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Abstract

Anomaly detection is a fundamental problem for

which a wide variety of algorithms have been

developed. However, compared to supervised

learning, there has been very little work aimed at

understanding the sample complexity of anomaly

detection. In this paper, we take a step in this di-

rection by introducing a Probably Approximately

Correct (PAC) framework for anomaly detection

based on the identification of rare patterns. In

analogy with the PAC framework for supervised

learning, we develop sample complexity results

that relate the complexity of the pattern space

to the data requirements needed for PAC guaran-

tees. We instantiate the general result for a num-

ber of pattern spaces, some of which are implicit

in current state-of-the-art anomaly detectors. Fi-

nally, we design a new simple anomaly detection

algorithm motivated by our analysis and show

experimentally on several benchmark problems

that it is competitive with a state-of-the-art de-

tector using the same pattern space.

1 INTRODUCTION

The problem of (unsupervised) anomaly detection is to

identify anomalies in (unlabeled) data, where an anomaly

is a data point that is generated by a process that is distinct

from the process that generates “normal” points. This prob-

lem arises in a large number of applications, from security

to data cleaning, and there have been many approaches pro-

posed in the literature [4, 8]. While most applications seek

to identify semantically-interesting anomalies, it is typi-

cally not possible to predefine a functional notion of seman-

tic interestingness. Instead, the vast majority of anomaly

detectors use a surrogate measure of interestingness. For

example, a point may be interesting if it is a statistical out-

lier or if it is far away from other data points. The per-

formance of a given detector in a domain depends on how

well it can optimize the statistical measure and on how well

that measure aligns with the behavior of anomalies in the

application domain.

For moderately high-dimensional data, all data points be-

come far apart from each other, so they are all statisti-

cal outliers in a sense. This suggests that anomaly de-

tection by identifying outliers or distant points should per-

form poorly and degrade to random selection as the dimen-

sionality grows. Empirical results, however, have shown

that state-of-the-art anomaly detectors often perform quite

well [7] even for high-dimensional data. Further, these de-

tectors tend to reach their peak performance with a rel-

atively small amount of training data compared to what

might be expected based on the dimensionality. The pri-

mary goal of this paper is to move toward an understand-

ing of these empirical observations by analyzing the sample

complexity of a certain class of anomaly detectors.

The sample complexity of supervised learning has been

widely studied and is quite well understood via the frame-

work of Probably Approximately Correct (PAC) learning.

However, this is not the case for anomaly detection, where

virtually all published work has focused on algorithms with

good empirical performance (with additional attention to

computational speed, especially on big data sets). A key

step in the development of PAC learning theory was to for-

malize the notion of a hypothesis space and to quantify the

relationship between the complexity of this space and the

amount of training data required to identify a good hypoth-

esis in the space. In this paper, we follow a similar ap-

proach. Our framework is motivated by the observation

that many state-of-the-art anomaly detectors can be viewed

as monitoring the probabilities of certain “patterns” in the

data, where a “pattern” is a subset (typically closed and

compact) of the feature space. Outliers are then identified

based on measures of those probabilities, where points are

ranked as more anomalous if they satisfy lower-probability

patterns. For example, the highly-competitive anomaly

detection algorithm, Isolation Forest [10], finds outliers

by monitoring probabilities in the pattern space of axis-

aligned hyper-rectangles. Section 5 provides additional ex-



amples of the pattern spaces underlying a number of other

state-of-the-art detectors. In our analysis, a “pattern” will

play the same role as a “hypothesis” in PAC learning, and

the pattern space complexity will determine the number of

training examples required for high accuracy.

A second key step in the development of PAC theory was to

relax the goal of finding the best possible hypothesis. Simi-

larly, we will introduce an error parameter ǫ that determines

how accurately the algorithm must estimate the probabili-

ties of the patterns in the pattern space. We will then show

that the required sample size scales polynomially in 1/ǫ (as

well as in several other parameters).

We call our formulation Rare Pattern Anomaly Detection

(RPAD), and an algorithm that provides PAC guarantees

will be referred to as a PAC-RPAD algorithm. We prove

sample complexity results for any algorithm within the

RPAD framework. The framework captures the qualita-

tive essence of many anomaly detection algorithms. Note

that we focus exclusively on sample complexity. Experi-

ence with the supervised PAC analysis has shown that sam-

ple complexity results often give more insight than com-

putational complexity results. Indeed, many computational

problems in PAC learning are NP-Hard and yet practical

approximate algorithms are known. Similarly, we expect

that some of the computational PAC-RPAD problems will

also be NP-Hard, but existing algorithms, such as Isolation

Forest, already provide practical approximate solutions.

Prior work on one-class SVMs [12] and learning minimum

volume sets [13] have also provided sample complexity

analysis relevant to anomaly detection. These approaches,

however, are fundamentally different than RPAD-style ap-

proaches. In particular, these approaches focus on find-

ing a common region/pattern in the input space that cap-

ture the normal points. In contrast, our RPAD frame-

work is based on finding rare regions/patterns for directly

extracting anomaly characteristics. Anomaly detection

benchmarking studies [7] have shown that RPAD-style ap-

proaches tend to significantly outperform “common pat-

tern” approaches such as one-class SVM. Our work is the

first to analyze the sample complexity of the former ap-

proach.

