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Let X be a smooth connected projective curve defined over
an algebraically closed field k of characteristic p > 0. Let
G be a finite group whose order is divisible by p. Suppose
that G has a normal p-Sylow subgroup. We give a necessary
and sufficient condition for G to be a quotient of the algebraic
fundamental group π1(X) of X.

1. Introduction.

Let X be a smooth projective connected algebraic curve of genus g defined
over an algebraically closed field k of characteristic p > 0. In this paper
we study necessary and sufficient conditions for a finite group G to be a
quotient of the algebraic fundamental group π1(X) of X. We denote by
πA(X) the set of isomorphism classes of finite groups which are quotients
of π1(X). Recall that a group G ∈ πA(X) will occur as a Galois group of
an étale Galois cover Z → X. In this paper we will call Z → X a Galois
G-cover.

Let G be a finite group and suppose that its order is not divisible by p.
In [Groth71, Corollary 2.12] Grothendieck showed that G ∈ πA(X) if and
only if G is a quotient of the topological fundamental group Γg of a compact
Riemann surface of genus g.

We consider next a finite p-group G. Denote by Φ(G) = [G,G]Gp its
Frattini subgroup and let G = G/Φ(G). This group is an elementary p-
abelian group. The p-torsion subgroup JX [p] of the Jacobian variety JX ofX
is an Fp-vector space whose dimension γX is called the Hasse-Witt invariant
of X. It follows from [Ser56, §11] that G ∈ πA(X) if and only if G has p-rank
at most γX . Suppose now that G ∈ πA(X), then G ∈ πA(X), therefore the
p-rank of G (the minimal number of generators of its maximal p-quotient)
is at most γX . Actually, this condition is also sufficient. This follows from
the fact that the p-cohomological dimension cdp(π1(X)) of π1(X) is at most
1 (cf. end of proof of Theorem 1.3).

Now these two situations are understood, the next step to study is the
case of a finite group G whose order is divisible by p. Consider the case
where G has a normal p-Sylow subgroup P . Let H = G/P . The main
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theorem (Theorem 1.3) addresses the question of when a Galois P -cover
Z → Y and a Galois H-cover Y → X can be composed to give a Galois G-
cover Z → X (recall that in general the cover may not be Galois). Roughly
speaking the theorem says that G ∈ πA(X) if and only if the action of H
on P is compatible with the action of H on JY [p]. The result fits nicely
with the fact (implied above) that the p-torsion of the Jacobian variety of
Y regulates the Galois P -covers of Y . In order to state the main theorem
precisely we need to introduce some notation.

1.1. Group theory. Let G be a finite group with normal p-Sylow subgroup
P and quotient H = G/P . A theorem of Schur and Zassenhaus assures that
G is isomorphic to the semi-direct product P oH taken with respect to the
the action η : H → Aut(P ) defined by conjugation. Let Φ(P ) = [P, P ]P p

be the Frattini subgroup of P . The quotient P = P/Φ(P ) is the maximal
elementary abelian quotient of P , hence it is an Fp-vector space. This action
induces an Fp-representation ρ : H → Aut(P).

Let Z(H) be the set of irreducible characters χ of H with values in the
algebraically closed field k of characteristic p > 0. Let χ0 be the trivial
character of H and ρχ : H → GL(Vχ) an irreducible k-representation of H
of character χ of degree nχ. The canonical decomposition of P ⊗Fp k as a
k[H]-module is given by

P ⊗Fp k =
⊕

χ∈Z(H)

V
mχ
χ .(1.1)

1.2. Generalized Hasse-Witt invariants. Let Y → X be a Galois cover
with Gal(Y/X) ∼= H and gY the genus of Y . Let JY be the Jacobian
variety of Y and JY [p] its p-torsion subgroup. Suppose that Fq = Fpm is
a finite field large enough to contain the |H|-th roots of unity. Let eχ =
χ(1)
|H|

∑
h∈H χ

(
h−1

)
h ∈ k[H] be the idempotent corresponding to χ. Denote

by

JY [p]⊗Fp Fq =
⊕

χ∈Z(H)

JY [p]χ(1.2)

the canonical decomposition of JY [p]⊗Fp Fq, where JY [p]χ = eχ · (JY [p]⊗Fp

Fq).

Definition 1.1. The generalized Hasse-Witt invariant γY,χ of Y with re-
spect to χ is defined as the dimension of JY [p]χ as an Fq-vector space (cf.
[Ruc86, §2]). A surjection φ : π1(X) � H corresponds to a Galois H-cover
Y → X, and in the case that the cover Y → X is not named, we will use
γφ,χ to denote the generalized Hasse-Witt invariant γY,χ of Y with respect
to χ.

The notation γφ,χ has the advantage that it emphasizes that the general-
ized Hasse-Witt invariants are invariants of the cover Y → X (corresponding
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to the surjection φ : π1(X) � H) rather than of the curve Y alone. Also, the
main result of this paper is phrased in terms of embedding problems involv-
ing φ. Thus, the notation γφ,χ eases the exposition in that case. However,
in the literature the notation γY,χ is standard. Moreover, in this paper when
we are dealing directly with the cover Y → X, as opposed to the surjection
φ, we use the notation γY,χ.

