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Finite Sample Effects in Vector
Autoregressive Modeling

Stijn de Waele and Piet M. T. Broersen

Abstract—In vector autoregressive modeling, the order selected
with the Akaike Information Criterion tends to be too high. This
effect is called overfit. Finite sample effects are an important
cause of overfit. By incorporating finite sample effects, an order
selection criterion for vector AR models can be found with
an optimal trade-off of underfit and overfit. The finite sample
formulae in this paper provide a more accurate description of
the behavior of vector autoregressive estimators than asymptotic
theory or the exact Cramér–Rao lower bound. A comparison
of estimators in simulations as well as experimental data shows
that the Nuttall–Strand estimator is more accurate than the
least-squares estimator for high-order models. With the extension
to channel prediction, the finite sample theory can also be used in
order selection for autoregressive models with exogeneous input
(ARX models) in system identification.

Index Terms—Multichannel signals, multivariate processes,
order selection, system identification, time series analysis, vector
autoregression.

I. INTRODUCTION

SPECTRAL analysis with autoregressive (AR) models is
used in a number of fields, e.g., radar, system identifi-

cation, econometrics, and biology [1]–[3]. In the analysis of
scalar signals, the combination of robust estimators and order
selection criteria has resulted in a spectral estimator that is
more accurate than the windowed periodogram [4]. Similar
improvements can be expected in spectral analysis of vector
signals. A vector time series is defined as a realization of a
series of random variables , where is an element of a
vector space . A vector AR (VAR) model can be used to de-
termine the auto- and cross-spectra of. A typical application
is clutter suppression in phased-array radar. Here, VAR models
are used to adaptively estimate a clutter model from data [5].
Frequently, used estimators and order selection criteria have
been generalized to vector signals [6]–[8].

The theoretical analysis of estimators and order selection
criteria is often limited to asymptotic approximations. In the
asymptotic approximation, many order selection criteria are
equivalent [9], while their performance in practice is quite
different. This is caused by finite sample effects: deviations
from the asymptotic behavior due to the fact that the number
of estimated parameters is no longer small with respect to the
number of observations. In this paper, a framework is presented
that can be used to effectively describe finite-sample effects of
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an estimator of vector AR models. Within this framework, it is
possible to describe differences in the finite-sample behavior
of various estimators.

Asymptotic theory is used to derive the order selection cri-
terion Akaike Information Criterion (AIC) [10]. The applica-
tion of AIC for order selection in vector time series analysis is
cumbersome if only a short data record is available [11]. One
problem is that the selected model order is often too high. In
other words, AIC suffers from overfit. Several remedies have
been tried to get rid of this undesired property of AIC.

The maximal candidate order for order selection is set to the
conservative value of , where is the number of ob-
servations and is the number of channels [6], [12], [13]. This
reduces the variety of processes that can be accurately modeled.
In radar applications, the detection performance breaks down
for most cases where the optimal model order is greater than the
maximum candidate order [14]. Another remedy which has been
proposed is to use a penalty factorwhich increases with the
number of observations [7, p. 691]. This will eventually solve
the problem of overfit for sufficiently large . However, this
will lead to a large cost of underfit [15]. It can be concluded that
neither remedy is satisfactory.

In this paper, we will show that the problems in vector AR
order selection are primarily caused by finite sample effects. In
an econometric context, it has been noted that the vector AR
model “leads to a good within-sample fit [low residual variance]
but poor forecasting accuracy [high prediction error (PE)]” [16].
In the asymptotic regime, AIC takes this discrepancy between
the residual variance and the PE into account. In finite samples,
both the decrease of the residual variance and the increase of
the PE with increasing model order are greater than predicted
by the asymptotic Taylor approximation. As a result, AIC tends
to select a very high model order [17].

Some basic definitions in vector autoregressive processes are
given in Section II. The error measure which is used to evaluate
various algorithms is the model error (ME) for vector processes
(Section III). Three theoretical concepts are discussed for the
description of the behavior of VAR estimators. In Section IV,
the asymptotic theory for VAR modeling is described. The
finite-sample expression for the Cramér–Rao lower bound in
white noise is derived in Section V. In Section VI, the finite
sample theory (FST) for vector AR estimators is given. The
finite sample expressions can also be used in order selection
for channel prediction, as is briefly discussed in Section VII.