The main contributions of this paper are as follows. First,

we present a formal framework for RPAD (Section 2),

which leads to the definition of PAC-RPAD (Section 3).

Second, we specify a simple generic algorithm, RAREPAT-

TERNDETECT, based on finding rare patterns. We derive

sample complexity results for both finite pattern spaces

and uncountable spaces of bounded complexity (Section 4).

Third, we give a number of applications of the theory to

pattern spaces that underly a number of state-of-the-art

anomaly detection algorithms (Section 5). This, in part,

helps explain why such algorithms consistently perform

much better than random in high-dimensional data. Fourth,

we measure learning curves on several benchmarks and for

pattern spaces of varying complexity for RAREPATTERN-

DETECT and another state-of-the-art anomaly detector over

the same spaces (Section 6). The results show that the

RPAD-based algorithm can be competitive with the state-

of-the-art and that the detectors’ performances converge for

surprisingly small training sets.

2 RARE PATTERN ANOMALY

DETECTION

We consider anomaly detection over a space of possible

data points X ⊆ Rd, which may be finite or infinite. Data

from this space is generated according to an unknown prob-

ability density function P over X . A common assump-

tion in anomaly detection is that P is a mixture of a nor-

mal component, which generates normal data points, and

an anomaly component, which generates anomalous data

points. Further, it is typically assumed that there is a much

higher probability of generating normal data than anoma-

lies. This set of assumptions motivates one approach to

anomaly detection, which we call Anomaly Detection via

Outlier Detection. The idea is to estimate, for each query

point x, the density P(x) based on an (unlabeled) training

sample of the data and assign an anomaly score to x pro-

portional to − logP(x), the “surprise” of x.

There are many problems with this approach. First, the

probability density may not be smooth in the neighborhood

of x, so that P(x) could be very large and yet be surrounded

by a region of low or zero density (or vice versa). Second,

even under smoothness assumptions, density estimation is

very difficult. For example, the integrated squared error

of kernel density estimation in d-dimensional space (for a

second-order kernel, such as a Gaussian kernel) converges

to zero at a rate of O(N−4/(4+d)) [14]. It follows that the

sample size N required to achieve a target accuracy grows

exponentially in the dimension d.

In this paper, we consider an alternative anomaly detection

framework, which we will refer to as Rare Pattern Anomaly

Detection (RPAD). Informally, the main idea is to judge a

point as anomalous if it exhibits a property, or pattern, that

is rarely exhibited in data generated by P . For example,

in a computer security application, a detector may monitor

various behavior patterns associated with processes access-

ing files. A process that exhibits an access behavior pattern

that has been rarely seen would be considered anomalous.

One attractive feature of the RPAD framework is that the

notion of anomaly is grounded in the estimation of pattern

probabilities, rather than point densities. Pattern probabil-

ity estimation is quite well understood compared to den-

sity estimation. A second attractive feature of the RPAD

framework is that each detected anomaly comes with an

explanation of why it was considered anomalous. Specif-

ically, the explanation can report the rare patterns that the



anomaly satisfies. Explanation methods have been devel-

oped for density-estimation approaches (e.g. [15]), but they

are less directly tied to the anomaly detection criterion.

Formally, a pattern h is a binary function over X . A pat-

tern space H is a set of patterns, which may be finite or infi-

nite. As an example, if X is a finite space of n-dimensional

bit vectors, a corresponding finite pattern space could be

all conjunctions of length up to k. As another exam-

ple, let X = [0, 1]n, the n-dimensional unit cube, and

consider the uncountable pattern space of all axis-aligned

k-dimensional hyper-rectangles in this cube. In this case,

each pattern h is a hyper-rectangle, such that h(x) is true if

x falls inside it. The choice of pattern space is an impor-

tant consideration in the RPAD framework, since, in large

part, this choice controls the semantic types of anomalies

that will be detected.

Each pattern h ∈ H has a probability P (h) =
Pr ({x : h(x) = 1}) of being satisfied by data points gen-

erated according to P . It will be useful to specify the set

of all patterns in H that a point x satisfies, which we will

denote by H[x] = {h ∈ H : h(x) = 1}. One approach

to RPAD is to declare x to be anomalous if there is a pat-

tern h ∈ H[x], such that P (h) ≤ τ . This approach is

sensible when all patterns are approximately of the same

“complexity”. However, when H contains a mix of sim-

ple and complex patterns, this approach can be problem-

atic. In particular, more complex patterns are inherently

less likely to be satisfied by data points than simpler pat-

terns, which makes choosing a single threshold τ difficult.

For this reason, we introduced the normalized pattern prob-

ability f(h) = P (h)/U(h), where U(h) is the probabil-

ity of h being satisfied according to a reference density U
over X . When X is bounded, we typically take U to be

a uniform density function. Thus, a small value of f(h)
indicates that under P , h is significantly more rare than it

would be by chance, which provides a better-calibrated no-

tion of rareness compared to only considering P(h). If X
is unbounded, then an appropriate maximum entropy dis-

tribution (e.g., Gaussian) can be chosen.