A consequence of (1.2) is

γY =
∑

χ∈Z(H)

γY,χ.(1.3)

1.3. Embedding problems.

Definition 1.2 ([Har95, p. 366]). An embedding problem for a profinite
group Λ is a pair of surjective profinite group homomorphisms (α : Λ→ K2,
δ : E → K2). The embedding problem is finite, if E is a finite group,
and trivial, if δ is an isomorphism. A weak, respectively proper, solution
to the embedding problem is a homomorphism, respectively a surjective
homomorphism, β : Λ→ E such that α = δ ◦ β.

1.4. Main theorem. Here we give the statement of the main result. Since a
surjection φ : π1(X) � H corresponds to a unique Galois H-cover Y → X,
embedding problems (φ : π1(X) � H,G � H) relate to Galois theory.
Specifically, a proper solution to such an embedding problem corresponds
to the existence of a Galois G-cover Z → X dominating the Galois H-cover
Y → X. Thus we use the language of embedding problems to state the main
theorem.

Again we assume throughout this paper that all curves are smooth con-
nected projective k-curves. For such a curve X we make the following no-
tation.

Notation. Given a group G with normal p-Sylow subgroup P and quotient
H = G/P , and given φ : π1(X) � H, let mχ, nχ, and γφ,χ be as in Sections
1.1 and 1.2. By Condition A for the curve X we will mean that for every
χ ∈ Z(H) the following inequality holds: mχ nχ ≤ γφ,χ.
Theorem 1.3. Let G be a finite group having a normal p-Sylow subgroup
P . Let H = G/P . An embedding problem (φ : π1(X) � H,G � H) has a
proper solution if and only if Condition A holds for the curve X.

The necessity of Condition A for the curve X in Theorem 1.3 was previ-
ously obtained in [Ste96a, Proposition 3.4]. In this paper we show that it
is also sufficient. Rephrasing this in terms of covers we obtain the following
immediate corollary.

Corollary 1.4. Let G be a finite group having a normal p-Sylow subgroup
P . Let H = G/P . Then, G ∈ πA(X) if and only if there exists a Galois
H-cover Y → X such that mχnχ ≤ γY,χ, for every χ ∈ Z(H).
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Remark 1.5. In the case that φ corresponds to a Galois H-cover Y → X
where Y is an ordinary curve (namely, that the genus of Y is equal to γY ) we
show (Theorem 7.1) that an embedding problem (φ : π1(X) � H,G � H)
has a proper solution if and only if mχ ≤ g, when χ is the trivial character
of H, and mχ ≤ (g − 1)nχ, otherwise. The advantage here is that we
eliminate the generalized Hasse-Witt invariant notation from the condition.
This result appears in Section 7 where we discuss it and other consequences
of Theorem 1.3. The existence or non-existence of ‘ordinary GaloisH-covers’
is a difficult and open problem. However, in the case that H is abelian and
X is ‘generic’ (cf. Section 7) a great deal of progress has been made by
Nakajima [Nak83] and Zhang [Zha92]. We use their theorems in Section
7 to obtain some interesting results and examples (cf. Theorem 7.4 and
Example 7.11).

We start with some Preliminaries which allow us to compute the gener-
alized Hasse-Witt invariants in terms of differentials and to estimate how
big they are. Next, in Section 3, we determine when P o H ∈ πA(X) and
develop some elementary representation theory tools which will be used in
Section 6 to prove Theorem 1.3. In Section 4, some useful results regarding
solutions of embedding problems are given. In Section 5, we prove that the
p-cohomological dimension of π1(X) is at most 1. The main result is proved
in Section 6, and in Section 7 we discuss some consequences of the main the-
orem and make some comparisons to previous work of Nakajima [Nak87]
and Stevenson [Ste96a].

2. Preliminaries.

Let Y be a smooth projective connected algebraic curve of genus gY defined
over an algebraically closed field k of characteristic p > 0.

Definition 2.1. Let Ω1
Y be the space of differentials of Y and Ω1

Y (0) ⊂ Ω1
Y

the subspace of regular differentials. Let L be the function field of Y and
t a separating variable of L. Given ω = fdt ∈ Ω1

Y , the Cartier operator is
defined by C (ω) = (−dp−1f/dtp−1)1/p dt. This is a 1/p-linear operator, i.e.,
C(apω) = aC(ω), for any a ∈ K. Moreover, C acts on Ω1

Y (0) (cf. [Ser56,
§10, p. 39]).

It also follows from [Ser56, §10, p. 39] that there exists an Fp-isomor-
phism between JY [p] and Ker(1 − C |Ω1

Y (0)) given by class(D) 7→ df/f ,
where p.class(D) = div(f). In particular, γY ≤ gY .

Definition 2.2. The curve Y is called ordinary if γY = gY .

