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Summary. - This paper is motivated by, and ultimately directed to, boundary feedback part~at 

differential equations of both parabolic and hyperbolic type, defined on a bounded domain. 

I t  is written, however, in  abstract form. I t  centers on the (feedback) operator A~ ~ A ~- P;  

A the infinitesimal generator of a s.c. semigroup on H; P an A-bounded, one dimensional 

range operator (typically non-dissipative), so that P -~ (A . ,  a)b, for a, b ~ H. While Part I 

studied the question of generation of a s.c. semigroup on H by A E and lack thereof, the present 

Part I I  focuses on the following topics: (i) spectrum assignment of AF, given A and a ~ H, 

via a suitable vector b EH;  alternatively, given A,  via a suitable pair of vectors a, b ~ H ;  

(fi) spectrality of AF--and lack thereof--when A is assumed spectral (constructive counter- 

examples include the case where P is bounded but the eigenvalues of A have zero gap, as well 

as the case where P is genuinely A-bounded). The main result gives a set of sufficient condi- 

tions on the eigenvalues {~n} of A ,  the g~en vector a ~ H and a given suitable sequence (sn} 

of nonzero complex numbers, which guarantee the existence of a suitable vector b e H such 

that AF possesses the following two desirable properties: (i) the eigenvalues of AF are precisely 

equal to 2~ + e~; (ii) the corresponding eigenvectors of A~ form a Riesz basis (a fortiori~ A F 

is spectral). While finitely many sn's can be preassigned arbitrarily, it must be however that 

s~ ~ 0 (~ sufficiently fast ~. Applications include various types of boundary feedback stabiliza- 

tion problems for both parabolic and hyperbolic partial differential equations. A n  illustration 

to the damped wave equation is also included. 
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O. - Introduction, summary of  main results, comparison with the literature. 

L e t  Y be  a ( s epa rab l e )  H i l b e r t  space  w i t h  i n n e r  p r o d u c t  ( , )  a n d  l e t  A :  Y o 

o ~ ( A )  -*  Y be  t h e  i n f i n i t e s i m a l  g e n e r a t o r  of a Co-semigronp or  g r o u p  on  Y, con- 

v e n i e n t l y  d e n o t e d  b y  e x p  [At]. W e  s h a l l  a s s u m e  0 e @(A). F i n a l l y ,  l e t  P :  Y o 

o ~ ( P )  --> Y b e  a f in i t e  r a n k  (or r a nge ) ,  A - b o u n d e d  (or r e l a t i v e l y  b o u n d e d )  o p e r a t o r  

so t h a t  ~ ( A )  c ~ ( P ) .  T y p i c a l l y ,  P wi l l  be  u n b o u n d e d  a n d  h e n c e  u n c l o s a b l e  [K.1,  

p .  ]66] .  F o r  t h e  p u r p o s e s  of t h e  p r e s e n t  p a p e r ,  i t  w i l l  suffice to  t a k e  P of one-  

d i m e n s i o n a l  r ange .  W e  t h e n  n o t e  t h a t  _P is n e c e s s d r i l y  of ~he g e n e r a l  f o r m  

(0.1) Py = (Ay, a)b, ~ (P)  = {y ~ Y: (Ay, a) = wel l  def ined} o ~ ( A )  

for  some  v e c t o r s  a,  b e ~ .  

I n  f ac t ,  if  P is A - b o u n d e d ,  t h e n - - e q u i v a l e n t l y - - t h e  o p e r a t o r  _PA -1 is b o u n d e d  

and ,  b y  a s s u m p t i o n ,  i t  ha s  one d i m e n s i o n a l  r ange .  Thus ,  _PA-~h = (h, a)b for  some  

v e c t o r s  a a n d  b in  Y, a n d  we t h e n  se t  y = A- lh  t o  v e r i f y  our  c l a im .  

T h e  o b j e c t  of our  i n t e r e s t  is t h e  per tu~ .bed  o p e r a t o r  

(0.2) A ~ = A 4 7 P = A 4 7 ( A ' , a ) b ,  2(A~)~2(A) ,  

w h i c h  we s h a l l  r e g a r d  as  a r i s i n g  e i t h e r  in  t h e  f i rs t  o r d e r  d y n a m i c s  

(0.3) ?)= A r y =  Ay ~ (Ay, a) b 

or in  t h e  s e c o n d  o r d e r  d y n a m i c s  

(0.4) ~ : A~y = Ay  47 (Ay, a)b.  

T h e s e  two a b s t r a c t  d i f f e r e n t i a l  m o d e l s  i n c l u d e  ~ l a rge  v a r i e t y  of b o u n d a r y  feed-  
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b~ck parabolic and hyperbolic partial differential equations (but not all, see [L-T.6]). 

These form--in fact - - the  original motivation, as well as the ultimate goal, of our 

stu4y. Section 4 will in fact illustrate our results to these more ((concrete ~) equa- 

tions, which will be defined on a bounded open domain D of R" with boundary / ' .  

Accordingly, we shall henceforth make the standing assumption that  

(0.5) (K) the (original) operator A has compact resolvent R(Z, A) on Y and actually, 

for convenience in some points, we shall also assume that  the eigenvalues 

of A are simple, except perhaps for finitely many. 

I'g then follows "Chat, as expected, As in (0.2) also has compact resolvent (Lem- 

ma 1.!). Thus~ the spectrum of A~ is only point spectrum and consists at most of a 

countable sequence { ,.}.=~ of isolated points, with which--for A given 

once and for a l l -depends  on the pair a, b of vectors in Y. With these preliminaries, 

we can now introduce the problems, which we have investigated in this paper and 

the corresponding results which we have obtained. (In Part  I, we studied semi- 

group generation by A~,~ or lack thereof, or well posedness of (0.3)--with applica- 

tion to boundary feedback hyperbolic equations.) 

Section 1. - To begin with, we examine, in Section 1, the question of pre-assigning 

(or allocating) the spectrum of the perturbed operator As. Our results take two 

forms. In Theorem 1.2, we assume that  (the operator A and) the vector a ~ I~ 

be given; we then establish the existence of a vector b ~ 17, such that  the spectrum 

of the corresponding operator As be arbitrarily preassigned~ subject to the following 

condition: that  the distance ]e~] --~ ]~--  A. I between the (( new ~> (desired) eigenvalue 

~ of AF and the (( old ~) eigenvalue ~ of A be non zero (]s~ t V: 0) and asymptotically 

small. This means that  any finite number of new eigenvalues of Ap can be arbitrarily 

preassigned, while the remaining eigenvalues of AF will have to remain sufficiently 

close to the corresponding eigenvalues of A (but Is~l V= 0). 

Instead, in Theorem 1.5, the same conclusion is achieved of synthesizing pres- 

signed eigenvalues {a~} of A~,--onee A is given--this time through the simultaneous 

search of the pair a, b of vectors in l~: however, in contrast with the preeeeding 

Theorem 1.2, all {~} will now have to remain sufficiently close to the corresponding 

eigenvalues {A~} of A~ with no freedom now allowed for pre-assigning wholly arbi- 

trari ly finitely many ~,'s. 

Applications of the first result (Thin. 1.2) to boundary control problems include 

dynamics (0.3) or (0A) where one wishes to shift on the left hand side of the complex 

plane C (or at the left of any vertical line in C, for that  matter) finitely many un- 

stable eigenvalues of the original A. Applications of the second result (Thin. 1.5) 

include boundary feedback byperbolic equations, where the spectrum {2~} of the 

original operator A in model (0.3) lies, say, on the imaginary axis and the feedback 

perturbation eperator shifts it to the open left hand side of C (see Application 4.3, 

Section 4). 
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Sections 2 and 3. - In the subsequent two sections (2 and 3), we investigate, first 

of all, whether or not the perturbed operator AF is, or can be made, spectral (in the 

sense of DU~FORD [D.1] or DUI~FORD-SCItWARTZ [D-S.1, Vol. III]).  Counterexamples 

are provided in section 2 and ~ particularly strong and desirable version of a positive 

result is then given in Theorem 3.1 (and Corollary 3.2) of section 3. We then com- 

bine the spectrality of AF of Theorem 3.1 with the spectrum allocation result of 

Theorem 1.2 and thus arrive at the ~ncdn positive result of our p~per, Theorem 3.3. 

This states that :  for an unperturbed operator spectral of scalar type, hence similar 

to an operator A with an orthonormM basis of eigenvectors (r given the simple 

eigenvalues of A, the  coordinates of a vector a and a  equence 

of non zero distinct complex numbers, all subject to certain verifiable assumptions, 

there exists (constructively) a vector b e I ~ such that  the corresponding perturbed 

operator A~ in (0.2) has two m~jor and desirable properties : (i) (spectral assignment) 

its eigenvalues {~} are precisely given by ~, = ~ _u s~; (if) (preservation of basis 

properties of eigenveetors) its eigenprojections (9~} are related to the eigenprojec- 

tions (P.~} of A by the similarity relation @~= W-~P.~W, where W is a suitable 

bounded, boundely invertible operator en I z (i.e. the corresponding normalized 

eigenvectors {T~} of AF form a Riesz basis on Y) and AF is a spectral operator of 

scalar type. 

Signi]icance o] main results. - To put these results in proper perspective within 

the context of dynamical systems, we recall that  in the typical parabolic ease or 

in the typical undamped hyperbolic case (written as a first order equation), the 

generator A in model (0.3) is self-adjoint or normal, skew-adjoint, respectively while 

in the typical damped hyperbolic equation A is of scalar type. Thus, A is in any 

ease an operator of scalar type, special case of ~ spectral operator, in the sense of 

DU~FORD [D.1] and DU~0RD-ScRw).RTZ [D-S.1, Vol. III].  With the perturbatien 

operator P as in (0.1), it is then natural to ask whether or not the perturbed operator 

A~ is also spectral for some or possibly all choices of the vector pairs a, b in :Y. 

[Note tha t  the assumption of eommutativity between A and the perturbation ~, 

which is made in established theory [D-S.1] does not generally hold in our present 

case.] The importance of producing a spectral feedback operator AF is self-evident: 

in fact, in our present case, where the spectrum of AF is countable, spectrality of 

Ar amounts to the assertion that  AF posseses the most desirable property of un- 

conditional convergence of its eigenvalue expansion. More precisely, if AF with 

spectrum (~}~=~ is spectral, then--because of the countable additivity property 

of the resolution of the ident i ty  associated to spectral operators--every y ~ Y has 

an unconditionally convergent expansion of the type y = ~ y . =  ~ E ( ~ ) y  where 

the spectrum of y~ consists of <~generalized eigenvectors >> associated to ~ :  (AF-- 

-- zt~I)~y~ = 0, n = 1, 2, .... If  A~ is, iI~ particular, a spectral operator of scal~r 

type, then the generalized eigenveetors are simply eigenvectors in the ordinary 

sense. If  AF is a speetrM operator of type m, then the generalized eigenveetors y~ 
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satisfy the equations (A~-- ~,i),~+1~, __ 0, n ~ 1, 2, .... Thus, the basis results for 

AF in Theorem 3.1 and 3.3 (and Corollary 3.2) produce, a iortiori~ operators AF 

which are spectral, indeed of scalar type. On the other hand, the counterexamples 

to spectrality of AF given in section 2 should be contrasted with the following two 

positive results : 

(i) first, the property for AF as in (0.2) that  span (generalized eigenveetors 

of A~} ---- Y, slightly weaker th~n spectrality, but closely related to it, does indeed 

always hold true, for any operator A (self-adjoint or skew-adjoint as in the canonical 

parabolic or hyperbolic cases) and for any choice of vectors a, b in Y (see section 2~ 

below (2.1)) ; 

(if) in the special case of bounded perturbations, say P in (0.1) with a e ~(A*), 

the feedback operator A ~- (., a')b, (a'~-A*vb ~ Y for instance) is always spectral, 

provided that  A is spectral with simple eigenvalues except finitely many and, among 

other things, tha t  the distance d~ from 2. to the rest of the spectrum of A satisfies 

the condition: {1/d~} e 11 or, in g i lber t  space, {1/d,} ~ 12 (see [S.1, Thin. 1, p. ~19 

and Corol. lb' ,  p. 424] and, in a more general form which allows P to be A"-bounded 

with 0 < v < l ,  see[D-S, Vol. I I I ,  Thin. 7, p. 2296]). ~or A----S w i t h - - S  a self 

adjoint elliptic operator as in the canonical parabolic case, the above condition 

on {]/d.} in tIilbert space does not hold true, however, for dim f2 > 1. The eanoniesl 

hyperbolic case A ---- 0 I I has its eigenvahes reducible to the eigenvalues of S. 
S O  l 

Indeed, our counterexamples in section 2 to spectrality of the operator A~ 

defined by (0.2) refer to two cases: (1) the case where P is bounded but the eigen- 

values of A have zero gap (inf d~ = 0); (if) the case where P is genuinely A-bounded. 

Section ~. - The final goal of section ~ is to apply the sbstract main result (The- 

orem 3.3) of spectral allocation and simultaneous preservation of the basis properties 

for the feedback operator A~. (in (0 2)7 with A and a ~ I~. given through a suitable 

choice of b e Y( to p~rabolic and hyperbolic boundary feedback dynamics, (see 

section 3 or Part  I). To this end, in subsection ~.1 we first specialize Theorem 3.3 

to two corollaries. Corollary 4.1 (i) refers to the first order model (0.3) for parabolic 

equations, while Corollaries 4.1 (if) and 4.2 refer to hyperbolic equations in second 

order form (0.4) or first o~der form (0.3), respectively. However, before applying 

these abstract resu!ts in Hilbert space IF to boundary feedback parabolic and 

hyperbolic equations, we shall need to carry out one final step: as in Part  I, we 

shall need to deduce the counterpart of these results for the a djoint operators A*. 

This is done in Theorem 4.3 (counterpart of Theorem 3.3 for A*) and Corollaries 4.1"- 

4.2* (counterparts of Corollaries 4.1-4.2 for A*). In the applications to partial dif- 

ferential equations of subsection ~.2, we shall appeal, in fact, not directly to AF, 

but to its sdjoint A*. The reason for this is not only limited to the considerations 

of section 3, Part  I: t h a t  the closed loop feedback dynamics are more s~tisfactorily 

modelled by the abstract equation 2 I--A*z (or ~ ~--A'z) in Z, rather than by 
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y = A~y (or ~] = Ary)  in Y, since the space Z is much more desirable than the 

space Y. Actually, there is a more substantial and more critical reason which we 

shall explain at the end (4.2, Final Comments). This paper is another effort in the 

general area of <~ stabilization ~> or <~ eigenvalues allocation ~> for parabolic and hyper- 

bolic equations, by means of a boundary feedback of a simple form (presumably, 

(~ easy to implement in practical applications,)[L-T.1-L-T.5], [S.2], [1~.1]-[R.2]. 

However, it presents a spectral analysis approach of the feedback operator, rather 

than an approach based on the closed loop dynamics as in [L-T.1]-[L-T.3] or a 

difference delay system as a <~ canonical ~> form for two dimensional, first order 

hyperbolic systems in one space dimension [R.1]-[I~.2]: (These last two references 

address themselves to eigenvalues allocation only, without considering the basis 

properties of the eigenvectors of the feedback system in general). Our treatment 

here is simpler than the one followed in [L-T.1]-[L-T.3], however it solves a simpler 

version of the spectral allocation problem, in tha t  we seek here a synthesizing vector 

in the interior D, and not synthesizing vectors on the b o u n d a r y / '  as before. 

Paper [S.2] by Sv~ S~t;N-KUA, is also based on the spectral analysis of the 

closed loop operator (in an abstract setting). Our positive results in section 1 go, 

however, far beyond [S.2] (see comments in Remark 1.4), in that  (i) [S.2] considers 

only bounded perturbations and (if)[S.2] assumes that  the original operator A 

(corresponding to the original system) has a nonzero gap of it.s eigenvalues (i.e. the 

distance d. between two consecutive eigenvalues is uniformly bounded below by a 

positive constant: i n f d ~ >  0), which essentially reduces the applications to one- 

dimensional equations. To overcome these two assumptions, we employ a different 

machinery that  is crucially based on a Lemma of KAmo [K.1] concerning the 

similarity between the orthogonal eigenprojections of the unperturbed operator 

and the nonnecessarily orthogonal eigenprojeetions of the perturbed operator. 