We can now define the notion of anomaly under the RPAD

framework. We say that a pattern h is τ -rare if f(h) ≤ τ ,

where τ is a detection threshold specified by the user. A

data point x is a τ -outlier if there exists a τ -rare h in H[x]
and otherwise x is said to be τ -common. Given τ and a

stream of data drawn from P , an optimal detector within

the RPAD framework should detect all τ -outlier points and

reject all τ -common points. That is, we want to detect any

point that satisfies a τ -rare pattern and otherwise reject. An

anomaly detector will make its decisions based on some fi-

nite amount of sampled data, and we expect that the perfor-

mance should improve as the amount of data grows. Fur-

ther, in analogy to supervised learning, we would expect

that the amount of data required to achieve a certain level

of performance should increase as the complexity of the

pattern space increases. We now introduce a formal frame-

work for making these intuitions more precise.

3 PROBABLY APPROXIMATELY

CORRECT FRAMEWORK

To address the sample complexity of RPAD, we consider

a learning protocol that makes the notion of training data

explicit. The protocol first draws a training data set D of

N i.i.d. data points from P . An anomaly detector is pro-

vided with D along with a test instance x that may or may

not be drawn from P . The anomaly detector then outputs

“detect” if the instance is considered to be an anomaly or

“reject” otherwise. Note that the output of a detector is a

random variable due to the randomness of D and any ran-

domization in the algorithm itself. This protocol models a

common use case in many applications of anomaly detec-

tion. For example, in a computer security application, data

from normal system operation will typically be collected

and provided to an anomaly detector before it is activated.

The ideal correctness criterion requires that the test in-

stance x be detected if it is a τ -outlier and rejected other-

wise. However, as we discussed above, this notion of cor-

rectness is too strict for the purpose of sample complexity

analysis. In particular, such a criterion requires distinguish-

ing between pattern probabilities that fall arbitrarily close

to each side of the detection threshold τ , which can require

arbitrarily large training samples. For this reason, we relax

the correctness criterion by introducing a tolerance param-

eter ǫ > 0. The detector is said to be approximately correct

at level ǫ if it detects all τ -rare points and rejects all (τ+ǫ)-
common points. For test points that are neither τ -rare nor

(τ + ǫ)-common, the detector output can be arbitrary. The

value of ǫ controls the false positive rate of the detector,

where smaller values of ǫ will result in fewer false posi-

tives relative to the detection threshold.

We now define the PAC learning objective for RPAD. A

detection algorithm will be considered PAC-RPAD if with

high-probability over draws of the training data it produces

an approximately correct output for any x ∈ X .

Definition 1. (PAC-RPAD) Let A be a detection algorithm

over pattern space H with input parameters 0 < δ < 1,

0 < τ , 0 < ǫ, and the ability to draw a training set D of any

size N from P . A is a PAC-RPAD algorithm if for any P
and any τ , with probability at least 1−δ (over draws of D),

A detects all τ -outliers and rejects all (τ + ǫ)-commons.

The sample complexity of a PAC-RPAD algorithm for H is

a function of the inputs N(δ, ǫ) that specifies the number of

training examples to draw. We expect that the sample com-

plexity will increase as the complexity of H increase, as

the dimensionality d of points increases, and as the fail-

ure probability δ decreases. Further, we expect that the

sample complexity will increase for smaller values of the



tolerance parameter ǫ, since this controls the difficultly of

distinguishing between τ -rare and (τ + ǫ)-common data

points. Accordingly we say that a PAC-RPAD algorithm is

sample efficient if its sample complexity is polynomial in

d, 1
δ , and 1

ǫ .

4 FINITE SAMPLE COMPLEXITY OF

RPAD

We now consider a very simple algorithm, called

RAREPATTERNDETECT, which will be shown to be a sam-

ple efficient PAC-RPAD algorithm for bounded complexity

pattern spaces. The algorithm is given in Table 1 and first

draws a training set D of size N(δ, ǫ). Here N(δ, ǫ) will

depend on the pattern space complexity and will be speci-

fied later in this section. The training set is used to estimate

the normalized pattern probabilities given by

f̂(h) =
1

|D| · U(h)
|{x ∈ D : h(x) = 1}|.

Here, we assume that U(h) can be computed analytically

or at least closely approximated. For example, when U is

uniform over a bounded space, U(h) is proportional to the

volume of h.

After drawing the training set, RAREPATTERNDETECT

specifies a decision rule that detects any x as anomalous if

and only if it satisfies a pattern with estimated frequency

less than or equal τ + ǫ/2. This test is done using the

subroutine HASRAREPATTERN(x,D,H, µ), which returns

true if there exists a pattern h in H[x] such that f̂(h) ≤ µ.