In order to understand how big the generalized Hasse-Witt invariants are
we recall that a theorem of Nakajima ([Nak84] Corollary, one can also
follow the proof in characteristic 0 of Chevalley and Weil [CheWei34])
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which says that if Y → X is étale and Gal(Y/X) ∼= H, then we have an
isomorphism of k[H]-modules

Ω1
Y (0) ∼= k ⊕ k[H]g−1.(2.1)

Given χ ∈ Z(H), let Ω1
Y (0)χ = eχ.Ω1

Y (0) and gχ = dimk Ω1
Y (0)χ . Note

that (2.1) implies that gχ0 = g and gχ = (g − 1)n2
χ for every χ ∈ Z(H),

χ 6= χ0. It is a result due to Rück [Ruc86, Proposition 2.3] that the Fq[H]-
modules JY [p]χ and Ker(1 − Cm |Ω1

Y (0)χ) are isomorphic (this generalizes
the above result of Serre). Hence, for each χ ∈ Z(H) we have

γY,χ ≤ gχ.(2.2)

Remark 2.3. In particular, by (1.3), we conclude that Y is ordinary if and
only if for each χ ∈ Z(H) we have

γY,χ =
{
g, if χ = χ0 and
(g − 1)n2

χ, if χ 6= χ0.
(2.3)

3. Unramified covers and Galois modules.

Let Y → X be a Galois cover with Gal(Y/X) ∼= H and Z → Y an étale
Galois cover with Gal(Z/Y ) ∼= (Z/pZ)r, for some 1 ≤ r ≤ γY . In [Pac95,
Propositions 2.4 and 2.5] the first author determined a necessary and suf-
ficient condition for Z → X to be also Galois. We review these results
and as a consequence we obtain a necessary and sufficient condition for
P oH ∈ πA(X).

Denote by S1 the set of all étale Galois covers Z →Y with Gal(Z/Y )∼=
(Z/pZ)r for some 1 ≤ r ≤ γY . This set corresponds bijectively to the set S2

of Fp-vector subspaces of Hom(π1(Y ),Z/pZ) by (Z →Y ) 7→Hom(Gal(Z/Y ),
Z/pZ), where we identify Hom(Gal(Z/Y ),Z/pZ) with the Fp-vector space
of ψ ∈ Hom(π1(Y ),Z/pZ) such that π1(Z) ⊂ Ker(ψ). Its inverse is equal to
V 7→ (Z → Y ), where

⋂
ψ∈V (Lun)Ker(ψ) is the function field of Z, L is the

function field of Y and Lun is the maximal unramified Galois extension of
L. An element (Z → Y ) of S1 is explicitly described as follows.

For each Q ∈ Y , let LQ be the completion of L at Q, UL =⋂
Q∈Y (℘(LQ) ∩ L), where ℘ denotes the operator ℘(x) = xp − x. Let

WL = UL/℘(L) and for each a ∈ UL − ℘(L), let 〈a+ ℘(L)〉 be the cyclic
subgroup of order p of WL generated by a + ℘(L). Denote by ℘−1(a) a
solution of ℘(T ) = a in the algebraic closure of L.

Lemma 3.1 ([Pac95, Proposition 2.4]). Let (Z → Y ) ∈ S1 with Gal(Z/Y )
∼= (Z/pZ)r for some 1 ≤ r ≤ γY . There exist Fp-linearly independent
a1 + ℘(L), . . . , ar + ℘(L) ∈ WL such that k(Z) = k(℘−1(a1), · · · , ℘−1(ar)).
Moreover, the cover (Z → Y ) is uniquely determined by the Fp-vector sub-
space AZ/Y =

⊕r
j=1 〈aj + ℘(L)〉 of WL and Gal(Z/Y ) = Hom(AZ/Y ,Z/pZ).
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Lemma 3.2 ([Pac95, Proposition 2.5]). With hypothesis and notation as
in Lemma 3.1, Z → X is Galois if and only if AZ/Y is an Fp[H]-module.
In this case, Gal(Z/X) ∼= Gal(Z/Y ) o H and the action of H on AZ/Y is
contragradient to the natural action of H on Gal(Z/Y ).

Our goal now is to describe the Fp[H]-module structure of P and compare
it with the Fp[H]-module structure of Ker(1−C |Ω1

Y (0)). In order to do this
we introduce some basic facts on representation theory.

Definition 3.3. Let χ ∈ Z(H) and denote by ρχ : H → GL(Vχ) an irre-
ducible representation with character χ. Given h ∈ H, let (aij(h)) be the
matrix of ρχ(h) with respect to some fixed basis of Vχ. For each m ≥ 0, let
ρχpm : H →GL(Vχ) be the map defined by ρχpm (h) = ρχ(h)p

m
.

Lemma 3.4 ([Isa76, p. 151]). The map ρχpm is an irreducible k-represen-
tation of H with character χp

m
defined by χp

m
(h) = χ(h)p

m
.

Definition 3.5 ([Isa76, p. 152]). Denote by Fplχ the field Fp(χ) generated
by Fp and the character values {χ(h) ; h ∈ H}. Given χ, ψ ∈ Z(H), define
χ ∼ ψ if and only if there exists 0 ≤ m < lχ such that ψ = χp

m
. Let [χ]

be the class of χ in Z(H) = Z(H)/ ∼. Let F be the set of Fp- irreducible
representations ρ : H → GL(U) of H.

Lemma 3.6 ([Isa76, Theorem 9.21]). There is a bijection between the sets
F and Z(H) given by ρ 7−→ [χ], where ρ ⊗Fp k : H → GL(U ⊗Fp k) is
isomorphic to ρ[χ] =

⊕lχ−1
j=0 ρ

χpj .