II. V ECTORAUTOREGRESSIVEPROCESSES

A discrete-time vector time series is a vector from a vector
space as a function of the integer variable. The dimension
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of is . Components of the vector are denoted . An
AR( ) vector process is a stationary stochastic signal that is gen-
erated by the following difference equation:

(1)

The are the autoregressive parameter linear mappings from
(parameter matrices). The linear mapping can be

fully characterized by a matrix [18, p. 84] with matrix ele-
ments . The number of AR parametersis the AR order.
The generating signal is a white noise signal with covariance
tensor (covariance matrix) . The variance of is given by
the trace of

(2)

The auto- and cross correlations and spectra can be calculated
from the ARMA parameters. In the context of time series anal-
ysis it makes sense to use the following inner product between
the linear mappings and :

(3)

inducing the Frobenius-norm [19, p. 56]

(4)

Useful representations of the AR parameters are the partial cor-
relations . The requirement of stationarity of the AR model
can be expressed in the partial correlations as

(5)

Some estimators for AR-parameters are the vector Burg or
Nuttall–Strand (NS) estimator, Yule–Walker and least squares
[6]. The Yule–Walker estimator displays the same triangular
bias as is found in the periodogram estimate, which can have
a severe adverse effect on model quality [17]. Therefore, the
Yule–Walker estimator will not be discussed further. In this
paper we will investigate the finite sample accuracy of the NS
algorithm and the least-squares (LS) estimator.

III. M ODEL ERROR FORVECTORPROCESSES

Comparing an estimated VAR model to the true process
amounts to comparing an estimate for the probability
distribution function (pdf) of the observations to the true
distribution function . Using the Kullback–Leibler (K–L)
discrepancy, a numerical value is ascribed to the difference
between the two distribution functions. The Kullback–Leibler
index is given by [20, p. 302]

(6)

where is the logarithm of the estimated distribution function:
. The expectation is taken over the true distribu-

tion function

(7)

The Kullback–Leibler index is minimal for the true pdf. The
Kullback–Leibler discrepancy is given by

(8)

The Kullback–Leibler discrepancy is zero only if and
greater than zero for all other distributions. This general statis-
tical error measure will now be calculated for stochastic pro-
cesses. We will assume that both the true and the estimated dis-
tributions are normal.

The most convenient way to evaluate the logarithm of the pdf
of a time series model is by splitting up the
distribution function into conditional distributions

(9)

The contribution for is given by . For a nor-
mally distributed stochastic process, the logarithm of the condi-
tional pdf is given by

(10)

denotes the inner product. is the difference be-
tween and the optimal forward prediction based onpre-
vious observations

(11)

with

(12)

The coefficients are linear mappings that are calculated
from the covariance function of the estimated process using the
Yule–Walker equations [6, p. 379]. is the covariance matrix
of the PE signal . The total is given by

(13)

As a result, the K–L index for an estimated pdfis given by

(14)

where is the covariance matrix of the PE signal

(15)

The difference between and is that is the covariance
matrix of the error of prediction calculated using theestimated
pdf

(16)

while is the covariance matrix of the error of prediction
calculated using thetrue pdf

(17)
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A useful expression for the K–L index for order selection that
can be derived from (14) is given by

(18)

The K–L discrepancy for the true distribution is given by

(19)

and, therefore, the Kullback–Leibler discrepancy is

(20)
For stationary processes, the determinant of is given
by

(21)

Using this relation, we can show that the K–L index tends to
infinity if tends to 1. The K–L discrepancy can also
be evaluated by considering the conditional pdf of given

. Then, we find an expression for the K–L dis-
crepancy based on backward prediction.