For the purposes of sample complexity analysis, we will

assume an oracle for HASRAREPATTERN. For sufficiently

complex pattern spaces, the problem addressed by HAS-

RAREPATTERN will be computational hard. Thus, in prac-

tice, a heuristic approximation will be needed, for example,

based on techniques developed in the rare pattern mining

literature. In practice, we are often interested in having

an anomaly detector return an anomaly ranking over mul-

tiple test data points. In this case, the algorithm can rank

a data point x based on a score equal to the minimum nor-

malized frequency of any pattern that it satisfies, that is,

score(x) = min{f̂(h) : h ∈ H[x]}. It remains to spec-

ify N(δ, ǫ) in order to ensure that RAREPATTERNDETECT

is PAC-RPAD. Below we do this for two cases: 1) finite

pattern spaces, and 2) pattern spaces with bounded VC-

dimension. Later, in Section 5 we will instantiate these

results for specific pattern spaces that underly several ex-

isting anomaly detection algorithms.

4.1 SAMPLE COMPLEXITY FOR FINITE H

For finite pattern spaces, it is relatively straightforward

to show that as long as log |H| is polynomial in d then

RAREPATTERNDETECT is a sample efficient PAC-RPAD

algorithm.

Table 1: RAREPATTERNDETECT Algorithm

Input: δ, τ , ǫ

1. Draw a training set D of N(δ, ǫ) instances from P .

2. Decision Rule for any x:

If HASRAREPATTERN(x,D,H, τ + ǫ/2) then re-

turn “detect”, otherwise return “reject”.

HASRAREPATTERN(x,D,H, µ)

:= {h ∈ H[x] : f̂(h) ≤ µ} 6= ∅

Theorem 1. For any finite pattern space H, RAREPAT-

TERNDETECT is PAC-RPAD with sample complexity

N(δ, ǫ) = O
(

1
ǫ2

(
log |H|+ log 1

δ

))
.

Proof. Suppose, X is a Bernoulli random variable with pa-

rameter P (h) for a pattern h, i.e., E[X] = P (h). Let,

Y = X
U(h) , hence, Y is a random variable with E[Y ] =

E[X]
U(h) = P (h)

U(h) = f(h). We also observe that the maximum

value of Y is 1
U(h) . Given N samples x1, x2, ..., xN , each

xi ∼ P , we estimate f̂(h) = 1
N

∑N
i=1

I[xi∈h]
U(h) . We seek

a confidence interval [L(h), R(h)] for f(h) that is narrow

enough that it does not simultaneously contain both τ and

τ + ǫ. The reason is that if L(h) > τ , then with prob-

ability 1 − δ, f(h) > τ , so h is not a τ -rare pattern. If

R(h) < τ + ǫ, then with probability 1− δ, h is not a τ + ǫ-
common pattern, so it is safe to treat it as τ -rare. Hence,

the confidence interval should be [f̂(h)− ǫ/2, f̂(h)+ ǫ/2],
and its “half width” is ǫ/2. So, we want to bound (by δ)

the probability that f̂(h) is more than ǫ
2 away from its true

value f(h). Now, using the Hoeffding bound we have

P
(
|EP [f̂(h)]− f̂(h)| >

ǫ

2

)

⇐⇒ P

(∣∣∣∣∣f(h)−
1

N

N∑

i=1

I[xi ∈ h]

U(h)

∣∣∣∣∣ >
ǫ

2

)

≤ 2 exp

(
−
ǫ2

2
U(h)2N

)
.

Since H is finite, we can bound the above probability for

all h ∈ H using the union bound: 2|H| exp
(
− ǫ2

2 U
2
minN

)
,

where, Umin = minh∈H U(h). We want this quantity to be

less or equal to δ:

2|H| exp

(
−
ǫ2

2
U2
minN

)
≤ δ

=⇒ N ≥
2

ǫ2
1

U2
min

log
2|H|

δ
.

Hence, the sample complexity is O
(

1
ǫ2

(
log |H|+ log 1

δ

))
.



4.2 SAMPLE COMPLEXITY FOR INFINITE H

When the sample space X is continuous, it is typically the

case that the corresponding pattern space will be infinite

and hence not covered by the above result. As is standard

in supervised learning, we will characterize the complex-

ity of infinite pattern spaces via the VC-dimension [17],

which we denote by VH. The VC-dimension of H is equal

to the maximum number of points that can be shattered by

patterns in H. Here a set of points D is shattered by H
if for any subset D′ of D there is an h ∈ H such that

h(x) = 1 for all x ∈ D′ and h(x) = 0 for all x ∈ D −D′.

That is, patterns in H can be used to define all possible bi-

partitions of D. For many interesting pattern spaces, the

VC-dimension scales polynomially with the data dimen-

sion d. The following result exploits this property by show-

ing that if a space has VC-dimension that is polynomial in

d, then the space is sample-efficient learnable in the PAC-

RPAD model.

Theorem 2. For any pattern space H with finite VC-

dimension VH, RAREPATTERNDETECT is PAC-RPAD with

sample complexity N(δ, ǫ) = O
(

1
ǫ2

(
VH log 1

ǫ2 + log 1
δ

))
.

Proof. When the pattern space H is in-

finite, we want to bound the probability

P
(
suph∈H |f̂(h)− f(h)| > ǫ

2

)
, which can be achieved

by bounding P
(
suph∈H |P̂ (h)− P (h)| > ǫ

2Umin

)
,

where, P̂ (h) is an estimate of P (h) based on sampled data.