The action η : H → Aut(P ) given by conjugation induces an Fp-represent-
ation ρ : H → Aut(P). By Lemma 3.6, ρ⊗Fpk is a sum of the representations
ρ[χ] with multiplicities mχ (note that since ρ is defined over Fp, mψ = mχ,

for ψ ∼ χ). Denote V[χ] =
⊕lχ−1

j=0 V
χpj . Hence,

P ⊗Fp k
∼=

⊕
[χ]∈Z(H)

V
mχ

[χ] .(3.1)

Let V[χ] be the irreducible Fp[H]-module such that V[χ] ⊗Fp k
∼= V[χ]. It

follows from (3.1) that

P ∼=
⊕

[χ]∈Z(H)

Vmχ

[χ] .(3.2)

Let nχ = dimk Vχ, gχ = dimk Ω1
Y (0)χ and Ω1

Y (0)[χ] =
⊕lχ−1

i=0 Ω1
Y (0)

χpi .
The Cartier operator C induces a k-isomorphism between Ω1

Y (0)χp and
Ω1
Y (0)χ given by ω 7→ C(ω). In particular, Ω1

Y (0)[χ]
∼= V

gχ/nχ

[χ] . Clearly C acts

on Ω1
Y (0)[χ]. Hence, Ker(1− C |Ω1

Y (0)[χ]) ∼= V
tχ
[χ], for some 1 ≤ tχ ≤ gχ/nχ.
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The canonical decomposition of Ω1
Y (0) into irreducible k[H]-modules is

given by

Ω1
Y (0) =

⊕
χ∈Z(H)

Ω1
Y (0)χ =

⊕
[χ]∈Z(H)

Ω1
Y (0)[χ].

As a consequence we obtain the canonical decomposition

Ker(1− C |Ω1
Y (0)) =

⊕
[χ]∈Z(H)

Ker(1− C |Ω1
Y (0)[χ])(3.3)

∼=
⊕

[χ]∈Z(H)

Vtχ[χ]

of Ker(1− C |Ω1
Y (0)) into irreducible Fp[H]-modules.

4. Cohomological dimension and embedding problems.

In this section we describe one tool from Galois cohomology which we use
to prove that if PoH ∈ πA(X) and cdp(π1(X)) ≤ 1, then G ∈ πA(X). This
result is expressed in terms of embedding problems (cf. Remark 4.4). This
concept is also reviewed here.

Definition 4.1 ([Ser86, I-17]). A profinite group Λ has p-cohomological
dimension at most d ≥ 1, if for every Λ-module M and for every integer
e > d the p-primary component of He(Λ,M) is trivial. The infimum cdp(Λ)
of all such d is called the p-cohomological dimension of Λ.

Definition 4.2 ([Ser86, I-23, 3.4]). Let

1→ K1 → E
δ→ K2 → 1(4.1)

be an extension of profinite groups. A profinite group Λ has the lifting
property for this extension, if for every homomorphism α : Λ → K2 there
exists a homomorphism β : Λ→ E such that α = δ ◦ β.

Proposition 4.3 ([Ser86, Proposition 16, I-23]).The inequality cdp(Λ)≤1
holds if and only if the extension (4.1) has the lifting property, when K1 is
a pro-p group.

Remark 4.4. In the case where cdp(Λ) ≤ 1, it follows from Proposition
4.3 and Definition 1.2 that there exists a weak solution to the embedding
problem

(δ : E � K2,Λ � K2).

Let G be a finite group having a normal p-Sylow subgroup P , H = G/P and
P = P/Φ(P ). Recall thatG ∼= PoH. Define δG : G→ PoH by δG((a, b)) =
(amodΦ(P ), b). This function is a surjective group homomorphism and
Ker(δG) = Φ(P ).
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In particular, if cdp(π1(X)) ≤ 1 and P oH ∈ πA(X), then there exists a
weak solution π1(X)→ G to the embedding problem

(δG : G � P oH,π1(X) � P oH).

Furthermore, this weak solution is indeed a proper one, because Φ(P ) ⊂
Φ(G) and the latter set is exactly the set of “non-generators” of G, thus
π1(X)→ G must be surjective.

5. Cohomological dimension at most one.

In this section we prove that the p-cohomological dimension π1(X) is at
most 1. The proof follows the argument sketched out by Serre in [Ser90,
Proposition 1] where he proves a similar result for an affine curve U (sf. also
[Kat88]).

Definition 5.1. Let X be a smooth projective connected curve defined over
k. Denote by FEt/X the category of finite étale covers of X. Given a closed
point x of X define the functor F : FEt/X → Sets by Y 7→ HomX(x, Y ).

Remark 5.2. It follows from [Mil80, Chapter I, §5, p. 39] that F is strictly
pro-representable, i.e., there exists a projective system (Xν , φνµ) in FEt/X
where the transition morphisms φνµ : Xν → Xµ are epimorphisms for ν ≥ µ
and the elements fν ∈ HomX(x,Xν) satisfy

1) fν = φνµ ◦ fµ; and
2) for any Y ∈ FEt/X the natural map lim−→ νHomX(Xν , Y )→ HomX(x,

Y ) is an isomorphism.

Notation. Given a morphism Y → X and F an étale sheaf on X (cf.
[Mil80, Chapter II]), we denote by F|Y the pullback of F to Y . For any
n ≥ 0 and α ∈ Hn

ét(X,F) denote by α|Y ∈ Hn
ét(Y,F|Y ) the pullback of α to

Y .