1. - The question of  spectral assignment for the operator A F ---= A ~- P,  P finite rank 

and A-bounded. 

We return to the perturbed operator AF 

(1.1) A , , =  A @ P = A q- (X . ,  a)b , a, b ~ Y 

on Y, where A has compact resolvent. Let {)~n} be the sequence of eigenvalnes of A, 

12hi-->so, with {On} being the corresponding normalized eigenveetors. I t  will be 

proved below (Lemma 1.1) that,  as expected, A~ also has compact resolvent, for 

any a, b in Y. Accordingly, we shall indicate with {~n} and {Tn} the eigenvalues 

and corresponding normalized eigenveetors of Ap (which, of course, depend on the 

choice of a and b). 
Two main results are proved in this section, both aiming at the same final goal 

which is motivated by stability considerations: assign (or preassign) the eigenva]nes 
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{e~} of AF in ~ more desirable ~> locations of the  complex plane than those of the  

original cigenvalues {2~} of A. This will be ach i eved  by  ei ther  seeking a suitable 

vector  b, given the  vector  a in advance (Theorem 1.2); or else b y  seeking simnl- 

taneously  a suitable pair  of vectors  a and b (Theorem 1.5). As described below, 

these two Theorems have sharply  different implications ye t  bo th  have re levant  

applications,  to say, boundary  feedback hyperbol ic  equations (see In t roduct ion) .  

I n  the  first case, Theorem 1.2, it  will be possible to  preassign, in a comple te ly  

a rb i t ra ry  manner ,  f initely m a n y  of the  <~new ~> eigenvalues {~}; in part icular ,  it 

will be possible to replace or shift  all of the  finitely many  (~ original ~> eigenvalnes 

of A s i tua ted  in the closed r ight  hand  side of C with <~ new ~> e igenvahes  {e~} of As 

which will be all contained in the  open lef t  hand  side of C. i n  contrast ,  this  finite 

degree of f reedom will not  be allowed in the second case, Theorem 1.5 an applica- 

t ion  of which will instead be to  the  s tabi l i ty  of hyperbol ic  equations via bonndary  

feedback.  I t  will consist in removing all the  eigenvalues {2~} of A, which are origi- 

nal ly  located on the  imaginary  axis ( typical  ease of the  free wave equation),  and in 

shif t ing t hem (~ sl ightly ~>) to the  open left  hand  side of C (and asymptot ica l ly  

approaching the  imaginary axis). In  bo th  theorems,  (verifiable) sufficient conditions 

will be imposed, involving the  eigenvalues {2~} of the  original A, the  distance 

i~.--2,~I r 0 be tween 2~ and  the  (desired) <~new ~>-eigenvalues ~ of As, a n d - - i n  

the ease of Thin. 1 . 2 - - t he  coordinates a~ = (a, %) of a ~ Y as well. 

1.1. The resolvent operator R(A, A~) o]AF and preliminaries. 

I f  y ~ Y is given, we seek to solve ().I -- As)x = ()~I -- A)x -- (Ax, a)b = y, for 

suitable ~ ~ C and x e ~(A)  = ~(AF). Thus,  x = R()., A)y + R(2, A)b(Ax, a) for 

~ @(A) and 

( X x ,  - 2)b, a)] = A)y, a) .  

Hence,  the  sought af ter  vec tor  x is given by  

(A1r A)y,  a) 
(1.2) x = R(2, As)y = R(),  A)y + R(2, A ) b l  _ (AR(~, A)b, a) 

for all 2 e @(A)for which the  analyt ic  denominator  in (1.2) does not  vanish. 

AR(;~, A) = [2R(2, A) -- 1], we have 

lim (A/~(2, A)b, a) = l im [(2R(~, A)b, a) -- (b, a)] = (b, a) -- (b, a) = 0 ,  

Wi th  

say for ~. = real  -+ @ oo [B-B.1]. Thus,  the  denominator  cannot  vanish identically.  

Eq.  (1.2) gives R(2, As) for each such fixed ~ as the  sum of two obviously compact  

operators act ing on y (recall (K) in (0.5)). Thus R(),  AF) is compact ,  2, ~ @(As). 

~[oreover, let  e e @(A); if the  denominator  in (1.2) vanishes for 2, ~- e, t h en  e is a 

pole of R(J, As) and so [T-L.1], ~ is an eigenvalue of As; and conversely. We collect 

all this in a formal statement. 
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L ~ ? ~  1.1. - (i) For  any  reel:ors a, b e Y and under  assumption (K) in (0.5) 

(A has compact  resolvent), the  per turbed operator A~ in (1.1) has compact resolvent 

/~(~, AF) in Y, which is given by (1.2); 

(if) Any  eigenvalue a of A~ which is no~ also an eigenvalue of A (i.e. ~ ~ a~(A~.) 

but  ~ ~ a~(A) -~ {~}) is characterized by 

(1.3) 

(a) (~tR(~, ~t)b,a) = 1 ,  

co a )~a~b~ 
(b) ~ ~ _ ~ --  1 ,  

i.e. in part icular  by 

a~= (a, q)~); b k =  (b, Ok), eq~ (2k} ~a~(A),  if the  {~b~} form an orthonormal basis 

(i.e. A mormal operator) [SA, p. 250]. [] 

REI~I~K 1.1. - (i) The adjoint  operator A* of AF is givem by 

A~y) = (A~x, y) + y) = (Ax, y (x, * = (Ax (Ax, a)b, + a(b, y)) = 

= (x, X*[y + a(b, y)] ) ,  x e ~(A~) ,  y e ~(A~)  

i.e. by  

(1.4) 
(a) X*y = X*[y § a(b, y)] 

(b) 2 ( A D  = {h e Y: h + a(b, h) e 2(X*)} 

(if) I n  section 3, we shM1 invoke the following considerations. 

Compute AF~5~ = A~,~ ~- (Aq~,  a)b = ),,~ q~ + 2~a,~b. 

Thus, if a ~ =  0 for some m~, them A%= c~, and q)~ is am eigenvector of A~ 

as well. Similar conclusions hold, if b~ = 0 for some m~, in which case by (1.da) 

and  normal i ty  of A:  A*q~ = A*q)~ = ~ q)~ and ) , ~ =  ~ We thus  conclude, 

for future use below (3.40): if the di]ferences e~= ~,~--~=/= 0 /or all m, then the 

products a~b~=/= 0 as well. 

112. Given A and a ~ Y, sufficient conditions for spectral assignment of A~, via a 

vector b ~ Y. _Finite degree of freedom. 

I tencefor th  we shall introduce 

(1.4) e~ = r162 ;t~, 

the  difference between the n-th <~ new ~> eigenvalue of Av and the n- th  (( original ~> 

(simple) eigenvMue of A. We shall Mways be concerned with  the  case Is,,I > 0 for 

all n, where Remark  1.1 (if) them applies. Our main result in this  subsection is tha t :  

the  spectrum of AF can be arbitrari ly preassigned, subject to the condition tha t  
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the  distance [snl =/: 0 between (~new, and (~ original ~> eigenvalue is asymptot ica l ly  

small;  i.e. a finite number  of eigenvalues of Av can be arbi t rar i ly  preassigned, while 

the  remaining eigenvalues of Ar  will have  to remain  sufficiently close to  the  cor- 

responding eigenvalues of A (but  ls~l > 0). This will be achieved by  having the 

operator  A and  the  vector  a e 7g given in advanc% and seeking only a suitable 

synthesizing vector  b in ~g (*). Applications of this  resul t  to boundary  control  prob- 

lems will include those situations,  modelled b y  e i ther  dynamics  (0.3) or by  dynamics 

(0.4)7 where one wishes to shift  on the  left  hand  side of C finitely m an y  u n s t ab l e  

eigenvalues of A. See Section 4. 

THEO=E~ 1.2 (Spectral assignment o] Ar  via a vector b). - (i) :Let the normal  

generator  A of the  In t roduc t ion  be given [satisfying assumption (K) in (0.5)] with 

simple eigenvalues {g~} and an or thonormal  basis of eigenvectors {r in Y. Le t  a 

vector  a E Y be given, wi th  coordinates a~ = (a, q}~) # 0 for all m (~). Le t  {e~} be 

a sequence of non zero dist inct  complex numbers,  which are assumed to satisfy 

the ~onowing four conditions involving only {~}, {~m}, and {a.~}: 

(1.5) 

(1.6) 

(1.7) 

where 

(1.8) 

0 < ie~] < d~/2, asymptot ica l ly ,  where ~ --> 0 as m -->0% 
(1) 

d~ ~ min {]/t,~-- ).,,-1, !,~,~- ~+~]} 

(3) ~. I~1~'~ 
~=1 I~a,~l------~< oo, 

k:/:m 

(1.9) (4) ~ te~lym< oo ,  
m = l  

where 

(1.10) y.~ = ~ l< 

kC:m 

> 0  

Then,  there  exists a suitable vector  b e :g such t h a t  the  corresponding operator  

Av-= A q- (A . ,  a)b has i ts  eigenvalnes [Lemmas 1.1] {~m} given precisely by  

(z.11) ~-fl~ § e,~, re=l, 2, .... 

(1) The roles of a and b in Theorem 1.2 are interchangeable: one may assign b in advance 
and seek a as well. 

(2) This is an approximate controllability type of condition. 
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Moreover, if the  space Y split into the direct sum Y -- 1;1@ I:2 and thus b = [b ~, b'], 

a = [a ~, a~], ~b,, = [ ~, ~b], (b, q),~)r= (b ~, ~5~)r~+ (b ~, q)~)r~, etc. we may  require 

t ha t  the suitable vector b ~ Y claimed above satisfies b I = 0 (i.e. b ~ J~) or else 

b '2 = 0 (i.e. b e Y.~), provided tha t  {~b~.} (resp. {~b~}) are l inearly independent  in Y~ 

(resp. in Y~). 

(if) The case where the  original operator A is spectral  of scalar type  with 

compact  resolvent and simple eigenvalnes can be reduced to the normal  ease (i). 

I n d e e d ,  by  ~ similari ty t ransformat ion H:  I I -~AH -= A~, A~ normal,  H, H-~e ~ (Y) ,  

and H can be t~ken self-udjoint [Werner 's ,  Lemma XV 6.2, p. 1947, D-S III] .  Then, 

II-~A~FI = A x  + (A~v, I Ia)rH- 'b ,  the  eigenvalues of H-~A~H and As coincide, and 

we can ~pply part  (i) to H-XAvH. 

RE~rAI~I< 1.2. - (i) t~or each fixed m, the positive constant  6~ in (1.8) is well 

defined and finite, since {%}o~=~ l~. 

(if) For  each fixed m, the positive constant  y~ in (1.10) is also well defined 

~nd finite, as a consequence of assumption (2). This is so, in view of: 

~I 2 )6 
,~=~ I~,,~I ~ ,~:~ i~ ,~ ,~ ,~I  < I ,~I ~ ~ a ~ 

(iii) Under assumptions {s~} s l~ and 

levi tL-- ~l  ~ k=l 5= 
- - < c < ~  for some l < p  < c~ 

it will follow from the  argument  in section 3.1 (see Lemma 3.5) t ha t  we have 

ia'~b~;~'~l,-, 1 ,  hence ls,~[ --~ ]b~] 

and condition (1.6) is also necessary for spectral gssignment. [] 

REMARK 1.3. - The following will be used repeatedly in the  sequel. Under 

assumption Is~! < d~/2 as in (1.5), then  the  sequence ~ =  ~ +  e~,, s~tisfies 

( 1 . 1 3 )  
3 ~ l ~ . - ~ l < l ~ * - ~ I < ~ l ~ - ~ l ,  ~or all i=/:k 

In fact  

( * )  
1 
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Thus, for k ve ~, adding and subs~racting 2~: 

(1.1a~) I ~ -  ~,l< I ~ -  ;,1 47 I~,I<~l~- ~1 

by (*). ~Ioreover, again by (*) 

and claim (1.13) follows. [] 

P:a00F OF THEOREI~[ 1.2. - We impose tha t  the constants  {~,~} as i n (1.11) be 

precisely the eigenvalues of an operator Av us in (1.1) for the assigned vector a e Y 

and for a suitable choice of a vector b ~ Y. Thus,  by  Lemma 1.1 (ii), we impose 

the  identi t ies (see 0.3b)) (AR(~ ,  A)b, a) -- 1, i.e. 

(] .14) 

(a) ) . iaibi  )~ja~ 
~i- -  2i 47 ~ bj ~ 1 i.e. 

j = l  ~ ~ ~ - -7 -~-~  j 
jve i  

o r  

(e) bi 47 ~1 ei ~JC~J gi 

which can be more coincisely re-writ ten as 

(1.15) ( I  47 T ) b  = v 

for a sought af ter  vector b e Y, (if Y : Y~O Y~, we muy also requi~e b to be of 

the  form [b ~,0], or [0, bq, in which case b ~ = ( b , ~ ) r  are (b ~,r or (b 2, ~)n, 

respectively). Here, I is the infinite iden t i ty  matrix,  and T is the infinite matr ix  

(1.16) T = [ ( t / j ) ]  , tij : ~ i - -  )~J )~iai i :if: j i ,  ~ : 1, 2, ... 

0 i----- i 

(1.]7) b = [bl, b2, . . . ] ,  v = Lvl~ v2~ ...] , vi = )~ia~' i = 1, 2, . . . .  

Of course, b must  be in 12: 5'[orcover, by assumption (2) in Theorem 1.2 (see 

(1.6)), we have the known v ~ I  2 as well. We next  prove: 
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LEPTA 1.3. - Under assumptions (1) (i.e. (1.5)) and (3) (i.e. (1.7)) of Theorem 1.2, 

the infinite matr ix  T in (1.16) defines a Hilbert-Schmidt  (hence compact) operator 

4 --> 4. [] 

P~ooF oF L E ~ f A  1.3. - We want  to check that the double norm of T is finite, 

i.e. t ha t  

(1.18) 

We compute vi~ (1.16) 

o o  

Z It-I ~<~176 
i , a '= l  

(L19) 
i , i = l  i,~ 

I< I  a,l 
- ~ I ~ , a ~ l ~  >~- ~1 ~ = 

j:/:~ 

@ 

where I is ~ finite index. The first te rm (~) in (1.19) is obviously finite as, for fixed i, 

i r ], the  infinite sum in j is finite ({aj} e 4). As to the second te rm 2 in (1.19), by 

assumption (1.5), we invoke (1.13) in Remark  1.2 and replace ~ with 2~, to obtain: 

i> •  j = l  [ L - -  ;tJl ~ <  o o  

a:#{ 

as the infinite sum in j is precisely 6s in (1.8)7 and so assumption (1.7) gpplies 

Eq. (1.18) is proved. [] 

Having ascertained tha t  Eq. (1.15) is well defined as an operator equation in 4 

wi th  unknown b ~ 4, we next  seek /a-inversion oi ( I -}-T) .  

LEM~rA 1.4. - Under assumptions (1) (i.e. (1.5)), (3) (i.e. (1.7)), and (4) (i.e. (1.9)) 

of Theorem 1.2, the operator (I q- T) on 4 admits  a bounded inverse ([ -}- T) -~ 

defined on all of 4; in other words, - -1  e 0(T). [] 

P~ooF oF LE~t~A 1.4=. - By  Lemma 1.3, it  suffices to show tha t :  - -1  ~ a~(T), 

i.e. ~ = -  1 is not  an eigenvalue of T. This will be achieved via perturbation 

theory.  In  fact~ if {T~} is any  sequence of bounded operators on l~, with the  two 

properties t h a t :  

(1.20) 

(1.21) 

(i) lIT.-- T[]~_~ --> 0, as n -+co; 

(ii) B(-- 1, r) c 0(T~)'= rcsolvent set of Tn, for some r > 0, and all n suf- 

fieiently large 
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(where B ( - - 1 ,  r) denotes the  closed ball  (disk) of the complex plane, centered at 

the  point  A -~ -- 1 and of posit ive rsdins r), t hen  it  follows by  v i r tue  of the s tandard  

upper semicont inui ty  of the  spec t rum [KATO, Theorem 3.1, and Remark  3.3, p. 208] 

(1.22) B(- I, r) c ~(~) 

as well; in par t icu lar  -- 1 e ~o(T). As .~ sequence {T,} we take the  na tura l  restric- 

t ion of T to  its first n • n entries, while imposing all o ther  entries equal to zero; i.e. 