Let, ǫf = ǫ
2Umin. Using the VC uniform convergence

bound on frequency estimates [6, Thm. 12.5] we have

P

(
sup
h∈H

|P̂ (h)− P (h)| > ǫf

)
≤ 8SH(N)e−Nǫ2f/32

. (1)

where, P̂ (h) is an estimate based on N i.i.d. samples

from P and SH(N) is the Shatter Coefficient, which is the

largest number of subsets that can be formed by intersect-

ing some set of N points with patterns from H.

Now, for any N > 2VH, we can bound the Shatter Coeffi-

cient as: SH(N) < ( eN
VH

)VH [6, Thm. 13.3]. Hence, from

Equation 1 we have

P

(
sup
h∈H

|P̂ (h)− P (h)| > ǫf

)
< 8(

eN

VH

)VHe
−Nǫ2f/32

. (2)

We want to bound this probability by δ, which yields

N ≥
32

ǫ2f

(
VH log(N) + VH log

e

VH

+ log
8

δ

)
. (3)

Using the fact that log(N) ≤ αN − log(α)− 1, where,

N,α > 0 and setting α =
ǫ2f

64VH
, we get

32VH

ǫ2f
log(N) ≤

32VH

ǫ2f

(
ǫ2f

64VH

N − log
ǫ2f

64VH

− 1

)

=
N

2
+

32VH

ǫ2f
log

64VH

ǫ2fe
. (4)

Applying results from Equation 4 into Equation 3 and sub-
stituting the original value of ǫf we prove the Theorem 2:

N ≥
256

ǫ2
1

U2

min

(
VH log

(
256

ǫ2
1

U2

min

)
+ log

8

δ

)
.

5 APPLICATION TO SPECIFIC

PATTERN SPACES

Most state-of-the-art anomaly detectors assign an anomaly

score to data points and then detect points based on a score

threshold or present a ranked list to the user. Further,

while not usually explained explicitly, the scores are often

based on frequency estimates of patterns in some space H
with rare patterns leading to higher anomaly scores. While

RAREPATTERNDETECT was designed as a pure implemen-

tation of this principle, it is reasonable to expect that its

sample complexity is related qualitatively to the sample

complexity of other algorithms grounded in pattern fre-

quency estimation.

In this section, we consider a number of pattern spaces un-

derlying existing algorithms and show that the sample com-

plexity of those spaces is small. The spaces are thus all

learnable in the PAC-RPAD framework, which offers some

insight into why existing algorithms often show strong per-

formance even in high-dimensional spaces.

5.1 CONJUNCTIONS

Consider a space X over d Boolean attributes and a pat-

tern space H corresponding to conjunctions of those at-

tributes. This setup is common in the data mining litera-

ture, where each boolean attribute corresponds to an “item”

and a conjunction corresponds to an “item set”, which in-

dicates which items are in the set. Rare pattern mining has

been studied for such spaces and applied to anomaly detec-

tion [1, 16]. In this case, the pattern space has a finite size

2d and thus by Theorem 1 is efficiently PAC-RPAD learn-

able with sample complexity O
(

1
ǫ2

(
d+ log 1

δ

))
. If we

limit attention to conjunctions of at most k attributes, then

the sample complexity drops to O
(

1
ǫ2

(
k log(d) + log 1

δ

))
,

which is sub-linear in d.

5.2 HALFSPACES

Given a continuous space X ⊆ ℜd, a half space pattern

is an oriented d-dimensional hyperplane. A data point sat-

isfies a half space pattern if it is on the positive side of the

hyperplane. The half-space mass algorithm [5] for anomaly

detection operates in this pattern space. Roughly speaking,

the algorithm assigns a score to a point x based on the fre-

quency estimates of random half spaces that contain x. The

VC-dimension of d-dimensional half spaces is well known



to be d + 1 and hence this space is sample-efficient learn-

able in the PAC-RPAD model.

5.3 AXIS ALIGNED HYPER RECTANGLES

For a continuous space X ⊆ ℜd, an axis-aligned hyper

rectangle (bounded or unbounded) can be specified as a

conjunction of threshold tests on a subset of the dimen-

sions. The pattern space of axis-aligned rectangles are of-

ten implicit in decision tree algorithms, where each internal

tree node specifies one threshold test.

The state-of-the-art anomaly detection algorithms, Isola-

tion Forest [10] and RS-Forest [18] (among others), are

based on this space. The core idea of these algorithms is to

build a forest of T random decision trees, where each node

specifies a random threshold test. The trees are grown until

either a maximum depth is reached or a leaf node contains

only a single data point. Each leaf corresponds to an axis-

aligned hyper rectangle. Given a point x, the algorithm can

compute the leaf node it reaches in each tree, yielding a

set of T hyper-rectangle patterns. The score for x is then

based on the average score assigned to each pattern, which

is related to the pattern frequency, dimension, and volume.

The VC-dimension of the space of axis parallel hyper rect-

angles in ℜd is 2d [3]. Thus, the pattern space underlying

Isolation Forest and RS-Forest is sample-efficient learnable

in the PAC-RPAD model.

5.4 STRIPES

A stripe pattern in ℜd can be thought of as an intersection

of two parallel halfspaces with opposite orientations and

can be defined by the inequalities: a ≤ w⊤x ≤ a + ∆,

where, w ∈ ℜd, a and ∆ ∈ ℜ and ∆ represents the width

of the stripe. The stripe pattern space consists of the set of

all such stripes.