Definition 5.3 ([Mil80, p. 155 and 220]). An étale sheaf F on X is called
finite if for every quasi-compact U ⊂ X, F(U) is finite. F has finite stalks
if for every geometric point x of X, Fx is finite. F is called locally constant
if there exists a covering (Uξ → X)ξ∈Ξ such that for every ξ ∈ Ξ, F|Uξ

is
constant. F is called a p-torsion sheaf if for every quasi-compact U ⊂ X,
F(U) is killed by a power of p.

Proposition 5.4 ([Mil80, Proposition 1.1, Remark 1.2 (b)]). Each locally
constant sheaf F on X with finite stalks is finite and represented by a group
scheme F̃ that is finite and étale over X. Furthermore, there exists a finite
étale morphism X ′ → X such that F̃ ×X X ′ is a disjoint union of copies of
X ′ and F|X′ is constant.



FINITE QUOTIENTS OF π1(X) 151

Convention. From this point till the end of this section, unless otherwise
stated, F will denote a p-torsion locally constant sheaf on X with finite
stalks.

Remark 5.5. It follows from Definition 5.3 and Proposition 5.4 that

F|X′ ∼=
r⊕
i=1

(Z/pniZ)mi ,(5.1)

where the ni’s and mi’s are positive integers.

Proposition 5.6. For each Y ∈ FEt/X and β ∈ H1
et(Y,F|Y ) there exists

Z ∈ FEt/X such that Z factors through Y and β|Z ∈ H1
et(Z,F|Z) is trivial.

Proof. We start with the case where Y = X. Given β ∈ H1
et(X,F), let x′ be

as in Prop. 5.4 and β′ = β|X′ ∈ H1
et(X

′,F|X′). By (5.1)

H1
et(X

′,F|X′) ∼=
r⊕
i=1

H1
et(X

′,Z/pniZ)mi .

So, we denote β′ = (β1,1, . . . , β1,m1 , . . . , βr,1, . . . , βr,mr) with βi,j ∈ H1
et(X

′,
Z/pniZ). Let Wn be the sheaf of Witt vectors of length n on X [Ser56,
§2], Fabs : X → X the absolute Frobenius morphism and ℘ the operator
℘(x) = xp − x. The exact sequence

1→ Z/pnZ→Wn
℘→Wn → 1,

gives an isomorphism H1
et(X,Z/pnZ) ∼= H1(X,Wn)Fabs , as in the usual

Artin-Schreier theory [Mil80, p. 127-128]. Hence, by [Ser56, Proposi-
tion 13], we conclude that βi,j parametrizes a cyclic étale cover Xi,j → X ′

of degree pni . Given α ∈ H1
et(X

′,Z/pnZ) and V → X ′ any finite étale
cover, let X ′′ → X ′ be the cyclic étale cover of degree pn defined by α
and let α′ = α|V ∈ H1

et(V,Z/pnZ|V ). Thus α′ parametrizes the covering
W = V ×X′ X ′′ → V . In the case where α = βi,j , the covering Xi,j → X ′

plays the role of both V → X ′ and X ′′ → X ′. Therefore βi,j |Xi,j
is trivial.

Let Z → X ′ be a finite étale cover such that for every i ∈ {1, . . . , r} and
j ∈ {1, . . . ,mi}. The cover Z → X ′ factors through Xi,j → X ′. Therefore
β|Z = β′|Z ∈ H

1
et(Z,F|Z) is trivial.

In the case where Y 6= X, let Y ′ = Y ×X X ′. We have

F|Y ′ ∼=
r⊕
i=1

(Z/pniZ)mi .

It follows from the above argument that there exists a finite étale cover
Z → Y ′ such that β|Z = (β|Y ′)|Z ∈ H1

et(Z,F|Z) is trivial. �

Proposition 5.7. For each Y ∈ FEt/X there exists Z ∈ FEt/X which
factors through Y such that H0

et(Z,F|Z) ∼=
⊕r

i=1 (Z/pniZ)mi.
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Proof. As in the proof of Proposition 5.6 it suffices to take Z = Y ×XX ′. �

Remark 5.8 ([Mil80, Chapter I, 5.4]). Given Y ∈ FEt/X denote by
AutX(Y ) the set of X-automorphisms of Y . There exists Z ∈ FEt/X
such that Z → X is Galois and Z → Y is an X-morphism. In this case
HomX(x,Z) is isomorphic to AutX(Z). In particular the elements of the pro-
jective system (Xν , φνµ) can be taken so that for each ν the cover Xν → X
is Galois. Furthermore, π1(X,x) = lim←− νAutX(Xν).

Remark 5.9. Since for each ν the map Xν → X is finite, hence affine, it
follows from [SGA 4, VII, §5] that the projective limit of schemes X̂ =
lim←− νXν exists. Moreover, by [Mil80, Chapter III, Lemma 1.16], for any
étale sheaf F on X and for any integer n ≥ 0 we have

Hn
et(X̂,F| bX) ∼= lim−→ νH

n
et(Xν ,F|Xν

).

Corollary 5.10. H1
et(X̂,F| bX) = 0 and H0

et(X̂,F| bX) ∼=
⊕r

i=1 (Z/pniZ)mi.

Proof. This is an immediate consequence of Propositions 5.6 and 5.7 and
Remark 5.9. �

Theorem 5.11. Let X be a smooth projective connected algebraic curve
defined over an algebraically closed field of characteristic p > 0. For any
closed point x of X we have cdp(π1(X,x)) ≤ 1.