[t~, ~s in (1.16),  for i, ] ---- 1, ..., n ; ]  

T ,  ~ I t  _= 0 o therwise .  ] 

P]cOOF OF (1.20). - For  x ~ l:, we compute  easily 

i 1 i =n+ l  , = i = 1 ,  = J 

<{i i 
i = n + l  ~'=1 

and,  by  (1.18), each of the  two terms in { } of (1.23) goes to zero as n --.co. 

PROOF OF (1.21). - I t  is enough to prove tha t  ( I . - - - - n X n  iden t i ty  matr ix)  

(1.24) lira det  (I~ ~- T~) :~ 0 .  
n--> co 

The computa t ion  of the  de te rminan t  is a somewhat  tedius task,  which is carr ied 

out  in [S.2]. The resul t  is: 

~-i ( ~  ~ (2k-- ~,)(~,--s'sk)~) 
(1.2~) det (Z~ + T.) = [I ~ 1 + 

j = k=~+l 

Thus,  to  achieve (1.24), it  suffices to show 

_ ~ I~J~l 
(1.26) ~ = 5=1 k=~+~ l~k- ~llZ~- ~[ < c o .  

In  view of assumption (1.5), we again invoke the  left  hand  side of the  double 

inequal i ty  (1.13) in replacing ~j with 2j and ~ wi th  2~. We obtain 

.r k = d + l  [ ) ~ - - ) ~ j l  2 
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b y  assumpt ion (1.9), ~nd (1.26) follows as desired. Thus, (1.24) is proved,  and so 

is (1.21). [] 

Continuing with the  proof of Theorem 1.2, we now invoke Lemma 1.4 and solve 

the  vector  equat ion in (1.15) in the  unknown b E 12. Then, the  operator A~ cor- 

responding to the  assigned vector  a and the vector  b just  found, has spec t rum 

{a~} satisfying (1.11). The proof of Theorem 1.2 is complete.  [] 

REHAl~K 1A. - Theorem 1.2 is of similar nature  as one in SHu~-Hu~, [S.2]. There 

are, however,  two major differences, in tha t  (i) [S.2] considers only bounded  pertur-  

bat ions (i.e. a ~ ~(A*) and, moreover,  (if) [S.2] assumes a non zero gap: ini {[1,+1-- t~1, 

t1~-- ~_~[} = c > 0 of the  eigenvalues of A). Assumption (if) is also very  restrictive,  

as it rules out  say, selfadjoint elliptic operators in space dimension str ict ly greater 

than  one. [] 

RE~V~A~K 1.5. - An analysis of the  proof of Theorem 1.2 shows tha t  its assumptions : 

(1) r (1.5); (2) <=> (1.6); (3) r (1.7); (4) r (1.9) were employed as follows. 

(i) Assumption (1) ~ inequal i ty  (1.13) in replacing ~ with ~L; 

{- (if) Assumption (1) 

Assumpt ion (3) 

Assumption (4) 

T is Hi lber t -Schmidt  on l~ 

(1.20): IIT~-TlIl_.z -+0  in Lemm~ 1.4 (1.24): l im det  (1, ~- T,) r 0 

in Lemma 1.4 

I~emma 1.4: (I ~-T) -~ bounded on all of l~ 

(iii) Assumption (2) ~ ?~ (see (1.10) in the  definition of As- 

sumption (4)) is finite (Remark  1.2 (i)). 

Some variations are possible, of course. In  part icular ,  

CI~AI~L - Let 

(Vl) 

(V2) 
[ F'< oo: 

m ~ l  Ic=l 
k~m 

for  some I < p  <~ oo .  

this reduces to (1.9) for p----1 

Then, assumption (4) r (1.9) is welt defined and holds true.  [] 
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In fact. 1 with l ip  Jr- 1 /p '=  11 we compute 

oo 

.~=1 = m=l 1r 12k - 2~n,[ 2 "~ 
k ~ m  k:/:m 

l i/:o' 

.n=l IZIr ~.m [ 2i~J 
/~m 

: {/c~_~1 ,8~l} 11:~ {n,t~__l i~ml ~ [S/el ./I/p 
/c=1 [2~I~-- 2mp~J 
k ~ m  

and (1.9) follows via (V1)-(V2). 

We remark that  in the important situations where A is self-adjoint (canonical 

parabolic case) or skew-adjoint (canonical hyperbolic ease), for the first order model 

(0.3) i~ is always true tha t  [see [C-H, Ch. 71, w 3.3-w 3.4], [T.11 p. 392-5]): 

(,) ~ 1 
7c=~ ~ <  oo for some 1 < p  < co .  

Thus, in these cases, for each m fixed, the infinite sum in k in (F2) is always 

finite. Thus, (V1) along with the condition 

(V29: rs~[ 
[2k-- Z,~[ 2~ <eonst  < ~ ,  k=l 

k # m  

r e = l ,  2 I... some l < p < c ~  

fortiori guarantee (V2). An upperbound for (V2') is (recall (1.5)): 

k=l 7c=I ~k 
k~:m 

some 1 <p < co.  

This shows that  finiteness of the right hand side can always be achieved by 

imposing that  the distance Isk] between new and original k-th eigenvalues be chosen 

as to compensate the natural  gap dk of the original eigenvalues, raised to the power 

2p, no matter  how large p is. [] 

1.3. Given A, suMicient conditions ]or spectral assignment o/ AF, via a suitable pair 

o/ vectors a, b in H. 

Given A, a, and {s,}, Theorem 1.2 produces a vector b which synthesizes the 

desired eigenvalues ~. = J .  @ s. for AF. A variation of this consists in synthesizing 

the eigenvalues of AF through the simultaneous search of suitable vectors a, b in Y, 

given only A and {s.}. (This last situation does not mean, of course, that  for all 

a e YI we can find a suitable vector b ~ H, such that  we can synthesize the eigen- 

values of AF). This is achieved in Theorem 1.5 below, whose proof is similar to 

(and simpler than) the one in section 1.2. A major difference with Theorem 1.2, 
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will be that  Theorem 1.5 will not allow to assign wholly arbitrarily finitely many 

eigenvalues of A~. Rather~ all eigenvalues of A~ will have to remain sufficiently 

close to the corresponding eigenvalues of A. Despite this limitation, Theorem 1.5 

will have a physically significant application to boundary feedback hyperbolic equa- 

tions, where the spectrum of ~he original wave operator A is on the imaginary axis 

and the feedback (perturbation) operator shifts it to the open left hand side of C, 

while keeping it asymptotically approaching the imaginary axis. See Application 4.3 

of Section 4. 

TKEORE~ 1.5 (spectral assignment of AF via vectors a and b). - (i) Let the 

generator A of the Introduction be given satisiying (K) of (0.5) with simple eigen- 

values {Am} and a basis of normalized eigenvectors {r in Y. Let {e~} be a sequence 

of non zero distinct complex numbers~ which are assumed to satisfy the following 

conditions involving only {sin} and {~=}: 

(1.27) 

(1.28) 

(1.29) 

(1) 0 < le,~l < d,~/2, d~ as in (1.5)7 asymptotically 

[same as assumption (1) of Theorem 1.2] 

(2) leml=r 

(3) sup ~ [r = 03< cxz. 

(4) G +  G <  �89 

Then, there exists suitable vectors a, b ~ Y such that  the corresponding operator 

AF = A ~- (A. ,  a)b has its eigenvalues [Lemma 1.1] (aM} given precisely by 

(1.30) 

~oreover,  if IZ. splits into the direct sum Y =  Y10 Y2, see Theorem 1.2 (i) 

below (1.10), then we may further require that  the suitable pair a~ b ~ Y claimed 

above satisfies the additional condition that  either a, or b~ or both be only in one 

component space, as before. 

(if) The case where the original operator A is spectral of scalar type with 

compact resolvent and simple eigenvalues can be reduced to the normal case (i), 

as in Theorem 1.2 (if). [] 

I~]9]KAI~K 1.6. - Various sets of conditions can be given to insure (2)-(4). 

instance, Us in (!.28) is upper bounded by  (recall (1.5)) 

(1.31) G< G 

:For 
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und the infinite sum in (1.31) will be finite, if the s 2s are chosen as to (~ compensate ~ 

the  na tura l  gap d~ of the original e igenwlues  {)~}. [] 

P~oo~" o r  TEEOI~E~ 1.5. - This t ime we impose t h a t  the  constants {a~} in (1.30) 

be precisely the  eigenvalues of an  operator A~ as in (1.1) for a suitable pair of vec- 

tors a and  b in Y. Since we require t ha t  no a~ be also an e igenvahe  of A, we invoke 

Lemma 1.1 (ii) and impose the  identities (see (1.3) or (1.14a)): 

2i 2 a~b~- ~ __2~ ajbj ~ 1 

~ i - -  i J = 1  ( Z , - -  ]~J ' 
i # i  

i =  1 , 2 , . . .  

which, however, we rewrite now as 

o r  

(1.32) 

a i b , _ ~  ~ a i - -  2i )~j o~i-- 2, 
~=1 ai - -  2j 2, ajbj ~-- 2~ 

co 8i ~j 8i 
atb,-~ ~=a Z o~,_ ~ ja ,b , - -  2i , i = 1 ,  2, . . . .  

Eq. (1.32) can be more coincisely re-writ ten as 

(1.33) (I ~- V)x  = f 

where I is the  infinite ident i ty  matr ix,  and 

(1.34) 

while 

V=[(v,j)], v . =  
i : / : j  s  2;) 

0 i = j  

(1.35) 

and the  unknown x is 

(1.36) 

We seek x in ll. 

next prove 

1 = [1~, L, . 4 ,  i~=  ~il~, 

X : [Xl~ X~ ...] , X i =  a~bi . 

By assumption (2) (see (1.27)), the given vector ] el~. We 

LElVI:MA 1.6. -- Under assumptions (1) and (2) (i.e. (1.27)) and  (3) (see (1.28) of 

Theorem 1.5, the  infinite matr ix  V in (1.34) defines a bounded operator 11-+ 11. 

Moreover, if assumption (4) (i.e. (1.29)) of the  Theorem also holds, then  II V]Itr.l.< 1. 

5 - .Annali dl Matemat@a 
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P~OOF o~ : L E ~ _  1.6. - By  a s tandard  result  [T-L.1] we compute  from (1.34) 

IIVll;  ; -sup I -i = 

(invoking the left  hand side of (L13) via assumption (1)) 

i C i  

(adding and subtract ing ~ inside t I in the  numerator)  

(1.37) 

i : / : j  

and where the  right hand side is i n d e e d <  1, if (4) is assumed 

COrOLLArY 1.7. - Under  the  assumptions of Lemma 1.6, the  operator  equation 

(1.33) in l~ has a unique solution x ~ l~. 

Continuing with the  proof of Theorem 1.5, the  solution x e l~ provided by  Corol- 

lary 1.7 can be synthesized (in infinitely many  ways,  in fact) b y  two 12 vectors {a~}, 

{b~} such tha t  x ~ =  a~ b~. Theorem 1.5 is proved.  [] 

2. - Spectrality of Ar.  Counterexamplcs in two cases: (i) P is A-bounded. (if) P is 

bounded, but the eigcnvalues of  A have zero gap. 

We shall make use oi the  lollowing characterization of spectral i ty [D-S, I I I .  

p. 2257] : The (perturbed) operator  AF on Y with compact  resolvent (see Lemma 1.1) 

and eigenvalues {~k}, I~kl -~c~ is spectral  if and only if the  following two conditions 

hold: 

(i) the  family of sums of finite collections of projections E(a~, AF) correspond- 

ing to single points ~ in the  spec t rum a(Ay) is uniformly bounded;  i.e. 

(2.1) k~l E(gk, AF) Y-~Y < c o n s t ,  for all K ;  

(if) no nonzero y in I z satisfies all of the  equations E ( ~ ,  AF)y = 0, i > 1 .  

Condition (if) means tha t  ([D-S, I I I  Definit., p. 2295 and Lemma 5, p. 2355], 

IS.l, p. 4451]) 

span (generalized eigenvectors of A*} = Y 
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-$ 
and it  always hold for A s =  A -4- (A . ,  a)b, whose adjoint  is A e =  A*[ 'd -a (b , . ) ]  

(see (1.4)) in our eases of interest,  when A is  self-ad~oint (canonical parabolic ease) 

or skew-adjoiut (canonical hyperbolic case): See the  theorem in [D-S, I I I ,  p. 2374] 

as applied to A*, which we can invoke, since, in these eases, A -e is Ffilbert-Sehmid~ 

for some positive integer p. This follows from the  welI known estimates ~ m ~/a~ ~ 

[C-It . l ;  T-l] for selfadjoint elliptic differential operators. Thus, we shall a t t empt  

in this  section to violate condition (2.1) for suitable vectors a, b ~ Y and a suitable 

skewadjoint  operator A. 

We recall (1.2) 

R(2, AF)Yo = R(2, A)yo 4- ~(2, A)b 
(An(;., n)yo, a) 

1 - (x i~(~ ,  ~i) b, a) 

valid for all )~ ~ @(A) for which the denominator  does not  vanish. Also 

A~) = f.R(~, A~) d~ (2.2) 

where FT: is any  smooth close curve surrounding the point ~ (say a circle centered 

at  ak) a.nd containing no other points of a(As). 

2.1. Constructive counterexamples. 

(i) The case where P is A-bounded, but not bounded. Consider the  skew-adjoint 

operator A (corresponding to the  canonicM hyperbolic equation) defined by A~D~ = 

= -- ir~q5~, where { ~ }  are an orthonormal  basis of eigenveetors in Y with  eigen- 

values a ~ = -  ir~, r , >  O, r~ str ict ly increasing to c~. Thus, A = i (a selfgdjoint 

operator) and  exp [At] is a un i t a ry  operator on Y, t e R. We have, wi th  y .  = (y, ~5.): 

e x p [ A t J y =  2 e x p [ - - i r ~ , t ] y ~ ;  R ( A , A ) y =  
~=1 ~=~ 2 -4- ir~ " 

We shall next  define suitable vectors a, b, and Yo in Y, so t ha t  the  corresponding 

operator As violates condition (2.1) of the  first p~ragraph. To this end, we define 

these vectors by  means of their  coordinates through the following steps 

(1) Let  {s,} be an l~-sequenee of positive numbers such tha t  

J r,~sn~ --> d- oo,  as k -->c~, for n = subsequence n~, k = 1, 2, ... 
(2.3) [ S~---O, for n:#:n~ 

where the  subsequence {nk} and its t rans la te  by one {1 d-nk} have no common 

elements:  {n~} c~ {1 -f- n~} = O; i.e. no [! -4- n~] is a member of the sequence {n@ 

(2) Next  we impose t h a t  

(2.4) sn = yo,.a. ,  n = 1, 2, ... 
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for the  two/2-sequences {Yo,~} and {a.}, coordinates of Yo ~nd a, say of positive num- 

bers. We shall iur ther  require tha t  ]!Y0]l <1.  [All this can always be achieved by  

imposing Yo,~ ~ a .  -~ V/~ ,  with ~ s.  ~ 1.] 

Thus, by  (2.4), to satisfy (2.3) we require 

(2.5) 

a ~ 0 ,  for nCnz . . ,  k = l ,  2, . . .  

a = commit ted  by  the  requirement  tha t  

r (yo,~a ) - - > ~ c o  

~nd fur ther  specified below. 

[Note tha t  (2.5) implies tha t  neither Yo, nor a belong to ~(A).]  

Thus, t ) is A-bounded, but not bounded. 

(2.6) 

(3) As ~o the  vector  b, we impose tha t  

b~ = - 0 ,  ~or n = n l ~ ,  k = 1 ,2 , . . .  

b~+,~----to be specified below 

while the  other  co-ordinates arc arbitrary.  