The very simple, but effective, anomaly detector,

LODA [11], is based on the stripes pattern space. The main

idea of LODA is to form a set of T sparse random projec-

tions along some random directions in the subspaces of ℜd

and then estimate a discretized 1D histogram based on the

projected values. Each bin of each histogram can be viewed

as corresponding to a stripe in the original ℜd space with

orientation defined by the direction of the random projec-

tion and location/width defined by the bin localtion/width.

To the best of our knowledge the VC-dimension of the

stripes pattern space has not been previously derived. A

loose bound can be found by noting that stripes are a spe-

cial case of the more general pattern space of intersec-

tions of half spaces and then applying the general result

for bounding the VC-dimension of intersections [3], which

gives an upper bound on the VC-dimension of stripes of

4 log(6)(d+ 1) = O(d). Hence, stripes are PAC learnable

in the RPAD model.

5.5 ELLIPSOIDS AND SHELLS

Anomaly detectors based on estimating “local densities”

often form estimates based on frequencies observed in el-

lipsoids around query points. In particular, an ellipsoid

pattern in a d dimensional space can be represented by

(x − µ)⊤A (x − µ) ≤ t, where t ∈ ℜ, µ ∈ ℜd and

A is a d × d positive definite symmetric matrix. An

upper bound for the VC-dimension of ellipsoids in ℜd

is (d2 + 3d)/2 [2]. Hence the ellipsoid pattern space is

sample-efficient learnable in the PAC-RPAD model. How-

ever, we see that the complexity is quadratic in d rather than

linear as we saw above for spaces based on hyperplane sep-

arators.

A related pattern space is the space of ellipsoidal shells,

which is the analog of stripes for ellipsoidal patterns. An

ellipsoidal shell in ℜd can be thought of as the subtrac-

tion of two ellipsoids with the same center and shape, but

different volumes. That is, the shell is a region defined by

t ≤ (x−µ)⊤A(x−µ) ≤ t+∆, where ∆ ∈ ℜ is the width.

Shells naturally arise as the discretized level sets of multi-

dimensional Gaussian density functions, which are perhaps

the most widely-used densities in anomaly detection. We

are unaware of previous results for the VC-dimensions of

shells and show below that it is also O(d2).

Theorem 3. The VC-dimension of the ellipsoidal shell pat-

tern space in ℜd is upper bounded by 2 log(6)(d2+3d+2).

Proof. We can represent an ellipsoidal shell in ℜd as:

t ≤ (x− µ)⊤A (x− µ) ≤ t+∆. (5)

Rewriting the equation of an ellipsoid in ℜd:

(x− µ)⊤A (x− µ) ≤ t

=⇒ x
⊤
A x− 2x⊤

A µ ≤ t− µ
⊤
A µ

=⇒
d∑

i,j=1

Aijxixj −
d∑

i=1

2(Aµ)ixi ≤ t− µ
⊤
Aµ

=⇒ w
⊤
z ≤ b. (6)

where, w, z ∈ ℜd(d+1)/2+d. The vector w is a new param-

eter vector constructed from the original parameters. The

matrix A gives d(d + 1)/2 unique parameters, since A is

symmetric, and the vector Aµ gives another d parameters.

The vector z is a new input constructed from the original

input x, and b = t− µ⊤Aµ.

Now, Applying result of Equation 6 to Equation 5 we get

t− µ
⊤
A µ ≤ w

⊤
z ≤ t+∆− µ

⊤
A µ

=⇒ t
′ ≤ w

⊤
z ≤ t

′ +∆. (7)

The Equation 7 is a representation of a stripe in

ℜd(d+1)/2+d. So, we apply the same approach from pre-

vious Section 5.4 i.e. the case of two halfspaces, which

gives the upper bound of 4 log(6)(d(d + 1)/2 + d + 1) =
2 log(6)(d2 + 3d+ 2) = O(d2).



6 EXPERIMENTS

The above results suggest one reason for why state-of-

the-art anomaly detectors often perform significantly bet-

ter than random, even on high-dimensional data. How-

ever, existing empirical work does not go much further in

terms of providing an understanding of learning curves for

anomaly detection. To the best of our knowledge, there has

not been a significant study of how the empirical perfor-

mance of anomaly detectors varies as the amount of train-

ing/reference data increases. Typically empirical perfor-

mance is reported for benchmark data sets without system-

atic variation of training set size, though other factors such

as anomaly percentage are often varied. This is in contrast

to empirical studies in supervised learning, where learning

curves are regularly published, compared, and analyzed.

In this section, we present an initial investigation into em-

pirical learning curves for anomaly detection. We are in-

terested in the following experimental questions: 1) Will

the empirical learning curves demonstrate the fast conver-

gence predicted by the PAC-RPAD framework, and how is

the convergence impacted by the data dimension and pat-

tern space complexity? 2) How does the RPAD approach

compare to a state-of-the-art detector based on the same

pattern space on anomaly detection benchmarks? 3) In

what ways do empirical learning curves for anomaly detec-

tion differ qualitatively from learning curves for supervised

learning? While a complete empirical investigation is be-

yond the scope of this paper, below we provide experiments

that shed light on each of these questions.