The NS estimator always provides stationary models [6].
Therefore, we can evaluate this estimator with the K–L dis-
crepancy. The least squares estimator may yield parameters

that correspond to a nonstationary process. In that
case, the definition of is unclear. Moreover, the determinant
of the estimated partial correlations might be on the unit circle,
yielding infinity for the K–L index. We must conclude that
the LS estimate provides an unreliable model for the process.
Therefore, the LS estimators may yield poor results when the
estimated AR model is used as a representation of the process
in further analysis, e.g., in Durbin’s ARMA estimator [21]
and in model reduction in system identification. However,
the estimated parameters can always be used for prediction.
Therefore, we will use the ME for a comparison of the two
estimation algorithms. The ME is a normalized version of the
one-step ahead PE

(22)

We will show that the ME is closely related to the K–L discrep-
ancy. Using elementary algebra it can be derived that the first-
order approximation of around and

is given by

(23)

where contains contributions of order and higher.
Using this first-order approximation and neglecting transient ef-
fects, the K–L discrepancy is approximately equal to the ME

(24)

An advantage of the ME with respect to the K–L discrepancy
is that it can be easily extended to the case of channel predic-
tion (see Section VII). An equally accurate approximation of the
K–L discrepancy is found using the determinant instead of the
trace in the ME

(25)

IV. A SYMPTOTIC THEORY

In this section, the asymptotic theory of parameter estimation
of an AR model will be discussed. We will define asymptotic
theory as a description of estimators that is accurate up to con-
tributions of order . If the expression is linear in , this
is called an asymptotic Taylor approximation. In the first sub-
section, the asymptotic expressions for the expectation of the
PE covariance matrix and the residual covariance matrix
are given. These two expressions are used to derive the final
prediction error (FPE) as an estimator for the PE. In the second
subsection some comments are made regarding the asymptotic
trade-off of underfit and overfit.

A. Statistical Behavior of Estimators

The asymptotic expectation of the residual covariance matrix
of an AR( ) model estimated from observations of an

AR( ) process is given by

for (26)

The asymptotic expectation of the PE covariance matrix
is given by [22]

for

(27)
Asymptotically, the expectation of ME is equal to the number
of estimated parameters

for (28)

Note that this is true for unbiased models . This ex-
pression is also approximately true for a model selected with
a well-performing order selection criterion. Equations (26) and
(27) can be combined as

(29)

Taking the trace of both sides of this equation and replacing
by an estimate yields an estimate of the PE based on

the residual RES

(30)

This estimate is called the FPE. Another estimator that is asymp-
totically equivalent is the first-order Taylor approximation

(31)

The asymptotic statistical behavior of estimators given by equa-
tions (26) and (27) is also used to derive order selection criteria.
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Some order selection criteria which have been derived using
asymptotic theory are AIC [10] and AICc [8]. Simulations have
shown that AICc is more accurate than AIC for order selection
[8]. As pointed out by Bhansali [9], FPE, AIC, and AICc are
asymptotically equivalent. The asymptotic approximation is not
sufficiently accurate to distinguish between these criteria.

B. Trade-Off of Underfit and Overfit

The goal of order selection is to select an accurate model
for the data. This requires a trade-off of the costs of underfit
and overfit. Underfit occurs when the selected model orderis
smaller than the true order; overfit occurs when the selected
model order is greater than the true order. The AIC is not
based on this trade-off. Rather, it is based on an asymptotically
unbiased estimate of the PE based on the residual RES (30). For
scalar signals, the trade-off of underfit and overfit yields a dif-
ferent asymptotic order selection criterion

(32)

with the penalty factor equal to 3 [15].
In vector time series analysis, additional parameters are

estimated at once if the model order is increased by 1. Overfit
occurs when the reduction of the residual variance is much
greater than its expectation due to statistical fluctuations. If the
number of additional parameters is large, the fluctuations will
become small with respect to the expectation. As a result, the
cost of overfit in the case of vector-valued signals is very small.
Therefore, the optimal penalty factor is expected to decrease
significantly with increasing dimension , approaching the
lowest value of as in AIC.

V. CRAMÉR–RAO LOWERBOUND FOR THEMODEL ERROR

In this section, the exact Cramér–Rao lower bound (CRLB)
for the ME of vector AR estimates in normally distributed white
noise is derived. The expression is
based on the exact likelihood. This means that not only the con-
ditional distribution of the observations given

is used, but also the distribution of the observations
[23]. It can be elementary derived that in white noise

the expectation of the ME for an estimator of the VAR() model
is given by

(33)

The exact CRLB for the ME is given by [23]

(34)

In many cases, actual estimators approach the CRLB. Then, the
CRLB is a convenient tool for describing the behavior of es-
timators. Asymptotically, the CRLB yields the same results as
the expressions derived in the previous section. However, the
finite behavior of actual estimators deviates considerably from
the CRLB, as will be shown in the next section. The lower bound
given by equation (34) provides an accurate description for the
ME of estimates for low model orders. For higher model or-
ders, the CRLB is very conservative.