(4) The sequences {a~}~ 1 and {bl+~}k~ ~ left  uncommit ted  in (2.5)-(2.6) are 

chosen as to sat isfy 

r%s%bl+%~r%(yo.%a%)bl+,~-->c>v, (2.7) 

[note tha t  r%s~-->-~-o% while b1+%-+ 0]. 

Speei]ic examples satis]ying (1)-(4). 

Let  r.--~ n (one dimensional wave equation) and let  

a S  ---> OO 

and {n~} ~ {1 -[- n~} = 0. Requirement  (1) is checked. Then, take  a,  ~ Yo,, = V/~ 

[exp [k*]] 
?'%8% ~ n7~8% ,~.~ e k ~ -->.oo 

where [exp [k2]] = smallest integer larger or equal to exp [k'~]. 

Thus, s.~e/k,, I{s.}l, .<c Z1/k~ = 1 for e = 6 / ~ .  
k 

e/Inn n = n ~ =  [exp [k2]] , l~ = 1, 2, ... 

(2.8) s~ = 0 otherwise 
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to satisfy (2). F inal ly  define a sequence {b,} e l~ by  

{ b l + ~ =  1/k k = 1, 2, ... 

(2.9) b~ = 0 o therwise .  

Then,  wi th  r ~ - - n ,  

~[exp [~]] 
(2.10) r%s~ bl+,, ~ kk - ~  (::x:) 

and requirements  (3)-(4) are checked as well. 

Variations of these examples are immediate .  

Continuation o] analysis. As a result  of a .  ~ 0 for n r nk and b~-- 0 for n ~ nk, 

k = 1, 2, ... we obtain a~b~-~ 0 for all n and thus,  

rn an bn 
(xR(;, ~)b,a) = - i ~ : 1  ~' z +ir~ =0.  

Also, the  Y-valued funct ion  

bl+.:~+~ 
(2.12) R(2,A)b =- ~=1 ~ 2~ ~- ir~+.,~ 

i co 

has simple poles at  {-- rl+,~}k=l, while the scalar funct ion 

(2.13) (AR()~,A)yo~ a ) - = - - i  ~ r~yo,.~a~ 
k=l ~ @ ir~ 

i 
c o  

has simple poles at  {-- r~}k= 1. Then,  by  (1.2) recalled above (2.2) and (2.11), we 

obta in  for ~ e ~(A): 

(2.14) R(~, AF)yo = R(),, A)yo ~- G(~) 

where 

(2.~5) G(~) -~ G()~; a; b; Yo) = R(~, A)b(AI?(2, A)y0, a ) .  

Since the  integer  1 @ nk is s t r ic t ly  smaller t h an  the  integer nl+~ , we have r1+%< r~+~ 
1 for all k. Thus,  if /'~ is a circle centered at  - - i t %  of radius, say < ~d%, where 

%= min {Irl+s @,  I%- %-d), it ~onows fl.om the assertions below (2.12) ~.d 
(2.13) t ha t  

(2.16) 
{1~( )~, A ) b is analyt ic  

inside /'k: (AR(~, A)yo, a) has a simple pole a t  - - J r , .  
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(2.~7) 

Now, from (2.t3) 

~=~ ~ + ir~' 

so tha t  

(2.18) 

T~ 

(from (2.15)-(2.17)) 

from (2.12) 

G(X) dA = [residue of G(A) ~t X = --in~] = 

X-->--irn~ 

r l + n ~  - -  rn/c 

where ~he vector v~ is given by 

,-.~176 b~+,, (~l+n~ 
rlTn/ r n  e 

is orthogonal to q)~+. . Thus, by (2.18) 

'1 f d)/~> 
Ir~+.~-- r.,ol ~ 

while 

(2.20) /~(X, X)yo = [lyo,~Cb.~][ = {[residue of R()~, X )y  o at Z = ir~] I 

r~ = y0 ,~0  , as k -+ c~.  

Thus, recalling (2.2) and (2.14) and using (2.19)-(2.20), we get for {--ir~} = 

= ~ ( n )  c ~(A~) an d  l]Y01l < 1 :  

1 f dX (2.21) i lE(-- ir~,A~)I]>llE(-- ir~,A~)yo[] = ~ [R(X ,A)yo- /  G(~)] > 

r ~  

Yo ,r -- l rn~Y~ an~bl--+n~ I -->oo, ~S k -->oo 
>/ r l + % -  r% { 

where the r ight  hand  side blows up to infinity in view of (2.7). Thus, condition (2.1) 

is violated, as desired. 

(if) ~he ease where t ) is bounded, but A has zero gap. We nlake two observations: 

(1) for the class of counterexamples considered above, we h~d tha t  a ~ ~(A),  



I. LASI]~CI~A - R. TlCIGGIAIgI: _Finite rank, relatively bounded, etc., I I  69 

(2) 

as noted below (2.5). Thus, the per turbat ion P = (A.,a)b is A-bounded, 

but  not  bounded on Y; 

the r ight  hand  side of (2.21) would still blow up to infinity, even with the 

numerator  ]ailing to satisfy (2.7), provided tha t  the denominator  

[ r~+~-  r,~,:] goes to zero faster than  the numerator .  This, in part icular  

requires t ha t  the operator A defined before has eigenvalues 

{Jt~ -= -- ir~} with zero gap, where the gap of the eigenvalnes {2n} is definedby 

This way the  arguments  leading to Eq. (2.21) apply also to the case where 

the per turbat ion P = (A. ,  a)b is a bounded operator, i.e. a e ~ ( A )  [in which case 

r.yo,~a~--)- O, and r~yo,~a~b~+.~ -~ 0], provided t h a t  (i) the eigenvalues {~  = -- ir,} 

of A have zero gap and (if) 

lira r~Y~ = lim yo,~a~b~+~ - - O O .  

Since the {r,~} are arbitrary,  this  can always be achieved. 

2.2. Indirect proo] that A ~ -  A -i- (A.~ ~)b cannot be spectral/or all a, b ~ ~ (in ]act, 

(a, b) e Yo • Yo). 

(i) The case P is A-bounded, but not bounded. Let  A have an orthonormal 

basis (~b} of eigenvectors on I z. A may  either be self-adjoint (canonical parabolic 

ease) or else skew adjoint  (canonical hyperbolic case). 

Consider the  subspaee Y~• Yb of Y •  Y defined by 

17~•  (a,b): b. = ( b ,  ~b)~_0 ,  n - ~ 2 , 4 , 6 ,  

Hence a ( A ) c  a(A~), see Remark  1.1 (if). I f  AF were a spectral operator for vec- 

tors a and b in Y~• Yb, then  condition (2.1) would imply a fo r t io r i  t ha t  the eigen- 

projections E ( ~ ,  AF)--which we now write as E(ak; a, b) to emphasize the  depen- 

dence on a and b--sat isfy  

(2.23) a, co, , fo r  k = 1, 2 , . . . ,  = 

with C~. b a constant  depending on a and b. Next,  for (a, b) e ] Z •  ~Tb, we always 

have (AR(~t, A)b, a) -~ 0 and hence (2.]4) holds 

R(~, A~)yo= R(2, A)yo@ G(A; a; b; Y0) 
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with G( ) defined by (2.15). Thus~ if (2.23) were to hold, then  as before 

r~  

would follow, where /~k is a small circle centered at  ~ and surrounding no other 

point of a(Av). But  the map (a, b) --> G(., a; b; Yo) from Y~• Y~ to /z is linear in a 

for fixed b and linear in b for fixed a. Applying twice the Principle of Uniform 

Boundedness on (2.24) for (a, b )e  Y~• :g~ yields 

(2.25) 1 f d2 oG(A;a ;b ;Y~  r ~ r  <Cv. ,  k = 1 , 2 , . . . ,  

r~ (a, b) e uni t  sphere of Y~ • lZ~ 

which is then  a necessary condition for Av to be spectral, for all vectors a and b in 

:gaX :g~. 
To prove our point,  we shall now contradict  the  s ta tement  in (2.25), thereby  

showing indirect ly t ha t  the operator Av is not spectral ]or some (a~ b) e :Y~ • Yb. For  

fixed k, let us define vectors a k, b ~, y~ depending on ]~ by 

(2.26) b ~ ~ [0, ...~ O, 1, O, ...] 
k-th coordinate 

(2.27) y~ --= a ~ ------ [0, ..., 0, 1, 0, ...] 
(k+l ) - th  coordinate 

so t h a t  (a ~, b ~) s sphe re  of radius 2 of : F •  Y~, and [Iyok][ -~ 1. Then 

1 
(2.28) g()., A) b k : (A/~(~, A)yo, a) -- ;t~+~ 

Thus,  i~ the circle F~ is centered at  ~k and excludes any  other eigenvalue, then  

by (2.!5) and  (2.28) 

(2.29) ~ 

I[Residue of integrand] at  ~---- ~ 1 -  I~+11 as k --> c~ 

thereby contradict ing (2.25), as desired. 

(ii) The case t ) is bounded, but A has zero gap. The two remarks made below 

(2.21) in the constructive proof have counterparts in the present indirec t approach. 

(1 r) The presence of 2~+1 in the numerator  of (2.29) reflects t ha t  P is A-bounded 
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but  is not bounded, for, in this latter cas% a e ~(A),  and the identity at the right 

of (2.28) would not contribute 2k+~ in the numerator. 

(2 ~) In the case where P is bounded (~k+~ does not appear in the numerator 

of (2.29)), the blowing up is still possible, and this occurs precisely when the eigen- 

values of A have zero gap. 

3. - A desirable case of spectrality: forcing the eigenvectors of A~ to form a Riesz 

basis with preassigned spectrum. 

3.1. Main results: (i) preservation o] basis properties ]or AF (Theorem 3.1) and (ii) spec- 

tral and _Riesz basis assignement ]or AF via a vector b ~ Y (Theorem 3.3). 

Our major result of this section is Theorem 3.3, which refers to the case where 

the nnpertt~rbed operator is spectral of scalar type,  and hence similar to a normal 

operator A with an orthonormal basis of eigenvectors {r Then, given the simple 

eigenvalues of the co-ordinates {am} of a vector Y, and a senuence 

of non zero distinct complex numbers, all subject to certain assumptions, we assert 

the existence (constructively) of a vector b e Y, such that  the corresponding per- 

turbed operator Av-~ A ~ (A., a)b has two major and desirable properties: (i) (spec- 

tral assignement) its eigenvalues {~} are precisely given by ~ --~ )~ -~ s~; (ii) (pre- 

servation of basis properties of eigenvectors) its eigenprojections {Qm} are related 

to the complete, orthogonal eigenprojections {P~} of A by the similarity relation, 

Q,~ = W-~P~W,  m large enough, for a suitable bounded, boundedly invertible op- 

erator W on Y. (Following established terminology, we shall then say that  the 

normalized eigenvectors T~'s of Av form a Riesz basis on Y.) Theorem 3.3 is the 

culmination, and combination, of two results: the spectral assignment result, Theo- 

rem 1.2, of section 1 and the basis preservation result at the beginning of this sec- 

tion, Theorem 3.1--Corollary 3.2. In Theorem 1.2, A and a e Y were given, and 

we then synthesized a suitable b e Y, which forced A~ to have a preassigned spec- 

t rum {~m}. In Theorem 3.1, we start instead with a given spectrum {~} of Av, 

{2~} of A, ~nd a vector a e Y, and we deduce, under suitable assumptions, that  Av 

has in fact, a l~iesz basis of eigenvectors. (Corollary 3.2 puts the assumptions on 

the given {~m}, {2~} and a in more easily verifiable, yet  less general, form.) Finally, 

we then combine these two results, to provide the desired synthesis of b e Y (via 

Theorem 1.2), which generates eigenvalues {~m} for AF, which in turn satisfy the 

assumptions of Corollary 3.2. This is Theorem 3.3. Some obvious implications of 

Theorem 3.3 to stability related questions of parabolic and hyperbolic generators A 

will be given next as corollaries in subsection 4.1, while subsection 4.2 will apply 

these corollaries to parabolic and hyperbolic boundary feedback systems. 

TItEOI~E~ 3.1 (Preservation o/ <( basis ~> properties). - Let the generator A of the 

Introduction be given [satisfying (K) in (0.5)], with simple eigenvalues {~} and 
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eigenveetors {~bm} forming an or thonormal  basis in Y. Wi th  AF= A -t- (A., a)b, 
0~ co let { ~}~=~ be the dist inct  eigenvalucs [see Lemma 1.1 (i)] of AF, all different from 

all {~L~}. Set e,~ = ~ , - -  ~ and assume the following hypothesis  (H1)-(H4), involving 

only {~o}, {a.~} ~:,~d {~,4: 

(3.1) (m) 

(3.2) (H2) 

(3.3) (H2') 

(3.4) (H3) 

(3.5) 

0 <  ]s,,,~[<d~/2, s,,~-~ 0 as m -+0% where 

dl = ],~t-- ,~2j, d,~ = min {12,,~-- ).m-~], ]2,,,-- '~,n+~]}, 

[(H1) coincides with assumption (1) of Theorem 1.2]; 

5 > ~ K  l z = K  - -  

lc: / : j  

for K = K~, henceforth kept  fixed, and 

i a t _  ~-~oolim- k=Jr 1~- -  2J] 0 (/g fixed) ; 

IZja~] ~ jZk-- Zjl ~ < e o n s t  < oo 
j=l k=l 

k#J 

[(//3) coincides w-ith assumption (3) of Theorem 1.2]; 

(see (1.1_0)) 

k # g  

[(//4) is implied a fortiori by  assumption (4) of Theorem 1.2]. 

m = 2 ,  3 , . . .  

Then, the  orthogonal complete eigenprojections {P~},~%~ of A and the  eigen- 

projections {Q~}m%l of A~ are related to each other by  the similari ty transforma- 

t ion in the following sense 

(3.6a) Q,~ = W-~P,~W, m = J ,  J @ 1, ...; Qo,J'= W-~Po,jW; 

J sufficiently large 

qo,+, = Q~ § ... + q+,-t; Po,+ = PI + ... P+-~; 

J '  possibly less then J in which case the  projections Q~, J'~< j <~J - 1 are redundant ,  

where W = W 2 is a bounded  and boundedly  invertible t ransformation on Y (which 

is defined below in (3.17)). As a consequence 

(3.6b) ~ Q~= I ,  
~=I 

strongly and uncondit ionally on Y 
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(even excluding the values of m: J '<m<<.J--  1) and there is a constant C = C~= 

= (llW-~l[IIWIl)~> o such that 

1 ~ IIQ,~y][~.+ ]!Q0,~'y][~< iY,~< C y e Y .  

In terms of the normalized eigenvectors {T~} of A~: A ~  = ~, ,~ , ,  m = 1, 2, 

exeep~ J ' < . m < J  -- 1 we have that :  Q,,y - c~(y)T,, for bounded linear functionMs 

{c,~} on Y, which form a biorthogonal sequence with the eigenvectors {T.}; i e :  

e~(Tn) = (Kroneker) d .... Indeed~ from (3.6a) 

c~(y) T~ ~- ... + Cj,_l(y) ~~ = ( Wy, ~ )  W -~ qD~ @ ... -J- (Wy, (Tf)j_~) W-~ qbj_~ 

~,(~)~.~= (Wy, r  i~,,~(~)l<[Iwll[Iw-~IliI~iI, ~ = J ,  J + 1,... 

and the (normalized eigenvectors {~,~},,~=j of A~ and {q)~}=~j of A are related by 

~ = ( w T ~ ,  ~),~) w - ~ .  , m ---- J ,  J -7 1,. . .  

Qmq) ~ 
Also, (Wq~, ~b.~) - -  w - l q ~ . ~ ,  m = J ~ J @ 1 ,  . . .  

axe non-normalized eigenvectors of A~., written as the image of ~5 under thc 

bounded, boundedly invertible operator W-I]. Thus, thc following expansions hold 

(unconditionally): 

(a) y = ~ c~(y)IP'~ , y e Y 
m = l  

(even exluding J ' < m < J - - 1 :  ~his will not be repeated below), and the {c~} are 

eigenvectors of A~ corresponding to the eigenvalues {~}, the complex conjugates 

of {~}. From (3.6b), and hence 

(b) A~y = ~ o:~c,~(y)~/~,, y e 2(AF) = 2 ( A )  

(3.7) m=~ o o  

(c) exp [A~t]y = ~ c~(y) exp [o~tJ T~ , y e Y,  t>O . 
~= i 

~Ioreover, by virtue of (3.6c), we have for any y e :Y as in (3.7a): 

, , 2 ~  , 0 < Cw, C~s (3.8a) C~ ~ Ic~(Y)l < i[yJlr-~ C~j ~ le~(y)l ~ 

f r o m  m ~ 1, 2, ... e x c l u d i n g  J ' < m 4 J - -  ]. 