Proof. It follows from [Sha72, p. 55, Theorem 11] that it suffices to show
that H2(π1(X,x), F ) = 0 for any finite simple π1(X,x)-module F of p-power
order. By [Mil80, p. 155-156], any such F is associated uniquely to a p-
torsion locally constant étale sheaf F with finite stalks. Proposition 5.4
shows that there exists X ′ ∈ FEt/X such that

F ∼= F|X′ ∼=
r⊕
i=1

(Z/pniZ)mi .(5.2)

Furthermore, by [SGA 4, X, Corollary 5.2], since X is a smooth projective
connected algebraic curve defined over k, we conclude that

Hn
et(X,F) = 0 for any n ≥ 2.(5.3)

For every ν we consider the Hochschild-Serre spectral sequence [Mil80, p.
105, Theorem 2.20] Er,sν ⇒ Er+s, where Er,sν = Hr(AutX(Xν),Hs

et(Xν ,
F|Xν

)) and Er+s = Hr+s
et (X,F). Also, as in [Mil80, p. 106 (b)], taking the

projective limit we obtain a spectral sequence Er,s∞ ⇒ Er+s, where Er,s∞ =
Hr(π1(X,x),Hs

et(X̂,F| bX)). Furthermore, it follows from [Mil80, p. 309,
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l.8] that there exists an exact sequence

0→ H1(π1(X,x),H0
et(X̂,F| bX))→ H1

et(X,F)→ H0(π1(X,x),H1
et(X̂,F| bX))

(5.4)

→ H2(π1(X,x),H0
et(X̂,F| bX))→ H2

et(X,F)→ H1(π1(X,x),H1
et(X̂,F| bX)).

Finally, we conclude from Corollary 5.10, (5.2), (5.3) and (5.4) that
H2(π1(X,x), F ) = 0. Thus, cdp(π1(X,x)) ≤ 1. �

In the next two corollaries we assume that X has genus g ≥ 2. In this
case it follows from [Ray82, Corollaire 4.3.2] that the p-Sylow subgroups of
π1(X,x) are non-trivial.

Corollary 5.12. For every finite simple p-power order π1(X,x)-module F
we have H1(π1(X,x), F ) ∼= H1

et(X,F).

Proof. The result is a consequence of Corollary 5.10 and (5.4). �

Corollary 5.13. The p-Sylow subgroups of π1(X,x) are non-trivial and
pro-p-free.

Proof. Recall that [Ser86, p. I-20, Proposition 14 (i)] implies cdp(P ) =
cdp(π1(X,x)), for any p-Sylow subgroup P of π1(X,x). Moreover, it follows
from Theorem 5.11 that cdp(π1(X,x)) ≤ 1. But, for a pro-p-group P this is
equivalent to P being pro-p-free. �

6. Galois covers.

Proof of Theorem 1.3. Let π1(X) � G be a proper solution for the em-
bedding problem (φ : π1(X) � H,G � H). Let Y → X be the Galois
H-cover corresponding to φ. Thus, γφ,χ = γY,χ. Recall that Φ(P ) is the
Frattini subgroup of P and P = P/Φ(P ). Observe that P ∈ πA(Y ). It
follows from the correspondence described in the second paragraph of Sec-
tion 3 that Hom(P,Z/pZ) is an Fp-subspace of Hom(π1(Y ),Z/pZ). This
latter space is Fp-isomorphic to Hom(Ker(1− C |Ω1

Y (0)),Fp) by Serre’s du-
ality [Ser56, §9]. Therefore, (3.2) and (3.3) imply mχ ≤ tχ, for every
χ ∈ Z(H). Note that Ker(1−C |

⊕lχ−1
j=0 Ω1

Y (0)
χpj ) and Ker(1−Clχ |Ω1

Y (0)χ)

are Fp[H]-isomorphic via ω =
∑lχ−1

j=0 ωj 7→ ω0 (cf. [Pac95, Lemma 2.14]).
Moreover, dimFp Ker(1 − Clχ |Ω1

Y (0)χ) = γY,χlχ, therefore tχ = γY,χ/nχ
(cf. [Pac95, Corollary 3.6]), hence mχnχ ≤ γY,χ (cf. [Ste96a, Proposition
3.4]). Conversely, suppose that mχ ≤ γY,χ/nχ, for every χ ∈ Z(H). Since
tχ = γY,χ/nχ, it follows from (3.3) there exists an Fp[H]-submodule Bχ
of Ker(1− C |

⊕lχ−1
j=0 Ω1

Y (0)
χpj ) such that Bχ ∼= V

mχ

[χ] . Let B =
⊕

χ∈Z(H) Bχ
and remark that there exists an Fp[H]-isomorphism between B and P. Once



154 A. PACHECO AND K.F. STEVENSON

again by the the correspondence described in the second paragraph of Sec-
tion 3, Hom(B,Fp) is Fp[H]-isomorphic to Hom(Gal(Z/Y ),Z/pZ) for some
étale cover Z → Y and Gal(Z/Y ) ∼= P. Therefore, Lemma 3.2 implies that
Z → X is Galois and Gal(Z/X) ∼= P o H. Hence P o H ∈ πA(X). It
follows from Theorem 5.11 that cdp(π1(X,x)) ≤ 1 for any closed point x of
X. Therefore, the argument of Remark 4.4 implies that G ∈ πA(X). �

7. A generic condition.

Theorem 1.3 tells us that if we are given a finite group G with a normal
p-Sylow subgroup P and quotient H, then whether or not G lies in πA(X)
depends not only on the size of P , but also on the specific action of H on
P . The role that the action of H on P plays in this question was examined
previously in the work of Nakajima [Nak87, Theorem A], Pacheco [Pac95,
Propositions 2.4 and 2.5] and Stevenson [Ste96a, Proposition 3.5]. However,
for the groups we are considering, Theorem 1.3 is stronger. In particular,
it gives us a necessary and sufficient condition which is reasonably easy to
compute. We begin this section with some consequences of Theorem 1.3.
These involve situations where the generalized Hasse-Witt invariants can be
most easily computed. At the end of this section we compute Condition
A for the curve Xg (which represents the generic geometric point of the
coarse moduli scheme Mg of curves of genus g) under the assumption that
H is abelian. This situation is sufficient to demonstrate the strengths of our
results while also distinguishing it from previous work.

As a preliminary step, we will prove the result mentioned in Remark 1.5,
which deals with “ordinary Galois H-covers”. The advantage in this case
is that Condition A can be rephrased in a way that is independent of the
H-cover. Given a finite group G having a normal p-Sylow subgroup P ,
recall that H = G/P , Z(H) denotes the set of irreducible characters χ of H
defined over the algebraically closed field k of characteristic p > 0 and χ0 is
the trivial character of H.

Theorem 7.1. Let G be a finite group having a normal p-Sylow subgroup
P . Let H = G/P . Suppose that φ : π1(X) � H corresponds to a Galois
H-cover Y → X where Y is an ordinary curve. An embedding problem
(φ : π1(X) � H,G � H) has a proper solution if and only if mχ0 ≤ g, and
mχ ≤ (g − 1)nχ, for χ 6= χ0.

Proof. Notice that by Remark 2.3, the Galois H-cover Y is ordinary if and
only if we have

γY,χ =
{
g, if χ = χ0 and
(g − 1)n2

χ, if χ 6= χ0.
(7.1)

Thus condition A is equivalent to the condition of Theorem 7.1. �
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Let g ≥ 2 be an integer and πA(g) the set of isomorphism classes of finite
groups G such that G ∈ πA(X) for some smooth projective connected curve
X of genus g.

Remark 7.2. Suppose that there exists some smooth projective connected
curve X defined over k such that a finite group G ∈ πA(X). Denote by x ∈
Mg the point corresponding to X. In [Ste96, Proposition 4.2] Stevenson
showed that in this case there exists an open subset U of Mg containing x
such that for every z ∈ U we have G ∈ πA(Z), where Z denotes the curve
corresponding to z. In particular, G ∈ πA(Xg), therefore πA(Xg) = πA(g).

Remark 7.3. It is an immediate consequence of the definition of πA(g) that
a finite group G satisfying the hypothesis of Theorem 1.3 lies in πA(g) if and
only if there exists a smooth projective connected curve X of genus g for
which Condition A holds.

Notation. Let G be a finite group. Denote by d(G) the minimum number
of generators of G.

Now we can prove another consequence of Theorem 1.3.

Theorem 7.4. Let G be a finite group having a normal p-Sylow subgroup
P . Suppose that H = G/P is abelian and g ≥ 2. A necessary and sufficient
condition for G ∈ πA(g) is d(H) ≤ 2g, mχ0 ≤ g and mχ ≤ g − 1 for each
χ ∈ Z(H) and χ 6= χ0.

Proof. Suppose that G ∈ πA(g). It follows from Remark 7.3 that there exists
a smooth projective connected curve X and an étale Galois cover Y → X
with Gal(Y/X) ∼= H such that for every χ ∈ Z(H) we have mχ ≤ γY,χ.
By (2.2) we conclude that γY,χ0 ≤ g and γY,χ ≤ g − 1 for every χ ∈ Z(H),
χ 6= χ0. Moreover, since H ∈ πA(X), [Groth71, Corollary 2.12] implies
that d(H) ≤ 2g. In particular, the condition of Theorem 7.4 is satisfied.
Conversely, suppose that d(H) ≤ 2g, mχ0 ≤ g and mχ ≤ g − 1 for each
χ ∈ Z(H) and χ 6= χ0. Since H is abelian and d(H) ≤ 2g, it follows
from [Groth71, Corollary 2.12] that H ∈ πA(Xg), i.e., there exists an étale
covering Yg → Xg such that Gal(Yg/Xg) ∼= H. It is a result due to Nakajima
[Nak83, Theorem 2] that every étale cyclic covering Zg → Xg of degree
prime to p is ordinary. (It is essential here that Xg is generic.) This result
was extended to all abelian prime to p groups by Zhang [Zha92, Théorème
3.1] (again for Xg). Hence Yg is ordinary. So, by Theorem 7.1, γYg ,χ0 = g

and γYg ,χ = g− 1 for every χ ∈ Z(H), χ 6= χ0. Furthermore, by hypothesis,
mχ0 ≤ g and mχ ≤ g− 1 for every χ ∈ Z(H), χ 6= χ0. Therefore, Condition
A holds for Xg and by Theorem 1.3, G ∈ πA(Xg). Finally, Remark 7.2
shows that this is equivalent to G ∈ πA(g). �

Another result in this direction is the following one from [Ste96a].
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Theorem 7.5 ([Ste96a, Propositions 3.1 and 3.2]). Let G be a finite group
having a normal p-Sylow subgroup P and H = G/P . Suppose that g ≥ 2 and
d(H) ≤ g. A necessary and sufficient condition for G ∈ πA(g) is mχ0 ≤ g

and mχ ≤ (g − 1)nχ for each χ ∈ Z(H) and χ 6= χ0.