Fig. 1. ME for estimated AR(k) models from 100 four-dimensional white
noise observations as a function of the model orderk (1000 simulation runs).
Models have been estimated with the NS and LS estimators. The simulation
results are accurately described using FST. Also shown are the asymptotic result
(Asym) and the exact Cramér–Rao lower bound (CRLB).

VI. FINITE SAMPLE THEORY

In this section, we will evaluate the finite sample behavior of
AR estimators. We will show that this behavior deviates con-
siderably from the asymptotic Taylor approximations and the
CRLB. First, we have to establish the maximum model order

considered for order selection. The description of the fi-
nite sample effects must at least be accurate up to this maximum
order. The number of estimated parameters is equal to the
number of observations for model order . We
will set the maximum model order to half this number, yielding

. This is much less restrictive than the maximum
value mentioned in literature.

To examine the statistical behavior of estimators, AR models
are estimated from vector white noise observations
with . The results of this simulation experiment are
given in Fig. 1 for dimension along with the asymp-
totic result and the CRLB. In Fig. 1 the MEs for the NS and LS
estimators are given. The simulations show that the error of esti-
mated models is greater than described by the asymptotic Taylor
approximation (28). Moreover, the error of the LS estimator is
greater than the error of the NS estimator.

The framework of FST [17] can be used to describe this be-
havior of estimators. Also, a finite sample equivalent for the FPE
(30) can be derived.

The bases of the FST are the finite sample variance coeffi-
cients . In scalar time series analysis,represent the variance
of the estimatedth reflection coefficient. This is generalized to
vector signals by using the variance of the estimated partial cor-
relation above the true order

(35)

For the two estimators, the are accurately described by the
following empirical formulae:

Nuttall–Strand:

Least-Squares: (36)

All components of are estimated independently.
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Using these assumptions, we can derive the finite-sample ex-
pression for expectation of the residual

(37)

A similar expression can be found for the backward residual
. Also, we can derive the finite-sample expression

for the expectation for above the true order

(38)

Again, a similar result can be derived for the backward residual
. It must be noted that in the derivation of this re-

sult the approximation has been used that the stochastic variable
can be replaced by . The expectation

of the ME in white noise is given by

(39)

This expression provides a better description of the actual be-
havior of the NS estimator than the CRLB (34) or the asymptotic
expression (28) (see Fig. 1). It is accurate up to the maximum
model order considered for order selection. The
deviations for higher order models are caused by the fact that the

no longer describe the actual variance of the estimated. As
the models that are estimated with the NS algorithm are guaran-
teed to be stationary, the parameter variance is finite even if the
number of estimated parameters exceeds the total number
of observations . However, these high-order models have
no useful interpretation. With FST, we can accurately describe
the difference between the LS and the NS estimators by using
different variance coefficients for the two estimators.

Combining (37) and (38), we obtain a finite-sample estimator
for the PE based on the residual variance, called the finite sample
criterion (FSC)

(40)

The residual covariance RES() is calculated from the estimated
parameters. This guarantees that the residual variance decreases
monotonically. For large , contributions of the order
can be neglected. Then, the tend to and FSC tends to
FPE. In finite samples, FSC is more accurate than FPE. As a
simulation example, we have used observations of a
three-dimensional (3-D) AR(3)-process. The average FPE and
FSC of 500 simulation runs are given in Fig. 2. The estimate of
the PE with FPE or FPEis too low. This explains why the order
selected with the AIC tends to be too high.

As an example of the application of FST to experimental data,
we will use eddy-covariance measurements taken at a sugar-beet
field [24]. The dynamics of water evaporation can be derived
from the cross correlation of the vertical wind speedwith the
relative air humidity . The data that have been used for esti-
mation of AR models are given in Fig. 3 ( observations
per channel). The models have been estimated from these data
with the NS and LS estimators. Also, an estimate of the PE is
obtained with the FSC as well as the FPE. The quality of the
estimators is evaluated by splitting a larger set of data into two

Fig. 2. Estimates of the PE from 100 observations of a 3-D AR(3)-process
compared to the true PE as a function of the model orderk (400 simulation
runs). The AR models have been estimated with NS. The PE is estimated with
FPE and FPE(asymptotic theory) and the FSC.