6.1 PATTERN SPACE AND ANOMALY

DETECTOR SELECTION

A recent large scale evaluation [7] has shown that the Iso-

lation Forest (IF) is among the top performing anomaly de-

tectors across a wide range of benchmarks. This motivates

us to focus our investigation on IF’s pattern space of axis

aligned hyper rectangles (see above). In order to allow for

the complexity of this pattern space to be varied, we define

REC(k) to be the space of all axis aligned hyper rectangles

defined by at most k threshold tests on feature values.

The first step of IF is to construct a random forest of trees

that are limited to a user-specified maximum leaf depth of

k. Each tree leaf in the forest corresponds to a single pat-

tern in REC(k). Thus, the first step of IF can be viewed

as generating a random pattern space Hk ⊆ REC(k) that

contains all leaf patterns in the forest. IF then operates by

using training data to compute empirical frequencies P̂ (h)
of patterns in Hk and then for any test point x computes

an anomaly score based on those frequencies as follows

(smaller is more anomalous):

IF(x) =
∑

h∈Hk[x]

dh + c(P̂ (h))

where, dh ≤ k is the number of tests in pattern h and c(h)
is a function of the empirical frequency of h.1

In order to directly compare IF to our RPAD approach we

will conduct multiple experiments, each one using a dif-

ferent randomly generated pattern space Hk. We can then

compute the scoring function corresponding to RAREPAT-

TERNDETECT on those pattern spaces and compare to

the performance of the IF scoring function. In particu-

lar, RAREPATTERNDETECT effectively assigns a score to

x based on the minimum frequency pattern as follows:

MIN(x) = min
h∈Hk[x]

f̂(h)

where the normalized frequency estimate f̂(h) is normal-

ized by a uniform density U(h) over a region of bounded

support defined by the training data. This normalizer is

proportional to the volume of h and is easily computed.

We see that compared to the IF scoring function with

sums/averages over functions of each pattern in Hk[x], the

MIN scoring function is only sensitive to the minimum

frequency pattern. In order to provide a baseline in be-

tween these two, we also compare to the following alterna-

tive scoring function that averages normalized frequencies.

This scoring function is given by

AVE(x) =
1

|Hk[x]|

∑

h∈Hk[x]

f̂(h).

AVE is included in order to observe whether averaging is

a more robust approach to using normalized frequencies

compared to MIN.

6.2 LEARNING CURVE GENERATION

We generate learning curves using three existing anomaly

detection benchmarks:

Covertype [18]: d = 10 features, approximately 286k in-

stances 0.9% anomalies.

Particle [7]: d = 50 features, approximately 130k in-

stances with 5% anomalies.

Shuttle [7]: d = 9 features, approximately 58k instances

with 5% anomalies.

These datasets were originally derived from UCI super-

vised learning benchmarks [9] by treating one or more

classes as the anomaly classes and sub-sampling at an ap-

propriate rate to produce benchmarks with certain percent-

ages of anomalies. We have conducted experiments on a

number of additional benchmarks, which are not included

1In particular, c(h) is an estimate of the expected number of
random tests required to completely isolate training data points
that satisfy h, which is a function of the number of training points
that satisfy h [10]. This score is motivated by attempting to esti-
mate the “isolation depth” of x, which is the expected length of a
random path required to isolate a point. Intuitively smaller isola-
tion depths indicate a more anomalous point since it is easier to
separate from other points.
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Figure 1: Learning Curves for the Three Scoring Methods (IF, AVE, MIN) with Varying Pattern Space Complexity k Over

Three Benchmarks (Rows). MIN Represents the Main RPAD Approach Analyzed in this Paper.

for space reasons. These three data sets were selected as

being representative of the qualitative learning curve types

that we have observed. The data sets are divided into three

sets of data: pattern generation data, training data, and

test data for which we ensure that the fraction of anomaly

points in each data set is approximately the same as for the

full benchmark.

Given a benchmark and a specified pattern complexity k,

we generate learning curves for each algorithm as follows.

First, we use IF to generate a random pattern space Hk,

based on the pattern generation data using a forest of 250

random trees. Next for each desired training set size, we

sample a training set of the appropriate size and use that

data to estimate frequencies over Hk, which can be done

efficiently by passing each data point through each tree.

Next, the scores defined above for IF, MIN, and AVE are

computed for each test instance based on the frequency

estimates and the Area Under the Curve (AUC) of those

scores is computed relative to the ground truth anomalies.

This process is repeated 50 times for each training set size

and the resulting AUCs are averaged to produce a final

learning curve.

6.3 RESULTS

Figure 1 gives learning curves for each benchmark (rows)

and each of the anomaly detectors IF, MIN, and AVE

(columns). Recall that MIN represents the main RPAD

approach analyzed in this paper. In each case, four

learning curves are shown for pattern space complexities

k = 1, 4, 7, 10 and training instances range from 16 to 215.