Thi s ,  a p p l i e d  t o  (3.7c) g ives ,  in  p a x t i c u l a r  for  y e Y a n d  t~>0 

(3.8b) C1j ~ Iv~(y) exp [~,~t]]-~ < []exp [A~4]y~I~<C2j ~ ltd,(y) exp [~,,t]t ~ . 
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A fortiori, A~ is a spectral  operator. [] 

I~E~A~K 3.1. -- A more checkable set of conditions which imply assumptions 

(H2) and (H2') is given by the  following variat ion 

(3.9a) 

( w 2 )  {e.,} e ~, 

~nd 

1 

k = l  j = l  
jr 

- - M ~ o o  for some l < p  < co .  

In  fact,  in this cas% given 1 > ~ > 0, iS is always possible to find K ~ K~ such 

tha t  
oo 

k = K  

(3.9b) 

Next,  if we now set 

!ekl 

we see tha t  both  assumptions (H2) = (3.2) and (H2') ---- (3.3) are a fortiori simul- 

taneously implied by the condition 

(3.9e) ~ d[(,K) ~< 
(1 5) P 

~'=E 2P 

To achieve (3.9c), we compute wi th  l i p 'S -  1/p = 1: 

k=~J 

kCJ 

k C J  k C j  

~ = K  k = K  ; = K  
j C k  

as desired~ where in the last step we have used (3.9b). 

We summarize the above argument  by the  implications: 

(H2) 
(W2) =-- (3.9a) --~ (3.9b) -~ (3.9c) --> (H2') 

and our claim is proved. 

Note, moreover tha t  

~=~ ~ < oo ,  for some 1 <i0 < oo 
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holds always true either in the case of A selfadjoint (canonical parabolic case) or 

of A skewadjoint (canonical hyperbolic case) : see Remark 1.5. Thus, in these cases, 

the series in j which occurs in (W2) ~ (3.9a) is automatically convergent for each k 

fixed. [] 

We state formally this result, which is less general, but in more easily verifiable 

form. 

CO~OLT.AaY 3.2. -- The same conclusions of Theorem 3.1 hold under assumptions 

(HI), (W2), (//3), (//4) on the sequences {~}, (am} and {s~} which are described 

in Theorem 3.1. O 

We now combine Corollary 3.2 with Theorem 1.2 for the purpose of synthesizing 

the properties of the eigenvalues (a~ ---- 2~ + e~} of A~ required in Corollary 3.2 via 

a suitable vector b ~ Y, once A and a e Y are given. To this end, we recall what 

already noted: 

(HI) in Theorem 3.1 coincides with (1) in Theorem 1.2; 

(//3) in Theorem 3.1 coincides with (3) in Theorem 1.2; 

(//4) in Theorem 3.1 is implied by (4) in Theorem 1.2. 

5[oreover, as we have seen in Remark 3.1 above that  

(H2) 
(W2) in Corollary 3.2 ~ (H2') 

while we shall see in Lemma 3.5 below and Remark 3.3 that  

(H2) (1.1a)>. (3.30a) 

(H2') (1"~)>- (3.32) 

(3.31) 

-+ -> assumption (2) of Thm. 1.2~ i.e. (1.6). 

(3.32) 

Thus, given A and a e / f ,  we can synthesize (claim the existence of) a vector 

b ~= ~, such tha t  the corresponding operator As = A ~ (A. ,  a)b satisfies the con- 

clusions of Theorem 3.1 under the sole assumptions: 

(1) of Theorem 1.2; i.e. (1.5)i 

(W2) of Corollary 3.2; i.e. (3.9a); 

(3) of Theorem 1.2; i.e. (1.7)-(1.8); 

(4) of Theorem 1.2; (1.9)-(1.10). 

[We also note thug (W2) for p --~ 2 implies (4).] 

We collect all this in the main result of the present section. 
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TttEOI~EM 3.3 (Spectral and Riesz basis assignment ]or AF via a vector b). - (i) Let  

the  generator A of the  In t roduct ion  be given [satisfying (K) of (0.5)] with simple 

eigenvalnes {~} and eigenvcctors {~m} forming an or thonormal  basis in 1 r, m = 

= 1, 2, .... Let  a = {am = (a, ~m)}, a mr  0 be given in Y. Let  {e~} be a sequence 

of non-zero distinct complex mlmbers~ which are assumed to satisfy the  following 

conditions, involving only {e~}, {Jlm} and {am}: 

Condition (1) of Theorem 1.2; i.e. 

(3.10) 0 < ]e,~ I < d~./2, d,. defined by  (1.5); asymptot ica l ly  

Condition (W2) of Corollary 3.2; i.e. 

(3.11) 

{era} E ll 

and 

k=l ~= 
j#k 

= M < o o ,  for some l < p < o o ;  

Condition (3) of Theorem 1.2; i.e. 

(3.12) 
k=l 5=1 

0ondition (a) of Theorem 1.2; i.e. 

(3.131 k~ ~ [Z~-- ~p < ~ "  

Then, there  exists a suitable vector  b a Y ~ o b t a i n e d  as in Theorem 1 .2~which  

is such tha t  the corresponding operator A ~ =  A @ (A. ,a)b  has the  following 

propert ies:  

(3.14) 

(i) the  eigenvalues of AT are precisely 

~m= A~+ e.~, m = 1 , 2 , . . . ;  

(ii) the co-ordinates bm= (b, Ore) of b satisfy 

)~m am 

(see more precisely (3.31) and (3.33)); 
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(iii) the corresponding eigenprojections (Q~}~  of A~ are related to the 

complete orthogonal family of eigenprojeetions ( P ~ } ~  of A by  the 

same similarity relations as in (3.6a) 

[so that  the sequence {T,~}~=+ of normalized eigenvectors of AF forms a l~iesz basis 

in I :~Po, jY ] ~nd all the results in the conclusion of Theorem 3.1 following (3.6a) 

hold, in particular the expansions (3.7) and the double inequalities (3.8). Thus 

A~ is a for t io r i  a spectral operator. 

(if) The ease where the original operator A is spectral of scalar type with 

compact resolvent and simple eigenvalues can be reduced to the normal case (i), 

by a similarity t ransformat ion/ / :  [I-~AII-~ A~v, A~ normal, H , / / - l e  :F(Y), H self 

adjoint [see Theorem 1.2 (ii)]. We can apply part  (i) to the operator H-~ApH-~ 

= A~ 47 (A~, lla)II-~b whose eigenvalues are the same as those o~ A~, whose eigen- 

vectors ~re the image under H of those of A~, and whose semigroup exp [H-~A~Ilt] 

has the desirable expansions of part  (i). But,  then 

exp [AFt] ---- I I  exp [l l-IArIIt]II  -~ . [] 

3.2. Prool o/ Theorem 3.1. 

S~EP 1. -- We shall invoke Lemma 4.17 a, p. 294 in KATo [K.1] where a sufficient 

conditien is given, which guarantees that  the eigenprojections {Q~} of AF satisfy 

(3.6a), so that  its eigenveetors {~P~.} form a l%iesz basis. Following Kato's notation, 

we shall let Pj  and Q~ denote in this section the projections onto the finite-dimen- 

sional eigenspuees [Lemma 1.1] corresponding to the eigenvahles ).j of A and ~j 

of At ,  j-= 1, 2, ... respectively, i.e. 

= 1 R 1 f R(2, A~) d2 

C~ 

where cdj (resp. Cj) is a small circle centered at ~ (resp. at ~j) and surrounding no 

other eigenvalue of A (resp. of AF). According to Kato's Lemma, our major task 

is to show that  under the assumptions of Theorem 3.1, we have 

(3.16a) ~ ]lP+(Qj- pj)yli~r<~cj,liy[]~, y ~ Y, c+,< 1 ,  j '  sufficiently large. 
j = j '  

After this, we define Q0,+'= Q1 ... 47 Q+'-I, and take J ,  possibly larger than J '  such 

that  with P0,+ = P1 47 ... 47 P+-~ we have J -- 1 ---- dim Po,+ = dim Q0,g : Thus, (i) 
p the family [Po,+, { j}j=+] is a complete family of orthogonal projections on Y. 

(if) Eq. (3.16a) holds a for t io r i  with J '  replaced by the possibly larger J and we 

re-write it for further reference 

o o  

(3.16b) ~ IIPj(Qj- Pj)YII~<C+][YI[~, y e ~, Cj< 1,  J sufficiently large. 
j = j  
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Thus, we can apply Kate 's  Lemma with respect to the f~mily of eigenprojec~ions 

[Qo,~', {Q~}~=~] and conclude that  Q~= W-~P~W, ~ = J, J -k 1, ..., etc. as in (3.6a) 

with the transformation W = Wg given by (see [K 1, Eq. (4.32)]) 

r  

(3.17) W = Wj-~ Po,.~Qo,s'+ "~ P~Q~, W, W-~e eLf(Y). 

Also, Pax = (x, qSj)q)j and Q~x ~ cj(x)T~ for some unit vector Tj, ej(T~) ~ 6~. 

By commutativity of Q~ and Av, then QjTj ~ T~ yields that  T~ is an eigenvector 

of Av with corresponding eigenvalue a~ = e~(Av~). From this and ~ Q~ = I, strongly 

and unconditionally, we can derive the expa~sions (3.7). ~=~ 

Also, the double inequality (3.6c) follows from (3.6a): in one direction we have 

m = J  m = J  

by orthonormulity of the complete family Po,J, {P,,}~s and the left inequality in 

(3.60) follows. In the other direction, we have by  (3.6a) 

c o  

llxll == IIPo,+xIl + IlP  II <ltWlI llQo, ,W- x[I + 
m=J m=J 

and the right inequality on (3.6v) follows by  setLing 

y = w- x, ]lyll<IIw- HHxil. 

Thv.s, Theorem 3.1 will be proved, as soon as (3.16) is established. 

R E l a x  3.2. - In Kate 's  formulation, the constant c appearing in his Eq. (4.31), 

p. 294 is required to be strictly less than one; i.e. in our corresponding Eq. (3.16) 

above, Cj must be < 1. This will be achieved at the expenses of incorporating in 

Po and Qo in Kate 's  notation more eigenprojections, as indicated by the definition 

of our Po,J and Qo,J' in (3.6a), thereby having the index j in our Eq. (3.16b) run 

only Iron a sufficiently large J on. [] 

The core of our proof consists in showing (3.16b). We begin with computing 

(Q~--/~) for j large enough, l~ecalling our assumption (3.1) Isjl <d~/2, we can 

take a circle/~j encircling only 2s and aj and no other eigenvalne of A or At:  Invok- 

ing (1.2), we obtain from (3.15): 

r~ r~ 
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(using the  identities (AR(a~, A)b,  a) ~ 1, see (1.3a), which define ~he ~ ' s  all dif- 

ferent  from all {2.~}) 

f 
1"i 

n(~, X)b(A~(~, A)y, a) 
(x[2~(~,, A)b -  ~(;~, X)]b, a) 

(using the  first resolvent equation) 

(3.~s) f ~(z,  x)b(X2e(;L, A)y, a) f ~  
= (,~_c~r162 ~(;L) d;L = 

i% I'~ 

Accordingly,  we compute  

)3.19) [l~esidue = lim uj()~)(;L --  ~j) = of R ( ~ ,  A)b(A_R(~ ,  A ) y ,  a )  

Moreover, since 

u~(2) = k ~ j  k ~ J  

(;L --~) [(~;_ 2~)(;L --  ;L,) 
).ka~bk } 

- -  § ,~=1 ~ (~- - -  ;L~)(;L-- )~) 
/c#j 

after  mult iplying numera tor  and denominator  by (;L- ;Lj), we readily find 

[Residue of u~.] = lira ur - -  ;Lr = - -  yj qSj . 
(.3.20) L at ;L = ),  J ~_>~ 

We combine (3.18)-(3.20) and  obtain 

(3.21) (Q~_ p j ) y  = _ yJ q)j § R(~,, A ) b ( A R ( ~ , ,  A ) y ,  a) 
(xR~(~, x)b, a) 

From here, we obtain the  desiied t e r m  

(3.22) ~-(Q~.--2%-)y = - -  y~. ~ + b~-(AR(~, A)y,  a) 
( ~ -  ~;)(A_~(~;, A)b, ~) 

q)~.. 

Using again the  eigenvector expansion in which we isolate the j- th t e rm and 

s tandard  manupulat ions,  we finally arrive at 

y j§  A,(y)~ 
(3.23) P~(Q,-pj)y = ~)j _ y ~ §  ~ - _ ~  J 

6 - A ~ n a ~ i  d l  M a t e m a t i c a  
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where 

(3.24) A~(y) ~ A~(y; a) -- ~ - -  2~ ~ )~y~a~ 

(we wish to  explici t ly note the  dependence on the  vector  a) 

(3.25) 
~ j _  (z<j-- A~) ~ ~ ),kakb~ 

Thus,  Kato ' s  condition (3.16) becomes, via (3.23)-(3.25): 

(3.26) 
_ + v,__+_ &(y) 

Y' l + &  <C~l[yllg, y e ~ ,  0~<1,  
i = d  

for sufficiently large J .  

In  order to satisfy this condition, it suffices to require 

(3.27) 

(a) 1 2 , 1 ~ 0  ~ s j ~  

c o  

y ~ Y ,  r  

We formalize what  we have so far obta ined in the following Lemma,  in which 

we re-write (3.273) and provide an explici t  sufficient condition for (3.27b) to hold 

(via Schwarz inequal i ty) .  

L E n A  3.4. - Theorem 3.1 holds as soon as we prove tha t  its assumptions (H1)- 

(H4) guarantee  tha t  the  following conditions can be fulfilled: 

(3.2s) 

(3.29) 

cr a 

I~r V ~,~a~b~ ~ o  as j ~ o o  
I~ l  - I~r I~l ~ (or ~k) ~ ' 

SmEP 2. - I t  remains to show tha t  the  above conditions (3.28)-(3.29) can indeed 

be fulfilled. To this end, we shall s tar t  by  invest igat ing the  rat io  ej/Ajajbj which 

occurs in (3.28) for j large. 

In  the  nex t  Lemma,  no conditions at all are imposed on the  first ( K -  1) dif- 

ferences el, %, ..., e~_l, a si tuation which arises when one wishes to replace the 

original eigenvMues 2~, ~2, ..., 2K_1 of A by  new eigenvMues ~ ,  ~ ,  ..., ~_1 of AF 

wi th  no constraints  at  all. 
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L ~  3.5. - (I) Let  ( ~ }  and (~.} be the  eigenvalues of A and A~, m ---- 1, 2, ... 

respect ively  and set e~---- ~ - -  ~ .  Assume th a t  0 < le~l < d~/2 (see (1.5)) s k > K  

and, moreover ,  t h a t  

(3.30a) 

where 

(3.305) 

s u p s j ( t i : ) < l - - O ,  1 > ~ > 0  
j ~ K  

~ = K I  7 c - -  6~j] ' 
k r  

for K-- - -Ko,  hencefor th  kept  fixed. 

[(3.30) is implied by  (H2) : (3.2) of Theorem 3.1, via (2.13).] Then,  the  cor- 

responding vectors  a and b in the  definition of AF have coordinates akbk =/= O, k = K, 

X + 1, ..., which satisfy the  asympto t ic  relat ions:  

]sj] for all ~ > K  (3.31) o < % 4  [L.a.~bj] 

where % is ~ posi t ive constant  depending on 6 bu t  not  on j > K .  