Fig. 3. Experimental eddy-covariance measurements: Simultaneous
measurements of the vertical wind velocityw and relative humidityq . The
relative humidity is the humidity divided by the air density, yielding a unitless
quantity.

Fig. 4. Estimates of the PE from the experimental eddy-covariance
measurements compared to the PE calculated from a set of 3000 new
observations. The AR models have been estimated with NS and with LS. The
PE for NS is estimated with FPE and the FSC.

segments. The first segment of 300 observations (Fig. 3) is used
to estimate the models; the second segment of 3000 observa-
tions is used to determine the quality of those models by using
them for predicting these observations. In Fig. 4, the PE is given
as a function of the model order.

As these results are based on a single set of data, obviously
they are less accurate than the simulation results which are the
average of a large number of simulation runs. Also, practical
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data will never be entirely stationary. Still, the experimental data
confirms the conclusions drawn based on the simulations. First,
the NS estimator is somewhat more accurate (lower PE) than the
LS estimator for higher order models. Second, FSC is a better
estimator for PE than FPE. The most important difference is
that FSC is minimal for the same model order ( ) as the
actual PE as calculated from the new data set. Conversely, FPE
is smallest for very large model orders ( ). Also, there is
a local minimum in FPE at order that is lower than the
local minimum at .

VII. EXTENSION TO CHANNEL PREDICTION

In channel prediction, the aim is to predict a channel of
based on previous observations of the vector. More generally,
the aim can be formulated as predicting a linear mapping

of , where the dimension of is not necessarily equal
to the dimension of . We can use the model estimated for the
entire vector and use it to predict. The major differences are
found in order selection. The optimal order for prediction of
will often be different from the optimal order for prediction of

. The finite sample estimate for the PE FSC (40) derived in the
previous section can be used without modification. Here, too,
the NS algorithm deserves a preference over the LS estimator
as it typically has a smaller ME and is guaranteed to provide a
stationary model.

One application of this algorithm is to provide a robust alterna-
tive for the LS ARX estimator for autoregressive models with an
exogeneous input (ARX models) in system identification [25]. In
this set-up, the vector consists of the input and output of a
plant; the channel to be predicted is the output[22].

VIII. C ONCLUDING REMARKS

Asymptotic theory does not provide an accurate description
for the behavior of vector AR estimators for higher model or-
ders. The lower bound for the ME provided by the Cramér–Rao
bound is very conservative. Therefore, a FST for vector time
series has been developed. With FST an order selection crite-
rion can be formulated with an optimal trade-off of underfit and
overfit. It can also be used to find the best model for channel pre-
diction. Investigation of the finite sample behavior of estimators
showed that the NS estimator is more robust and generally more
accurate than the LS estimator.

REFERENCES

[1] S. M. Kay and S. L. Marple, “Spectrum analysis—A modern perspec-
tive,” Proc. IEEE, vol. 69, pp. 1380–1419, Nov., 1981.

[2] H. Akaike and G. Kitagawa, Eds., “The practice of time series anal-
ysis,” in Statistics for Engineering and Physical Science. New York:
Springer, 1999.

[3] K. P. Burnham and D. R. Anderson,Model Selection and Infer-
ence. New York: Springer, 1998.

[4] P. M. T. Broersen, “Automatic spectral analysis with time series
models,”IEEE Trans. Instrum. Meas., vol. 51, pp. 211–216, Apr. 2002.

[5] J. Li, G. Liu, and P. Stoica, “Moving target feature extraction for air-
borne high-range resolution phased-array radar,”IEEE Trans. Signal
Processing, vol. 49, pp. 277–289, Feb. 2001.

[6] S. L. Marple,Digital Spectral Analysis With Applications. Englewood
Cliffs, NJ: Prentice-Hall Signal Processing Series, 1987.

[7] M. B. Priestley,Spectral Analysis and Time Series. London, U.K.:
Academic, 1981.