Convergence rate: Each learning curve for each algorithm

and benchmark follows a trajectory starting at 16 training

instances to a converged performance at 215 points. We see

that in all cases, convergence to the final performance oc-

curs very quickly, in particular around 1024 samples. This

convergence rate is not significantly impacted by the di-

mensionality of the data, which can be seen by comparing

the results for Particle with d = 50 to the other data sets

with d = 9 and d = 10. Rather we see that the conver-

gence rate visibly depends on the pattern space complexity

k, though to a relatively small degree. In particular, we see

that the convergence for the simplest space k = 1 tends to

be faster than for k = 10 across our experiments. These ob-

servations agree with our analysis. The VC-dimension of

REC(k), which controls worst case convergence, is dom-

inated by the limiting effect of k. These observations are



consistent across additional benchmarks not shown here.

Relative Algorithm Performance: Here we focus on

comparing the different detectors, or scoring functions, in

terms of their converged performance. For the Cover and

Shuttle data sets we see that the converged performance

of MIN is better or competitive than the converged perfor-

mance of IF for all values of k. For the Particle data set,

the IF scoring function outperforms MIN consistently by

a small margin. This shows that despite its simplicity the

RPAD approach followed by MIN appears to be competi-

tive with a state-of-the-art detector based on the same pat-

tern space. Experiments on other benchmarks, not shown,

further confirm this observation.

The converged performance of AVE tends to be worse than

both IF and MIN for Covertype and Particle and is slightly

better on Shuttle. It appears that for these data sets (and

others not shown) that averaging is not significantly more

robust than minimizing and can even hurt performance.

One reason for degraded performance is that AVE can be

influenced by the cumulative effect of a large number of

non-rare patterns, which may sometimes overwhelm the

signal provided by rare patterns.

An interesting observation is that for each data set, the best

performing pattern space (i.e. value of k) is usually the

same across the different learning algorithms. For exam-

ple, for Covertype, k = 1 yields the best converged perfor-

mance for all scoring functions. This observation, which

we also frequently observed in other data sets, suggests

that the choice of pattern space can have a performance im-

pact that is as large or larger than the impact of the specific

scoring function used. To understand this, note that the

performance of an anomaly detector depends on both the

convergence of its scoring function and the match between

the scoring function and the semantic notion of anomaly

for the application. The pattern space choice has a large in-

fluence on the this match since it controls the fundamental

distinctions that can be made among data points.

Qualitative Properties: The qualitative behavior of the

learning curves exhibits a couple of nonintuitive properties

compared to supervised learning curves. First, in super-

vised learning, we typically expect and observe that more

complex hypothesis spaces converge to a performance that

is at least as good as simpler spaces, though more complex

spaces may underperform at small sample sizes due to vari-

ance. This does not appear to be the case for anomaly de-

tection learning curves in general. For example, the perfor-

mance of the simplest pattern space (k = 1) on Covertype

converges to better performance than the more complex

spaces. This has also been observed in other data sets and

does not appear to be due to premature termination of the

learning curve. Rather, we hypothesize that this behavior is

due to the mismatch between the anomaly detection scores

and the semantic notion of anomaly in the benchmark. In

particular, rare patterns in REC(1) are apparently a better

indicator of the semantic notion of anomaly than some dis-

tracter rare patterns in REC(10). Indeed, it is straightfor-

ward to construct synthetic examples with such behavior.

Another nonintuitive aspect is that, in at least two cases,

the learning curves consistently decrease in performance,

while typically in supervised learning, ideal learning curves

are non-decreasing. The most striking example is the per-

formance of AVE on Shuttle, where all learning curves

steadily decrease. After further analysis, this type of behav-

ior again appears to be explained by the mismatch between

the semantic notion of anomalies and the scoring function.

In particular, the variance across different trials of the learn-

ing curve for large sample sizes is much smaller than for

small sample sizes. It also turns out that the distribution

of scoring functions generated for the small sample sizes

is skewed toward solutions that better match the ground

truth anomalies compared to the converged scoring func-

tion. Thus, the average performance for small sample sizes

is better. We have observed this decreasing learning curve

behavior in other data sets as well, though it is much more

common for learning curves to increase.

7 SUMMARY

This work is motivated by the observation that many statis-

tical anomaly detection methods perform much better than

random in high dimensions using relatively small amounts

of training data. Our PAC-RPAD framework attempts to

explain these observations by quantifying the sample com-

plexity in terms of the complexity of the pattern spaces un-

derlying such anomaly detectors. Our results mirror those

in supervised learning by showing that the VC-dimension

of the pattern spaces is the dominating factor that controls

sample complexity. We showed that for several state-of-

the-art detectors, the underlying pattern spaces had well-

behaved VC-dimensions with respect to the data dimen-

sionality, which offers a partial explanation for their good

performance. On the empirical side, we investigated for

the first time, to the best of our knowledge, learning curves

for anomaly detection. The experiments confirmed the fast

convergence predicted by the theory. The results also sug-

gest that our simple algorithm, which was shown to be

PAC-RPAD, is competitive with the state-of-the-art algo-

rithm Isolation Forest when using the same pattern space.

Finally, the learning curves showed some interesting qual-

itative differences compared to supervised learning curves.

In particular, the results highlight the importance of select-

ing a pattern space that is likely to be a good match to the

semantic notion required for an application.
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