Under  the  addi t ional  assumption tha t  

(3.32) lira s / K )  ---- 0 , ~_ fixed 
j-->oo 

[(3.32) is equivalent  to  (H2') : (3.3) of Theorem 3.1, by  (1.13)] ~hen the vectors a 

and b in Av sat isfy also the  following upper  bounds 

(3.33) [ej[ 1 ]2jajbj~ < ~ <  oo for all ] ~ J ( ~ ,  e ) ,  0 < e < �89 

e a rb i t r a ry  posit ive number  given in advance and J (K ,  e) is a posit ive integer  de- 

pending on K and e (but not  on j > J ( K ,  e)), which is general ly larger t h an  K.  

(II) A checkable set of conditions which are sufficient for the  simultaneous 

fulfi l lment of bo th  (3.30) and (3.32) is, us we shall see, t h a t  we require ({e~} ~ 11 and, 

moreover)  

(3.34) ~ /~[ ~ (~,K< 
k = K  

(3.35) k=K lekl j=~ I2j-- 2~f = C2,x< cxz, for some 1 ~<p < cxz 

Jg :k  

with  

(3.36) 2~(Cl,x)~-~ C2,K~ (1 -- (~)~, K ---- K~, 0 < ~ < 1 .  
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I%te,  t ha t  (3.34)-(3.36) are, in turn ,  implied by the more easily verified condi- 

t ion (W2) ~ (3.9a) oi Corollary 3.2. [] 

1~E~1~: 3.3. - ~Note, tha t  (3.31) and (3.33) together give b~,.~ s~/~a~ and so 

assumption (2) o~ Theorem 1.2 (see (1.6)) is automatical ly fulfilled. Thus, in par- 

ticular, condition (W2) = (3.9a) implies (1.6), as noted below Corollary 3.2. [] 

I~ 01~ LE~lgA_ 3.5. - Iden t i ty  (1.3b) which defines the  sequence {~}, k>~K, is 

(3.36a) ~J'-- )~j 

which can be eoineisely wri t ten  as 

~ K  

o r  

K ~ I  k~a~b~ 
I- ~ ' =/~,~, 

] =  K, K + I~... 

j>~K, 

(3.36c) v + T~v : / ~  

where v is the infinite vector 

(3.37) v = [(v~), j~>K],  
~ja~bj 

V j - -  
~j 

(we do not  indicate for v the dependence on K) and T~ is the  infinite m~trix 

(3.38) T ~ :  [(t~)], ~, k>~K, 
0 , k = j .  

The vector /~---- [(f~,j), j>K] defined by the r ight  hand  side of (3.36a) plainly 

belongs to l~. Accordingly, our aim is to show tha t  (3.36e) can be r ightful ly viewed 

~s an operator equation in the unknown vector v in the space l~. Thus, we want  

to estublish thu t :  

(i) the infinite matr ix  TK in (3.38) defines a bounded (linear) operator l~ -~ l~; 

(ii) (I + TK) has a bounded inverse (I + T~) -~ defined on all of l~ (where 

I = infinite ident i ty  matrix).  

To achieve (i) and (ii), it  suffices to require t ha t  [T-L.1, p. 223] (see (3.38)) 

(3.39) 
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for some ~ > O, and K = K~ which is precisely our assumption (3.30). Wi th  (3.39) 

guaranteed,  we can then  solve uniquely (3.36c) for v e l~: by  (3.37), this means tha t  

(3.40a) Iv, l= I~,1 <const~, fo~ all j > ~  

(in ~act, e.g. for j > K )  

I~,1 = Iv,[ < i[vll~< il(S + sb-~ll~ll/,]]~o< s - Ilm,<ll IS~il~< ~ ]lS~II=. 

By Remark  1.1 (if), ajbjd= 0 (since levi > 0, j>K) and the desired inequali ty 

(3.31) follows. To prove now the inequal i ty (3.33) under  the  additional assumption 

(3.32), we re turn  to (3.36b), which we write explicitly (see (3.36a) and (3.38)): 

(341) 
K_~I )~kakbT~ oo e Vj=I--X --~K k I~,'----'-'-'-'-'-'-'~T~,~ k= ~j__&v,~, jm.K 

k#i 

with K : K~ fixed by (3.30a). Thus, as j - ~ o o  (with K fixed), the finite sum in 
.K--1 

(3A1) goes to zero and ~_ < e, for all j>J~(K, e), e arbitraxy positive constant.  

As to the infinite sum m (3.41), we have (using that. v ~ l~, say (3A0b)) 

•V• - / ! v '  11o~8/K) < e , for all ]>J2(/s  e) 

by  assumption (3.32). Thus, we conclude from (3.41) tha t  for 0 < s < 1 

js 
J*;l - I ' < > 1 - 2 , ,  for all j > m a x  [J~(]i:, ~), J2(AY, ,s)] ~ J(K, e) 

and (3.33) follows as before (ajbj=# 0). The first par t  (I) of the Lemma is proved. 

We now show the second par~ (II) involving the more explicit conditions (3.34)- 

(3.36) by preceding us in l~emark 3.1. A sufficient condition for both (3.39) = (3.30) 

and (3.32) to hold simultaneously is obtained by imposing tha t  

c o  

s~(K) < (1 -- $)~, for some oo > io > 1, i.e. (with liP' 4- 1/p ---- 1): 
J=K 

~- I<~,d:'-'" ~,::--s I> < .Y . ; / /2  r< ]  Y, ---- 
7 = K  , = K  t / ~ = K  ,i J j = K t l k : K  ;c=K ,)l<ts--.itP....I .I 

k#~ k#7 

LI:,=K J J = K  k = K  Ic I : ,=K j = K  
l:#J j # k  

J :/:1; 
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where the  last step comes from assumptions (3.34)i(3.36). From here~ it follows a 

for~iori tha t  !im sj(K) = 0, i.e. (3.32)) as well as s f (K)<(1  -- (~)~, j > K ,  i.e. (3.30a). 
$ ---> r  

~ e m m a  3.5 is ful ly  proved. 

To complete the proof of Theorem 3.1, we need to show tha t  conditions (3.28) 

and (3.29) ia  Lemma 3.4 are fulfilled. But ,  by  (1.13) in Remark  1.3, condition (3.29) 

is guaranteed by assumption (//4) of Theorem 3.1. As to (3.28), we re-write it  as 

(3.42) ]2~l = lZ~a~bjl l e ~ l  < - - l e r  12~_ X~12 , 
=1 (17~-- e~) 2 (1 --2e)ee =1 

where in the last step we have used (3.33) and (3.31) of Lemma 3.5, as well as (1.13) 

in l~emark 1.3. Thus~ the r ight  hand  side of (3.42) is (see (1.1O)) 

eonst~.~lej]yj, ] >  J (K,  e) 

and Ie~Iyj-~ 0, (keeping e, K fixed) from our assumption (Hd) of Theorem 3.1. 

Thus, I ~ j l - + 0  as j - > c ~  and (3.28) holds true,  us well. The proof of Theo- 

rem 3.1 is complete 

~ A ~ K  3.r - Ins tead of assuming A normal  and obtaining AF of scalar type  

as ia  Theorem 3.1, one could assume only A spectral and then  force AF to be spec- 

tral.  To this  end, instead of using Kate ' s  lemm% one may  invoke the  somewhat 

related characterization of spectrali ty given by (i)-(ii)~ at  the beginning of section 2, 

as a necessary condition for A and as a sufficient condition for AF. The computa- 

tions made at  the beginning of the  proof of Theorem 3.1 are then  needed. We have, 

however, not  ye t  carried out in detail  this program of modifying Theorem 3.1 (and 

subsequently Theorem 3.3). [] 

4 . -  Corollaries and applications to boundary feedback parabolic and hyperbolic 

equations. 

4.1. Corollaries. 

We now apply the results of section 3 to relevant dynamical  systems, in par- 

t icular  to parabolic and hyperbolic boundary  feedback equations (see section 3, 

Par t  Z). For clarity, we distinguish three general situations relevant to the applica- 

t ions t ha t  we have in mind, bu t  for conciseness--we refer only to the case of A 

normal, Theorem 3.3 (i) in the  statements.  An impor tant  hyperbolic case (damped 

wave equation) which does not fit Theorem 3.3 (i) bu t  Theorem 3.3 (if) instead [i.e. A 

is not normal, however, i t  is of scalar type] is i l lustrated in Application 4.4. 

We begin with an application of the main Theorem 3.3 to the first order 
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dynamics (0.3) [resp. second order dynamics (0.4)] in the ease of parabolic [resp. 

hyperbolic] equations, where a degree of freedom in shift ing finitely many  eigen- 

values of A is allowed. 

C01~0LLAI~u 4.1 (to Theorem 3.3). - (i) (Parabolic equations in the ]orm o] model 

(0.3)). - Let  A be a normal operator which satisfies assumption (K) of (0.5) and 

which is also the generator of a s.c., analyt ic  semigroup on Y for t > 0. Let  the 

eigenvalues of A be simple, non zero, and ordered by their  real parts :  

(~.i) ... < R e  2a<l~e 2~<Re 2~ 

(so tha t  if, say, N of t hem have positive real part ,  the  respective eigensolutions of 

[t = Ay blow up in t ime exponentially).  

Then, for any  vector a ~ :g, am~ 0 and any  positive number  b, there exists a 

suitable vector b e Y, as described by Theorem 3.3, (i.e. Theorem 1.2) such tha t  

the corresponding feedback operator AF in (0.2) has a t~iesz basis of normalized 

eigenveetors {T~}:=I wi th  corresponding dist inct  eigenvalues {e~}~=z, which satisfy 

sup Re a(A) = sup Be ~ < - -  d < 0. 5[oreover, Ar generates a s.c., analyt ic  semi- 

group on Y. Expansions (3.7) and inequMities (3.8b) hold t rue  wi th  

y(t, Yo) = exp [AFt]yo 

solutions of the abstract  equation (0.3). A f o r t i o r i  

(4.2) Ilexp last] [i < Co exp [ -  dr], t > 0 ; 

(if) (Hyperbolic equations i~ the ]orm o] model (0.4)). In  the special case tha t  A 

is self-adjoint, one may  require tha t  the eigenvalues {e~} of A~, corresponding to 

the Biesz basis of normalized eigenveetors {T.,~}, be dist inct  real numbers,  indeed 

negative with e~-K<-- ~ < 0. In  this case, AF generates a s.c. cosine operator C/t) 
on Y, with corresponding sine operator S/ t )  given by 

(~.3) c / t ) y  = 2: era(y) cos V - ~ t ~ ,  
' r (~  = I 

f = e  (4.4) S / t ) y  = C/v)y  & = ,,21~/~_~.m 

0 

y~:Y,  t ~ R  

and y(t; Yo, Y l )= C/t)yo+ Sit)y1 are the solutions of the second order abstract  

equation (0.4). (l~eca]l that A*e~= 5~c~, and (c~, T ~ ) =  Kroneker  ~,~). [] 

PROOF. -- (i) A has, as required, on orthonormM basis of eigenveetors {~.~} with 

eigenvalnes {~.~} and AF generates a s.c., analyt ic  semigroups on Y (by a s tandard 
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result  [K.1, p. 497]). The expansion (3.7) and inequalities (3.8b), in part icular  the  

upper bound (4.2), follow from the conclusions of Theorem 3.3, by  imposing tha t  

the non zero dist inct  numbers s~= ~,--A,  be chosen so t ha t  the following two 

conditions hold: (i) Re ~ < - -  d < 0 for the  finitely many  A~, ..., )~x with Re ~ > - -  ~; 

(if) t h e  remaining {s~}~z+ ~ be sufficiently small in absolute value so t ha t  the as- 

sumptions (3.10)-(3.13) of Theorem 3.3 are fulfilled yielding a suitable b e / z .  

(if) Par~ (if) is a specialization of part  (i) to the  case where all the eigen- 

values {A~}~ of A are real and indeed only finitely many,  say I ,  of t hem larger 

t hen  - -d .  Thus, we may  force ~ ,  ..., ~z to be negative at  the left of - -d ,  while 

keeping ~s+~, ~+2, ... also to be negative and asymptot ical ly  close to 2~+~, )~z+~, ... 

respectively, so t ha t  Theorem 3.3 applies. [] 

We finally apply Theorem 3.3 to the first order dynamics (0.3) in the  case of 

hyperbolic equations. 

Here,  in the canonical case wi th  no damping,  A is then  the  generator of a s.c. 

un i t a ry  group on Y and thus,  by Stone Theorem, A = iS, with S seli-adjoint. 

Hence, A has an orthonormal  basis of eigenvectors, {r as required, with cor- 

responding eigenvalues {~} lying exact ly on the imaginary axis. 

The ease of damping will be t rea ted in Application 4.4. 

COROLLARY 4.2 (tO Theorem 3.3). - (i) Let  A be the  generator of a s.c. un i t a ry  

g~'oup on Y satisfying (K) in (0.5) (so t ha t  ]]exp [At]yol[r=~ 1 for the  solutiony(t, Yo)= 

= exp [At]yo of the free system ~ = Ay), with simple eigenvalues on Re ), = 0. 

Then, for any  vector a ~ Y, a~ @ 0 there exists a suitable vector b ~ Y, as de- 

scribed by Theorem 3.3, (i.e. by  Theorem 1.2) such tha t  the  corresponding feedback 

operator Ap in (0.2) has a Riesz basis of normalized eigenvectors {T~} with  cor- 

responding e igenvahes  {~}  which lie all in the open left  hand side C- of the complex 

plane (i.e.: R e ~ , , <  0 for all m), with finitely m a n y  of them arbi trar i ly  located 

in C-, while the  sequence (~m} approaches asymptot ical ly  the imaginary axis. More- 

over, A~ generates a s.c. semigroup on Y given by (see expansions {3.7)) 

(4.5) exp [A~t]y -=- ~ c,,(y) exp [a~t]T~, y e Y, t>0  

and exp [A~t] is s trongly stable; i.e. 

(4.6) IIexpA~t]yl[r~O as t ~ o o ,  for all y e Y  

with y(t, Yo) = exp [AFt]yo solutions of (0.3). 

(if) I f  A is a normal gronp generator and its simple eigenvalues {2.,} satisfy, 

instead, I~e )~m < - -  e < 0 and approach asymptot ical ly  the line Re )~ = -- e, the same 

conclusion as in part  (i) holds, with the eigenvalues {~,~} of Ap this t ime approaching, 



I. LASIEOKA - ]~. TI~IGGIANI: Finite rank, relatively bounded, etc., I f  8'7 

from the left  the  line Re ;t = -  e, and with finitely many  of them otherwise 

arbi t rar i ly  located in the  h~lf plane Re ~ < - - e .  Moreover, we h~ve the uniform 

decay 

(4.7) '~lexp [Avt]y]tr<e exp [-- et]][y]lr, t > 0 ,  y e :Y. 

Pr~ooF. - (i) Here we select the non zero numbers e,, : a,~-- t,,~ of Theorem 3.3 

so t h a t  Re ~ < 0, the {~}  accumulate ~symptotic~lly along the imaginary axis 

(i.e. 0 ve ]e~[ -~0) wi th  the ]e~] asymptot ical ly  so small as to satisfy assumptions 

(3.10)-(3.13) of Theorem 3.3. F rom (4.5) we then  obtain (4.6): 

exp [AFtjy = ~ c,,,(y) exp [cz.~t]T,~ + ~ c~(y) exp [~J]k~,~ 
m=l m = M + l  

where, wi th  exp IRe ~ t ] < l  for t>~0, given e and y we can select M : M~,~ 

< e ,  t ~ > O  and <c~ exp [-- c~t] -> 0 as t -->c~ (4.8) I~= +1~ =1 

so t ha t  

with -- CM~-- sup {Re ~,~, m = 1, ..., M} < 0 and  par t  (i) is proved. 

As to par t  (ii) the  impor tan t  exponential  decay (4.7) is a consequence of [the 

{~/~} being a Riesz basis, i.e. of] the r ight  hand  side inequal i ty in (3.8b) with 

sup Re ~ , , =  -- e < 0. [] 

As explained in the Introduct ion,  in applying our abstract  main results (Theo- 

rem 3.3 and the  above corollaries) to boundary  feedback parabolic or hyperbolic 

equations, we shall ~ppeal to the operator A*, ra ther  t h a n  direct ly to the operator 

Av itself. 