Remark 7.6. Notice that for an abelian group H such that d(H) ≤ 2g,
Theorem 7.4 is stronger than Theorem 7.5 since the latter requires that
d(H) ≤ g. However, for arbitrary H with d(H) ≤ g, Theorem 7.5 is stronger
than Theorem 7.4.

Now we can compare these results to a result of Nakajima. Let G be
a finite group, IG = {

∑
σ∈G aσσ ∈ Z[G] ;

∑
σ∈G aσ = 0} its augmentation

ideal and t(G) the minimum number of generators of IG. Suppose that there
exists a smooth projective curve X of genus g such that G ∈ πA(X), i.e.,
G ∼= Gal(Y/X) for some étale Galois cover Y → X.

Theorem 7.7 (Nakajima, [Nak84, Theorem 4]). There exists a short ex-
act sequence of k[G]-modules

1→ Ω1
Y (0)→ k[G]g → IG → 1.

Corollary 7.8 (Nakajima, [Nak87, Theorem A]). t(G) ≤ g.

Notation. We call Condition B the inequality of Corollary 7.8.

Remark 7.9. From the definition of πA(g), Theorem 7.7 and Corollary 7.8,
we see that Condition B is necessary for G ∈ πA(g).

Corollary 7.10. Let G be a finite group having a normal p-Sylow subgroup
P , H = G/P . Suppose that either: (a) H is abelian and d(H) ≤ 2g; or (b)
d(H) ≤ g. Under either hypothesis (a) or (b) Condition A is equivalent to
Condition B.

Proof. By [Ste96a, Proposition 3.5] Condition A implies Condition B with-
out any restrictions onH. Conversely, by [Ste96, Proposition 3.1] Condition
B implies that mχ0 ≤ g and mχ ≤ (g− 1)nχ for each χ ∈ Z(H) and χ 6= χ0.
Under hypothesis (a) (resp. (b)) Theorem 7.4 (resp. 7.5) show that the
latter condition implies that G ∈ πA(g). Now by Theorem 1.3 this implies
Condition A. �

In order to obtain a converse in the case where H is a non-abelian finite
quotient of Γg we need to generalize the Nakajima-Zhang result ([Nak83,
Theorem 2] and [Zha92, Théorème 3.1]) to non-abelian Galois étale covers
of degree prime to p of Xg. Another option is to show that there exists
an ordinary Galois H-cover of a curve X of genus g and apply [Ste96] (cf.
Remark 1.5). Very recently M. Raynaud has found a counter example to
both these approaches.
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Example 7.11. Theorem 7.4 gives a result which is not covered by [Ste96a,
Theorem 3.2] in the case where H is abelian and g < d(H) ≤ 2g. Let n ≥ 1
be an integer and let g ≥ 2 be an integer. Let H = (Z/nZ)2g and label the
elements τj for j = 1, . . . , n2g. For each i = 1, 2, . . . , g−1 let Pi = (Z/pZ)n

2g

and Pg = Z/pZ. Pick a basis ai,τ1 , . . . , ai,τn2g for Pi for i = 1, . . . , g− 1 and
let ag be a basis of Pg. Then we define an action of H on each Pi for
i = 1, . . . , g − 1 as follows: ρi : H → Aut(Pi) by ρi(τj)ai,τl = ai,τjτl . With
this action each Pi is isomorphic to Fp[H], which is the H-module defined
over Fp corresponding to the regular representation of H. Let H act on Pg
trivially. Now let P =

⊕g
i=1 Pi with the induced action of H on P . Then

P is isomorphic to (Z/pZ)n
2g(g−1)+1 as a group and to Fp[H]g−1 ⊕ Fp as

an Fp[H]-module. Let G be defined as the semi-direct product P oH with
respect to this action.

By construction P ⊗Fp k is isomorphic as a k[H]-module to k[H]g−1 ⊕ k.
Let Z(H) be the set of irreducible characters of H defined over k and let
χ0 be the trivial character of H. Then using the notation of Section 1.1,
mχ0 = g and mχ = g − 1 for χ 6= χ0. Note that since H is abelian, by
Zhang’s theorem [Zha92, Théorème 3.1], any Galois H-cover Yg of Xg is
ordinary, thus γYg ,χ0 = g, and γYg ,χ = g − 1 for χ 6= χ0. In particular,
Condition A is satisfied for the curve Xg, therefore G ∈ πA(Xg) = πA(g).

Remark 7.12. In the set-up of Example 7.11, as the rank of H is greater
than g, Theorem 7.5 does not apply. If we keep P the same but change
the action of H on P in any way, then G will not lie in πA(g), because for
some character χ 6= χ0 we would have mχ > g − 1 or mχ0 > g. Finally, if
we replace P by any p-group Q with Frattini quotient isomorphic to P and
extend the action of H in P of Example 7.11 to an action of H in Q, then
we get (as in the end of the proof of Theorem 1.3) QoH ∈ πA(Xg) = πA(g).
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