[8] C. M. Hurvich and C. L. Tsai, “A corrected Akaike information criterion
for vector autoregressive model selection,”J. Time Series Anal., vol. 14,
no. 3, pp. 271–279, 1993.

[9] T. Subba Rao,Developments in Time Series Analysis. New York:
Chapman Hall, 1993, ch. 5, pp. 50–66.

[10] H. Akaike, “A new look at statistical model identification,”IEEE Trans.
Automat. Contr., vol. AC-19, pp. 716–723, 1974.

[11] J. Castro and J. P. LeBlanc, “Model order selection for multidimensional
innovations based detection in airborne radar,” inProc. IEEE Radar
Conf., New York, 1998, pp. 141–146.

[12] S. M. Kay,Modern Spectral Estimation. Englewood Cliffs, NJ: Pren-
tice-Hall, 1988.

[13] Y. Sakamoto, M. Ishiguro, and G. Kitagawa,Akaike Information Crite-
rion Statistics. Tokyo, Japan: KTK Scientific, 1986.

[14] J. R. Roman, M. Rangaswamy, D. W. Davis, Q. Zhang, B. Himed, and J.
H. Michels, “Parametric adaptive matched filter for airborne radar appli-
cations,”IEEE Trans. Aerospace Electron. Syst., vol. 36, pp. 677–691,
Apr. 2000.

[15] P. M. T. Broersen and H. E. Wensink, “On the penalty factor for au-
toregressive order selection in finite samples,”IEEE Trans. Signal Pro-
cessing, vol. 44, pp. 748–752, Mar. 1996.

[16] K. Holden, “Vector autoregression modeling and forecasting,”J. Fore-
casting, vol. 14, no. 3, pp. 159–166, 1995.

[17] P. M. T. Broersen, “Finite sample criteria for autoregressive order se-
lection,” IEEE Trans. Signal Processing, vol. 48, pp. 3550–3558, Dec.
2000.

[18] W. Greub, “Linear algebra,” inGraduate Texts in Mathematics, 4th
ed. New York: Springer, 1981.

[19] G. H. Golub and C. F. Van Loan,Matrix Computations, 2nd
ed. Baltimore, MD: John Hopkins Univ. Press, 1989.

[20] P. J. Brockwell and R. A. Davis,Time Series: Theory and
Methods. New York: Springer-Verlag, 1990.

[21] J. Durbin, “The fitting of time series models,”Rev. Inst. Int. Stat., vol.
28, pp. 233–243, 1960.

[22] H. Akaike, “Autoregressive model fitting for control,”Ann. Inst. Stat.
Math., vol. 23, pp. 163–180, 1971.

[23] S. de Waele and P. M. T. Broersen, “Finite sample effects in multi-
channel autoregressive modeling,” inProc. IMTC Conf., Budapest, Hun-
gary, 2001, pp. 1–6.

[24] W. M. L. Meijninger, O. K. Hartogensis, W. Kohsiek, J. C. B. Hoedjes,
R. M. Zuurbier, and H. A. R. De Bruin, “Determination of area averaged
sensible heat fluxes with a large aperture scintillometer over a hetero-
geneous surface—Flevoland field experiment,”Boundary-Layer Mete-
orol., 2002, to be published.

[25] L. Ljung, System Identification-Theory for the User, second ed. Upper
Saddle River, NJ: Prentice Hall, 1999.

Stijn de Waele was born in Eindhoven, The
Netherlands, in 1973. He received the M.Sc. degree
in applied physics in 1998 from Delft University
of Technology, Delft, The Netherlands, where
he is currently pursuing the Ph.D. degree in the
Department of Applied Physics.

His research interests are the development of new
time series analysis algorithms and its application to
radar signal processing.

Piet M. T. Broersen was born in Zijdewind, The
Netherlands, in 1944. He received the M.Sc. degree
in applied physics in 1968 and the Ph.D. degree in
1976, both from the Delft University of Technology,
Delft, The Netherlands.

He is currently with the Department of Applied
Physics of the Delft University. His main research
interest is automatic identification. He found a
solution for the selection of order and type of
time series models and the application to spectral
analysis, model building, and feature extraction.

The next subject is the automatic identification of input–output relations with
statistical criteria.