Thus, we need a version of our main result  Theorem 3.3, and corollaries above, 

for the adjoint  operator A*. This is quickly done, by  [D-S, Vol. I I I ,  Lemma, 4, 

p. 2354]. Thus the  definition of the  projection Qj for AF implies tha t  Q* is the cor- 

responding projection of A* 

(4.9) 

Moreover (3.6a) implies 

, 1 �84 

Q;: = ~ f R(~, A*) d~. 
Cs 

* - -  W * . P  W * - 1  (4.10a) Q* = W*/~,~W *-1 , m = J ,  or + 1 ,  Q 0 , j , -  o,j 

since P,~-- P* by orthogonali ty assumption [T-L.1, p. 250]. Thus - -under  the  same 

assum)t ions  as in Theorem 3.3--we have:  

(4.10b 
co 

Q~= I ,  strongly and uncondit ionally in Y 
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(counterpar t  of (3.6b)). ~Ioreover 

( 4 . 1 0 C )  v J (  m = l  ,]Q~Yi]r~ ,It** 
! 2 * 2 

< i]Y]Ir<<.C~ I[Q*Yl]g~- IlQo,J'yl]~ , 
1 

y ~ Y  

(counterpar~ of (3.6e)). Thus, the  counterpar t  of Theorem 3.3 for the adjoint  

operator A~ is 

T ~ O g F . ~  4.3 (Spectral and Riesz basis ass ignment /or  A* via a vector b). - Under 

the same assumptions as in Theorem 3.3, the project ion {Q*} of A*, defined by  (4.9), 

satisfy the  similarity relationship (4.10a), with W as in (3.17), as well as ident i ty  

(4.10b) and inequalities (4.10c). Thus, if {T~': *} are the  normalized eigenveetors of 

A* (proportionM to c,~ in Eq. (3.7)) corresponding to the  eigenvMues {5~}, the  

following counterparts  of expansions (3.7) hold (for simplicity of notat ion we take  

J ' - ~  J in Theorem 3.3) 

oo 

oo 

On= l 

c~3 

(e) exp [A*t]y = ~ k,~(y) exp " * 

along with the inequMities (counterpart.s of (3.8)) 

(4.12) 

(a) Ik (y)l </!yil <C Ik (y)l y s Y  

1 ~ ik.~(y ) exp [ ~ t ]  I < Ilexp * [A~t]yllr<~e lk~(y) cxp [~t]12 , (b) 
m = 1 

t~>0, y c N 

k~(T*) = Kroneker  ~ . ,  k~(AFT~)* * = ~m, ]~ eigenveetor of AF corresponding to ~ ,  

hence proport ionM to r  Thus a f o r t i o r i ,  A~ is a spectrM operator.  [] 

As a consequence, Corollaries 4.1-4.2 have full counterparts  for the adjoint  

operators A*. 

CO~0T,LA~Y 4.1". -- (i) (_Parabolic e~uations in the ]orm 2 ~ A ' z ) .  Let  A: Z 

~(A)  --> Z be a normal  operator on the Hi lber t  space Z, which satisfies assump- 

t ion (K) of (0.5) and which is also the  generator of a s.c. analyt ic  semigroup on Y 

for t ~ 0. Assume tha t  the  eigenvalues of A ~re as in (4.1). 

Then, for any vector  a ~ Z, a~r,:/: 0 ~nd any positive number  ~, there  exists a 

suitable vector  b ~ Z such tha t  the  corresponding adjoint  operator A~--  A*-4- a( . ,  b) z 
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(see (1.4)) has a t~iesz basis of normalized eigenvectors {T*}:=~ with corresponding 

eigenvMues [ z ~{%}m=~ satisfying Re ~ < ~ - -  d < 0. 3/[oreover, A* generates a s.c. 

semigroup on Z, analyt ic  for t > 0. 

Expansions (1.11) and inequalities (4.12) hold on Z, so tha t ,  a fo r t io r i  (see (4.2)) 

(4.13) Hexp [A*t][l = II(exp [A.t])*]l = ~lexp [A.t]ll <c o exp [ -  dt],  t>~0 

i[ '.I being the uniform operator topology Z - +  Z. 

(if) (Hyperbolic equations in the ]orm ~ * = A~,z). In  particular,  if A is seif- 

adjoint,  the  same conclusion as in Corollary 4.1 (if) holds for C*(t), the s.c. cosine 

operator generated by  A~ on Z, except tha t  in (1.3)-(4.4), {T~.} and c..(-) are now 

replaced by  {~Y*} and k.,(.): (the u.. are negative): 

(a) C*~(t)z = ~ k,.(z) cos v / ~ . t T 2  
m = l  

(4.14) ~ k.~(z) . ./ z e Z ,  t e i ~  
(q) S~(t)z = 2, . _ _ s m  v - -  ~ tkP*  

m = 1 ~ - -  ~ m  

and z(t, zo, z~)= C*(t)Zo~-S*(t)z~ are the solutions of ~ = A*z. [] 

CO nOLLAmC 4.2*. - Par t  (i) and (if) of Corollary 4.2 holds also verbatim for A*, 

except t ha t  the bi-orthogonal sequences {T.,} and c.~(.) in (4.5) a r e  now replaced 

by the bi-orthogonal sequences {~u*} and k~(.)[{T*} normalized eigenveetors of A*] 

and conclusion (4.6) is now replaced by 

(4.15) Ilexp * ' [Jfl]Zi]z-->O as t-->0% z ~ Z  

in the counterpart  of case (i), while conclusion (4.7) is now replaced by 

(4.16) [lexp * ' [A~,t]z![z<cexp[-et]lIzI!z, z e Z ,  t>O 

in the counterpart  of case (if). [] 

"~.2. Application to parabolic and hyperbolic dynamics. 

~A.~PPLICATION 4.1 [This is Application 3.1, Par t  I, which we re-write for conve- 

nience.] - The boundary  feedback hyperbolic equation (~ with interior observation 

of the position )> in the Dirichlet B.C. is 

(4.17) 

x,~(t, ~) = ~(~, ~)x(t, ~) 

x(O, ~) = Xo(~); ~,(o, ~) = xl(~) 

x(t, (;) = <x(t, .) ,  ~(.)>g(~) 

in (0, T] • A 

~eQ 

in (0, T]Xf 
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in the  nota t ion of (3.1), Pa r t  I,  ( , }  being the L2(D)-inner product., where now 

A(~, ~) plus zero Diriehlet  B.C. realizes a self-adjoint operator  - - A .  The well- 

posedness Theorems 3.1. Pa r t  I applies. I t  easily follows f rom (3.6), P a r t  I,  wi th  

x = z~, 2 = z~ t ha t  the  second order abs t rac t  model  in dual form for problem 

(4.17) is 

(4.1s) 2 = - -  A[x -- Dg(x ,  w}] = A~x on X = L2(D) 

Then,  Corollary 4.1" (ii) applies with  Z : L~(s9) and 

(4.19a) A * =  -- A [ I - -  D g ( . ,  w}] , a = -- Dg, b = w 

and gives, in part icular ,  for appropria te  choices of {e.} all negative,  the  following 

conclusion: given a vector g ~ L~(_P), with 

(4.19b) (Dg, q)~} v~ 0 ,  ( equivalent ly  g, -~Ir]L~(r) 0 , m = 1, 2, ... 

(see e.g. [L-T.1] for the  equivalence),  {qhm} or thonormal  eigenveetors of A, for any  

choice of {e~}, all negative,  satisfying the  assumptions of Theorem 3.3, there exists a 

suitable vector w ~ L=(Y2) such that the expansions (4.14) hold, whereby all (closed 

loop) ]eedback solutions o/ (4.17) can have oscillations with arbitrarily prescribed speed, 

i.e. e~ = )~ ~- e~ negative and less than a prescribed negative number. ~oreover ,  note  

tha~ wi~h 

g real e Ls(F) ,  {2~} real and {e,,} r ea l ,  then  the  vector  b = w e L~(s 

guaran teed  as a solution of (!.15) by  Theorem 1.5 can be also t aken  real. [] 

I~E~ARK 4.1. -- The analogous problem for (4.17), where w is given in J~2(~) 
and a suitable g ~ L2(F) is sough t - - in  which ease the  synthesis problem ment ioned 

in the  Final  Comments below arises--was solved in [I~-T.1], th rough  an ent i re ly  

different approach;  in the  presen~ paper  we s tudy the  spectral  propert ies  of AF, 

or A*,  while in [L-T.1] we followed the  feedback dynamics  of (4.17). In  [I~-T.1], 

we spoke of almost period@ boundary ]eedback stabilization (4.17), due to  the  ex- 

pansions (4.14). [] 

APPLICATION" 4.2. - The parabolic problem corresponding to (4.17) is 

(4.20) 

x~(t, 2) = ~(~, ~)x(t, 2) 

x(O, 2) = Xo(2) 

x(t ,  ~) = ( x ( t , .  ), w(.))g(~) 

in (0, ;r] • 

2a.O 

in (0, 2'] X_P 
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where we now assume tha t  A(~, 8) plus zero Dir ichlet  B.C. realizes a normal  gen- 

era tor  -- A of a s.c. ana ly t ic  semigroup. Well  posedness of (4.20) follows from [L-T.7] 

or IT.5]. The corresponding first order abs t rac t  model  in dual form for problem 

(4.20) is 

2 = - -  A [ x - -  D g ( x ,  w}]  = A * x  , o n X = L ~ ( ~ ) .  

Then,  Corollary 4.1" (i) applies with Z = L~(~) and the  same quanti t ies  defined 

in (4.19). Thus,  in par t icu lar  we obtain:  given a vector g ~ L~(F), as in (4.19b) there 

exists for any choice c] the {s,~} as in Theorem 3.3 a suitable vector w ~ L~(Q) such that 

the expansions (4.11) hold, ~ )~,~- sin, whereby, in particular, by (4.13), all ]eed- 

back solutions o] (4.20) decay asymptotically to zero with arbitrarily prescribed speed 

- - 5  < 0. Koreover ,  in the self-adjoint case, if g is real,  t h en  w can likewise be 

taken real.  [] 

BEHA~K 4.2. -- The analogous problem, where w is given in L2(Y2) and a suitable 

g ~ L~(F) is sough t - - in  which case the synthesis problem ment ioned in the Final  

Comments  ar ises--was solved th rough  an ent i re ly  different approach in [L-T.2] for 

problem (4.20), and in [L-T.3] for a more demanding parabolic problem with an 

unbounded observat ion (canonically the  gradient  of ~he solution acting in the  l~-eu - 

mann  B.C.). 

However ,  t he  ful l  boundary  case wi th  observat ion of the  t race  x(t,)lr of the  

solution, i.e. the  t e r m  (x(t,)lr , w)rg in the  Neumann  B.C., w, g ~ L~(F) escaped the  

analysis of [L-T.3]: in this  case we were only able to obtain in [L-T.4] the  weaker 

resul t  of an arbi t rar i ly  preassigned (uniform) decay of all feedback solution (stabiliza- 

t ion) as in (4.13) in par t icu lar  in the  canonical cases: the  Laplaeian t ransla ted,  

defined on spheres and on parMlelepipeds. [] 

APPLICATION 4.3 [This is Application 3.2, Part I, which we rewrite for con- 

venience]. - The boundary  feedback hyperbol ic  equat ion <~ with interior  observat ion 

of the  veloci ty  ~) in the  Dir ichle t  B.C. 

(4.21) 

xtt(t, ~) = Ax(t, ~) 

x(O, ~) = Xo(~),  x,(O, ~) = x l ( ~ ) ,  

x(t, a) = [{x(t, ') ,  wl( ')} q- <xt(t,'), w2(')}]g(a) 

in (0, _T]x~Q 

in (0, _T] X 1" 

in the  nota t ion of (3.2), Pa r t  i ( w ~  L2(.Q), g ~ L~(/~)), ( ,  } being the  L2(~)-inner 

product .  The well-posedness Theorem 3.2, P a r t  I applies. The abs t rac t  first order 

model  in dual  form of problem (4.21) is [see P a r t  I] 

(4.22a) 2 = ~/[z + a(b, z)] = A * z  
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with z~ = x, z~ = ~, Z = L~(D)• [9(A~)]' 

(4.22b) "~Y-=- A ; a =  e Z ;  b =  Aw~ eZ 

with w ~  L~(f2) and w,~ ~(A~), as required by Theorem 3.2, P~rt  I and -- A being 

~he self-adjoint operator given by the  Laplaeia,n wi th  zero Diriehlet B.C. The 
+.- 

eigenvalues of the  skew-adjoint operator a /  are: i~ = =hi %/~--~, m ---- 1, 2, ... with 

the corresponding orthonormal basis of eigenvectors r [%, =hi%/~%] on Z, 

where {it.,} are the positive eigenvalues of A on L~(~Q) (assumed simple) and {e,.} 

the corresponding eigenvectors, 2[[%]1~(~)~-1. Thus, for the sought after vector b 

in (4.22b) we have 

Wl 

(4.23) b = Aw~ = [<w, ,  + + 
~b=l  

~n=l 

and the  coordinates (b, ~b~) z and (b, r  are complex conjugate of each other if 

and only if wl and w~ are re~l, the  case of interest.  (We are likewise taking g ~ L2(F) 

real.) To h~ndle this extra condition on the  co-ordinates of the sought ~fter vector b, 

we proceed as follows. 

We first impose the  assumption (a, r  ) z r  0, equivalently 

m = 1, 2, . . .  as in (r :Next we apply Corollary 4.2* (i) separately on Z +--  --sp {~b,+ 

m : 1, 2,. . .} and on Z-  = ~ {r m : 1, 2,.. .}. Thus,  ni ter  assigning {s +} and  

{s:} ~s prescribed by  Corollary 4.2* (i), we obtain suitable vectors b+eZ + and 

b -e  Z-,  via Theorem 1.2 (i.e. solution of the corresponding equation (1.14c) or (1.15)). 

+ be complex conjugate of e~: e~--  We n e x t  impose the  extr~ condition tha t  % 

This implies, as is easily seen from (1.14e) wi th  A + complex conjugate of ;t~, t ha t  

we likewise obtain (b +, + (5)z+ complex conjugate oi (b-, r lot  the  two solutions. 

Thus, the vector b = b + @ b- e Z is a solution of (1.14c) on the  entire Z correspond- 

ing to {e+, 7~+}, m = 1, 2, ... and  for such b we impose, by  (4.23) t ha t  

< w l ,  - i = ( b ,  , m = 2 ,  . . .  

which determines uniquely wle Z2(~2) (real) and  w,~e ~(A~) (real), as desired. 

We conclude tha t :  given a real vector g e L~(_P) as in (4.25), /or any choice o/ the 
+,-- + _  ~ +,-- {s,~ } ~vith s , , -  %, Re s~ < 0 and otherwise satis/ying the assumptions of Theo- 

rem 3.3, the above procedure yields rear vectors wle  L~(T2) and w~e ~(A~) [note t h a t  
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A~ is invert ible]  such that all ]eedbaek solutions of (4.21) admit the expansion 

(4.26) z(t, z0, z~) = exp [A~t] = k., exp [&~t] T * .  
Zl ?n = 1 Zl  

Here,  {T*} is a l~iesz basis in Z of eigenvectors of A*, with preassigned eigen- 

values {~}  of A* which lie all in C- (i.e. R e ~ <  0 for all m) and approach 

asymptot ica l ly  the  imaginary  axis, while an arbitrary /inite number o] them can be 

located at will in C-. Moreover, ]or all such solutions z(t, Zo, Zo) we have 

(4.27) z(t, zo, Zl) exp [A*t] zo = --->0 aS t --> oo 
Z1 

i.e. s trong decay to  zero. 

Note,  f rom (4.22b), t h a t  we could have also t aken  Z = ~(A~-~)•  ', 

~ > 0 .  [] 

I ~ E ) ~ K  4.3. -- A similar, in a sense a converse, resul t  was proved  in [L-T.5] 

th rough  a different approach:  in [L-T.5] we obta ined conclusion (4.27) for the case 

wi th  preassigned vectors  g e L~(F), w~e/2(~r~) and w~ = 0 in (4.21) satisfying certain 

easily verifiable assumptions;  however,  nei ther  did we obtain the Riesz basis ex- 

pansion (4.26), nor could we of course claim much  about  the  corresponding closed 

loop eigenvalues, beyond  the  mere s ta tement  tha t  t h ey  are in Re ~ < 0. [] 

In  our nex t  application,  the operator  A in model  (0.3) fails to be normanl  bu t  

it  is of scalar type.  Thus,  we must  appeal  to Theorem 3.3 (ii) and its dual  version. 

