the homogeneous function whom and the Hamming function wH belong to
F (AM,P) . Moreover it is easy to see that these functions are connected by the equality

wH(x) = Σwhom(x),

where Σ is endomorphism of the space F (AM,P) defined by

(Σf)(x) :=
1

|Ax|

∑

y∈Ax

f(y).

Note first of all that in fact Σ is an automorphism of F (AM,P) . We shall call kernel a function
K : M ×M −→ P defined via

K(x, y) :=
|Ax|

|A×x|
·
|Ay|

|A∗y|
· µ(Ax,Ay)

where again µ denotes the Möbius function on the set {Ax | x ∈ M} . As in [8] we have the
following statement.

Theorem 4.11 The endomorphism Σ is inverse to the endomorphism ∆ of F (AM,P) defined
by

(∆g)(x) :=
1

|Ax|

∑

y∈Ax

f(y)K(y, x).

Proof : According to the definition the condition g = Σf means

g(x) =
1

|Ax|

∑

Ay≤Ax

|A∗y|f(y) for all x ∈M.

Now Möbius inversion for the function |Ax|g(x) gives

|A∗x|f(x) =
∑

Ay≤Ax

|Ay|g(y)µ(Ay,Ax).

This relation implies the equality

f(x) =
1

|A∗x|

∑

y∈Ax

|Ay|

|A∗y|
g(y)µ(Ay,Ax) = (∆g)(x)

and hence proves our claim. 2
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We are now able to clarify the connection between homogeneous functions and Hamming weight,
and later on the connection between homogeneous isometries and Hamming isometries. To avoid
confusion in the following statement we denote by f (n) the additive extension of f ∈ F (AM,P)
to Mn , i.e., we set

f (n)(~x) := f(x1) + . . . + f(xn) for all ~x ∈Mn .

Proposition 4.12 For all f ∈ F (AM,P) and all n ∈ N ,

(Σf)(n) = Σf (n) and (∆f)(n) = ∆f (n).

In particular we have Σw
(n)
hom = w

(n)
H and ∆w

(n)
H = w

(n)
hom .

Proof : The proof of the first equality works like this:

(Σf (n))(~x) =
1

|A~x|

∑

~y∈A~x

f (n)(~y) =
1

|A~x|

∑

~y∈A~x

n∑

i=1

f(yi)

=
1

|A~x|

n∑

i=1

∑

~y∈A~x

f(yi) =
1

|A~x|

n∑

i=1

|A~x|

|Axi|

∑

yi∈Axi

f(yi)

=
n∑

i=1

1

|Axi|

∑

yi∈Axi

f(yi) =
n∑

i=1

(Σf)(xi) = (Σf)(n)(~x).

The remaining parts follow in a similar way using the preceding theorem. 2

Definition 4.13 Let K be a linear code of length n over AM and f ∈ F (AM,P) . An A -linear

injective mapping K
ϕ

−→ Mn is called an f -isometry if f(ϕ(~c)) = f(~c) for all ~c ∈ K , i.e., if the
functions fϕ and f coincide on K .

Proposition 4.14 Let K ≤ AM
n and f ∈ F (AM,P) . A linear injective mapping K

ϕ
−→ Mn is

an f -isometry if and only if it is a (Σf) -isometry.

Proof : Since ϕ is a linear and injective map we have Aϕ(~c) = ϕ(A~c) and |Aϕ(~c)| = |A~c| , for all
~c ∈ K . Now for any ~c ∈ K we have

(Σf)ϕ(~c) =
1

|Aϕ(~c)|

∑

~d∈Aϕ(~c)

f(~d) =
1

|A~c|

∑

~d∈ϕ(A~c)

f(~d)

=
1

|A~c|

∑

~a∈A~c

f(ϕ(~a)) = Σ(fϕ)(~c).

So if fϕ and f coincide on K then the same is true for (Σf)ϕ and Σf . The converse assertion
follows from Theorem 4.11. 2

The foregoing statement together with Proposition 4.12 shows in particular that a linear mapping
is a homogeneous isometry if and only if it is a Hamming isometry. Since Hamming isometries are
trivially injective, we obtain by combination of Theorem 4.10 with Propositions 4.12 and 4.14 a
monomial extension of Hamming isometries.
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Theorem 4.15 Let AMA be a Frobenius bimodule. Then for an left A -linear code K of length
n over M and an A -linear mapping K

ϕ
−→ AM

n the following are equivalent:

(a) ϕ is a Hamming isometry;

(b) ϕ is the restriction of a monomial transformation of AM
n .
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