A~PLICAr 4.4 [Damped wave equation].  - Consider the  same canonical  situa- 

t ion as in (4.21) except  t ha t  now damping is present  in the  r ight  hand  side of the  

equat ion:  

(4.28) 

x~( t ,  ~) = Ax( t ,  ~) - 2kx~(t, ~) 

x(O, ~) = Xo(#) , x~(O, ~) = x~(~) 

x(t ,  a) = [{x(t , .  ), w~} ~- {x t ( t , .  ), w~}]g(a) 

in (0, T]XY2 

in ~Q 

in (0, T] •  

with damping coefficient k > 0, w ~  L2(D), g ~ L2(/~), { ,  } being the  L~(~)- - inner  

product .  The first order abs t rac t  model  in dual  form of problem (4.28) is now 

(4.29a) = ~ [ z  § a(b, z ) ]  = A*z 

with zl = x, z~. = 2, Z = L~(/2)X [~(A})] r a.s in Applicat ion 4.3, - - A  being the  self- 

adjoint  operator  given by  t h e  Laplacian with homogeneous Dir ichlet  B.C. 

(4.29b) o t / g  wl d =  A -  ; a =  ~ Z ;  b =  Aw2 ~ Z  
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w:GL~(~2), w2G N(A+). In  the  notat ion of Application 4.3, {/~,} are the positive, 

increasing eigenvalues of A (assumed simple) and {era} corresponding eigenvectors. 
8 2 The eigenvalues and normalized eigenvectors of ~ are~ with  2] m[~:(9)~ 1: 

, - =  - -  k •  V ~ , , -  k-~; r  e,~ 

(4.30) ;2~'- e~ m = : ,  2,  ... 

where, without  changing the quali tat ive analysis, we are assuming (( small ~> damp- 

ing k i.e..u~ > /c  "~. The solutions of the  free system (i.e. (4.28) wi th  g = 0) satisfy 

the bound 

(4.31) x(t) ~ exp[dt] Xo ]] <Cexp[_tct] [xo l = , t>O . 
x~(t) x: ~ x~ 

This s tandard result  ca:: be shown in several ways: (i) by  the  usual change of 

variable v(t, ~) = exp [kt]x(t~ ~) which converts the equation of (4.28) into the easier 

one v t t =  Av ~- k2v; (if) by  spectral analysis, using properties of the eigenveetors 

of ~4 which will be listed below in (P1)-(Ph). The well-known <(multipliers ~) or 

energy methods also work [C.1] yielding a decay exp [-- ct] for some e > 0, bu t  do 

not  ident i fy  e as c ---- k. We next  note t h a t  ~ in (4.29b) is not normal  in Z. Indeed 

(4.32) 

and  ~e' is normal in Z if and only if k ---- 0, the undamped  case. We now check 

tha t  d is (indeed a ra ther  special case of) a spectral operator of scalar type.  To 

this end, we analyze the  spectral properties of zr The following properties can 

be direct ly verified in addit ion to (4.30): 

(i~ 

(P2 )  

(P3) 

(P4)  

c o  - -  o o  {:5 }~=: aad (:b },~=: are each on orthonormal  family on Z. 

[ + :  is orthogonal to {+;}~=:  i~ z ,  ~ ~ ~ ,  

- b  o o  : 

r is orthogonal to {q5 }~=: in Z, m 4= n .  

2 ~ : ( r  + - + + ~ ) z  2~ + �9 2 ; t ~ ( ~ ,  = -t- &~ �9 

Completeness of @+,  q ~ ,  m = 1, 2, ...} on Z. 

Thus, sett ing Z + ~ + ~o - ~o = {~b }~=1 and Z -  ---- ~p {fi5 }~=1, ~ restricted on g +'-  is nor- 

mal. Moreover 

(i~ Z ~ Z+-t - Z - ;  Z + n  Z - =  {0} (direct sum) 



I. LASIECKA - 1~. T:alaGIA~I: Pinite rank, relatively bounded, etc., I I  95 

and the expansions 

(4.31) z = z  + + z -  ~ (z +, + + = ~.)z~ + (z-, ~Z)zr Z , 
m = l  m = l  

(~.32) d ~  = ~ ~ + , - ( z  + , - ,  r  ~ e ~( .~)  
m = l  

z e Z  

hold. A fortiori zr is a spectral operator of scalar type.  

(P6) The eigenvalues of ~r given by (4.32) are 2, +'-  = 2~ '+ with corresponding 

eigenvectors, [%, -- Z~' + %], respectively. 

I f  we set v~ '+ = (~+'- -- 2~'+)/2, then  the following nonnormalized eigenvectors 

of ~'* corresponding to its eigenvalues 2~ ' - :  

e_~ 

(4.33) *- ~; ~ = ; @~+ = 
- -  ),+ 

form a bi-orthogonal system with respect to the eigenvectors (~b + ' -  } of d correspond- 

ing to its eigenvalues ~+ ' - :  

(4.34) 

, _  + * +  
(~b , ~b )z = (r , ~b~)z= Kroneker  8 ~  

*-- * +  + _ _  
(q)~ , r  0 m. (~b , all [] ~ )z - -  n, 

Taking the  inner product  in E of z in (4.31) with ~b *+'-  and using (4.34) yields 

Z ,  * - - ' +  + ' - -  qb )z = (z +,- , q5 )z, hence 

(4.35) 
m = l  r ~ , = l  

[We made similar considerations fer AF in (3.7)]. 

We now introduce a t ransformat ion t h a t  maps {q~, q~} in an orthonormal 

basis on Z. Define on Z the operator R by  set t ing:  

. o  eo 0 i e= 
%+ -= R r  + = 2? i = = , 

(4.36) ~+ e~,  - ~ / ~  e~ W= [ ~+ e~ 

O;~RcPZ=r e~ 
I 

2Z era' m = 1 , 2 ,  . . . .  
t 

Then, one verifies t ha t :  

(/)7) {0 +, 0g, m = 1, 2, ...} is an orthonormM basis on Z 

7 - A n n a l i  eli M a t e m a t i c a  
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(orthonormM and complete).  

(P8) R is bounded and boundedly  invert ible  on Z. 

Set t ing 

(4.37) H : R -1 , R : H -1 on Z 

we have,  by  (4.36) and (P7) t h a t  

(4.38) + ' -  + '-  = //{0~ , 1, 2, ...} = a Riesz basis on Z .  {~,~ , m  1 , 2 , . . . } =  m =  

Using the (non selfadjoint) H ~s a s imilari ty t ransformat ion (guaranteed, in 

genera], by  Werner 's  theorem) t ransforms (4.29), via the  usual change of coordinate 

:- iI-lz,  in to  

(4.39) ~ : -4N[~ + H -1 a(~, H 'b ) ]  on g 

~'~v: H - ~ H  : normal  operator  on Z. Eq.  (4.39) is oi the  form, for which we 

in tend  to ~pply Corollary 4.2* (i) wi th  e : k in (4.15). We begin b y  imposing the  

required assumption tha t  (II-la, +'- 0~ )z7-0  in terms oi g~L2(_P ). To this end, we 

recall  expansions (r and (4.35) with z : a : [-- Dg, 0] (by (4.29b)), apply  R 

across and use (4.33) and (4.36). We find 

(4.39) (II-~ --Do g 0 +1 (II-~a, + ~ .  )z o~)~ (a +, ~+~)~ = (a, *- 

1 
= -- 2 ~ {Dg, e~> 

(4Ao)  ( / / - ~  - -  g , o ;  z = (H-~a'  0 : ) .  = (a - ,  ~ ; ) z  = (a,  4 * + ) .  = 

1 
= - - 2 ~ { D g ,  e~>. 

Thus,  as in (4.24), for m : 1, 2, ... 

( / (4.41) (//-~a, 0+~'-)zr 0 <:~ (Dg, e~} :/: 0 <::> g, ~u r/L~(r) 

On the  other  hand  with / / * =  R :~-1 and b as in (4.29b) 

H0;.' )z0~' - -  
A W 2  m = l  ~P, = 1 

m = l  
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and the  co-ordinates of (H'b,  O,~)z and (H'b,  0~) z are complex conjugate of each 

other if and only if w~ and w2 are real, the case of interest:  

(4.43) 

l (b) (H*b ,O; ) z=  [<w~, %>--k<w~, e~>]@i~v/~--k2<w~,  e,~}. 

To obtain this we proceed as in Application 4.3, following (4.24). We apply 

Corollary 4.2* (i) on Z + - -  - ~ {0 +} and on Z - =  ~ {0~} separately, with the {e +} 

+ s~. As a result, we obtain which are taken  complex conjugate of the {e~}: % --- 

suitable vectors fl+e Z + and fl-~ Z-  from (1.1de) in Theorem 1.2 such tha t  the 
[ + § 
~fl , 0,~)z+ are complex conjugate of the (fl-, 0~)z_. (Note from (4.39)-(4.40) tha t  
(H- la ,  + 0~)z is complex conjugate of (H- la ,  O~)z). Then b = H*-~[fl+-} - fl-], the real 

vector w2e 9(A~) is identified by 

Im (fi+, + O.b 
(~.44) <w,, e.> - V~- k' ' m = ~, 2, . . .  

and the real vector w ~  L~(/2) by  

(~.45) <wl, e~> = k<w~, e.,> 4- Re (~+, % ) z  

We finally conclude: given a real vector g ~ L2(F ) as in (dA1), /or any choice of the 

+ e~ Re e + ' - <  0, and otherwise satisfying the assumptions of The- { s ; ' - }  with e~ = , 

orem 3.3, the above procedure yields real vectors wl~ L2(~) and w ~  ~(Ai ) ,  such that 

all feedback solutions of (4.28) admit an expansion as in (4.26), with preassigned eigen- 
+ , - -  + , -  

values o%~ = % @ t +'- of A* which lie all in the half plane R e t < - - k  and 

approach asymptotically the vertical line Re 1 = -- k, while an arbitrary finite number 

of them can be located at will in l~e ). < -  k. 

Moreover, all such feedback solutions z ( t ) =  [x(t), xt(t)] satisfy the decay (4.16), 

with Z = L2(tP)X [~(A~)]' and s = k. [] 

The abst rac t  theory  of the  present paper covers also, of course, higher order 

differential operators, say beams or plates eqnations, and generalization thereof.  

This is i l lustrated by  the  next  application. 

APPLICATIO~ 4.5. - Consider the  elastic system 

(4.46) 

x.( t ,  ~) + A~x(t, ~) = o 

x(0, ~) = Xo(~), x~(0, ~) = xl(~) 

x(t, a) -~ 0 

Ax(t, a) = [<Ax(t, .), wl(. )> + <Axt(t, .), w~(.)>] g(a) 

in (0, T] • s9 

in S9 

in (0, T] • F 

in (0, T] •  

with the  same notat ion as before. 
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Set t ing A ] =  A ~ ] on I D ( A ) =  H4(/2)c~ H~0(D), we have  t h a t  X is a posi t ive,  

self-adjoint  opera tor  on L~(D) and  A~ ] = AJ on ~(A~) = H~(/2) n H~(/2). I f  we 

define h = Gu to mean  the  solution of the  corresponding elliptic p rob lem 

A~h = 0 

hI~ = o 

AhIr  = 0 

in ~ i.e. wi th  Ah = p 

A p  in t9 
0 

p i t  = u 

Ah in t9 
~ p 

hit = 0 

we see that p = D u  (same D as in previous  applicat ions)  and  A t h  = p,  i.e. h = 

= A.-�89 Thus 

O = A-~D:  L.(/~) -+ H~(Y2) . 

The abs t r ac t  vers ion of (4.46) is now 

= --  A {x + Gg [(A~-x, w~} + ( A ~ ,  w~}]} 

i.e. 

on Z = ~(A~) •  where  z = [x, 2], A is the  skew adjoint  opera to  

i - -  Gg [-- A - ~ D g  A=~w~ 
, b ~ , 

a = 0 - -  - -  ~ 0 [ A~w~ 

and 

so t h a t  we mus t  t ake  w2 ~ ~(A~). As in, say, Appl icat ion 4.3, we compute  t h a t  the  

condi t ion am # 0 for the  Z-coordinates  of a is equiva len t  to  

( Oe'* / # 0 ,  m = 1, 2, ... 
g' ~v r/L~(r) 

wi th  {e~} eigenveetors of A. [] 

1%E~iglC 1.4. -- I n  l ight  of Appl ica t ion  4.~, the special class of two dimensional ,  

first order hyperbol ic  sys tems in one space dimension t r e a t ed  in [1%.1], [1%.2] could 

also be east  as an  appl ica t ion  of our Theo rem 3.3. This would yield a resul t  close 

in spiri t  to the  one a r r ived  a t  in [R.1]-[I~.2] th rough  a quite different approach ,  

based  on a d i f fe rence- -de lay  sys t em as a canonical  fo rm of the  original first order 

hyperbol ic  systems) .  [] 
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F~NAL CO~E~TS.  - These refer  to ~ e m a r k  4.1 and 4.2. For  sake of definiteness, 

we l imit  our considerations to  Applicat ion 4.1, Eq.  (4.~7), wi th  say, the  Laplacian.  

We want  to explain why,  it  was expedient  to work with the  dual model  ~ ~ Arz  

on Z----L~(T2) as we have done, and not  with the  original model  ~)----A;y. The 

l a t t e r  is, in fact ,  given by  

(4.47) 

(~.48) 

y ---- -- A y  ~- A~+~A~-~l)g(~y, ~ - w ) r  =- A~y 

b -~ ~ +  ~A ~-~ Dg ~ :F; a ~ A~w ~ Y" 

on the  ((undesirable ~) space Y ~--[~(A~+~)] ' where A denotes the extension b y  

isomorphism L~(~9) -+ Y of the original A : L2(~Q ) o ~(A)  -+ L2(f2) ; also A ~-~ Dg 

~L~([2) for g ~L~(F),  e > 0. Choosing g corresponds now to assigning b e lz, not  

a e Y, bu t  we have seen t h a t  Theorem 3.1 is symmetr ic  in the  roles p layed  b y  a 

and b. ! t  is of course possible, bu t  annoying,  to r e tu rn  from the  desired resul t  in Y 

to the  desired resul t  in Z----L~(~Q); see e.g. the  technique in [L-T.7]. We wish, 

however,  to make  ano the r  point :  t h a t  if we preassign w in (4.48), i.e. a e Y, und 

we seek g E L2(F), t hen  ~n ext ra  nontr ivial  difficulty arises, which we call (( synthesis 

problem ~). Indeed  once a suitable b ~ Y is obta ined th rough  Theorem 3.3 (or Theo- 

rem 3.1), one still has to  recover g E L2(F); i.e. one has to prove t h a t  such vector  b 

can, indeed, be wr i t ten  (synthesized) as in (4.48) ior some g E L~(/~). Bu t  b E Y is 

given in Theorem 3.3 by  its co-ordinates and the  vector  Dg e/~(f2) is nothing bu t  

an harmonic  funct ion in L2(~9 ) (see definition of D in (3A), P a r t  I) .  Thus, the  

synthesis problem ment ioned in Remark  4.1 amounts  to the  possibil i ty of being 

able to  characterize the  to ta l i ty  (or at  least ident i fy  a sui tably large class) of harmonic 

funct ions Dg in Z~([2), wi th  g e L~(F), in terms of thei r  coordinates (Dg, q~i) with 

respect  to the  or thonormal  b~sis {~b~} of eigenvectors of the operator  A (the Lapla- 

cian A wi th  zero Dir ichlet  B.C.). We are not  aware of uny sat isfactory solution to 

this problem in the  l i terature .  However ,  in the  ~pproach taken  in [L-T.1], we did 

succeed in preassigning w E L2(~Q ) and in obtaining g e L~(/~), thus  solving the  (( syn- 

thesis problem )). [] 
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