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Abstract. The article investigates the finite sample properties of estimators for
spatial autoregressive models where the disturbance terms may follow a spatial
autoregressive process. In particular we investigate the finite sample behavior of
the feasible generalized spatial two-stage least squares (FGS2SLS) estimator in-
troduced by Kelejian and Prucha (1998), the maximum likelihood (ML) estimator,
as well as that of several other estimators. We find that the FGS2SLS estimator is
virtually as efficient as the ML estimator. This is important because the ML estima-
tor is computationally burdensome, and may even be forbidding in large samples,
while the FGS2SLS estimator remains computationally feasible in large samples.
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1 Introduction1

Spatial econometric models are an important research tool in regional science,
geography, and economics. For example, in recent years these models have been
applied, among others, in studies of county police expenditures, local wages, per
capita state and local government expenditures, technology adoption, intra-metro-
politan population and employment growth, and expenditures on airports.2 By far,
the most widely used such models are variants of the one suggested in Cliff and

1 Financial support from the National Science Foundation through grant SES-0001780 is gratefully
acknowledged.

2 See, e.g., Case (1992), Kelejian and Robinson (1992), Case, Hines, and Rosen (1993), Boarnet
(1994), Bernat Jr. (1996), Bollinger and Ihlanfeldt (1997), Cohen (1998), and Buettner (1999).
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Ord (1973, 1981), which is itself a variant of that considered in Whittle (1954).3

One method of estimation of these models is maximum likelihood (ML), which is
based on the normality assumption. Unfortunately, if the model has a spatially au-
toregressive error term, the ML procedure is computationally tedious and may even
be forbidding in large samples. Denoting the sample size by n, the reason for this
is that the likelihood function contains the determinant of an n × n matrix, which
involves a parameter of the spatially autoregressive process determining the error
term. If the model also has a spatially lagged dependent variable, the computational
problems are compounded in the sense that the likelihood will contain the deter-
minants of two n × n matrices involving parameters to be estimated. Ord (1975)
suggests a computational simplification involving the calculation of the character-
istic roots of these matrices. However, results given by Kelejian and Prucha (1999)
suggest that even Ord’s procedure may encounter computational accuracy prob-
lems because the roots themselves are not easily and accurately calculated in large
samples. In some cases the computational issues associated with ML estimation
are “eased” due to certain specifications, such as symmetry and sparseness of the
matrices involved. See, for instance, Pace and Barry (1997) and Bell and Bockstael
(2000). However, in practice sparse and/or symmetric matrix specifications cannot
always be maintained and so techniques other than ML should be of interest.

Against this backdrop Kelejian and Prucha (1999) suggest a generalized mo-
ments (GM) estimator of the autoregressive parameter in a spatially autoregressive
disturbance process.4 This GM estimator remains computationally feasible in large
samples regardless of whether or not the weights matrix is sparse or symmetric.5

They then apply their general results to obtain a feasible, and again a computation-
ally manageable, generalized least squares estimator of the regression parameters
in a spatial model containing only exogenous variables. In a later study Kelejian
and Prucha (1998) generalize their results to linear spatial models which contain
both a spatially autoregressive disturbance term and a spatially lagged dependent
variable.6 The estimator suggested in that study is an instrumental variable estima-
tor which accounts for spatial correlation and so was termed a feasible generalized
spatial two-stage least squares (FGS2SLS) estimator. In both studies formal large
sample results are given that relate to the consistency of the GM estimator as well as
the consistency and asymptotic distribution of the corresponding regression param-
eter estimators. The established asymptotic distribution can be used to approximate
the small sample distribution and to test hypotheses relating to the regression pa-
rameters. Kelejian and Prucha (1998) further demonstrate that the autoregressive

3 Recent theoretical contributions concerning extensions and issues of inference from this class of
models include Anselin and Florax (1995), Florax and Rey (1995), Anselin et al. (1996), Pace and Barry
(1997), Rey and Boarnet (1998), Driscoll and Kraay (1998), Kelejian and Prucha (1998, 1999, 2000,
2001), Lee (1999a,b, 2002), Das (2000), Baltagi, Song and Koh (2000). Classic references are Anselin
(1988) and Cressie (1993).

4 To the best of our knowledge, the only other alternative to ML would be based on a procedure
suggested by Ord (1975). However, this procedure is not seriously considered because of its inefficiency.
See, e.g., Ord (1975, p. 122)

5 For example, we implemented the procedure with a sample of size 100,000.
6 Due to publication lags, Kelejian and Prucha (1998) was published before Kelejian and Prucha

(1999), even though it was written at a later point in time.
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disturbance parameter is a “nuisance” parameter in the sense that their FGS2SLS
estimator has the same asymptotic distribution whether it is based on the true value
of the autoregressive disturbance parameter or on a consistent estimator of it. Since
the asymptotic distribution of the GM estimator was not determined, tests for spa-
tial correlation must be based on other statistics, one of which is Moran’s I test
statistic. See, for instance, Kelejian and Prucha (2001) for general results relating
to Moran’s I test statistic.

As far as we know, finite sample results relating to the FGS2SLS estimator are
not available, and so the purpose of this article is to give such results via Monte
Carlo methods. The results we provide relate to linear spatial models containing
a spatially lagged dependent variable, as well as a spatially correlated disturbance
term. Among others, we consider the ML estimator, the FGS2SLS estimator and
certain variations of the FGS2SLS estimator which are based on iterations.7

Our results are very encouraging. For instance, for all cases considered, the
FGS2SLS estimator is virtually as efficient as the maximum likelihood estimator.
We also note that iterations based on the FGS2SLS estimator yield only marginal
improvements (in certain cases). The virtual equivalence between the ML and
FGS2SLS estimator suggests that there is little “cost” in using the computationally
simpler FGS2SLS rather than the more burdensome ML approach. On a somewhat
more theoretical plane, in Kelejian and Prucha (1998) there is a reasonably general
catalogue of assumptions under which the FGS2SLS estimator was shown to be
consistent and asymptotically normal. Therefore, in practice researchers can deter-
mine whether or not their specific modelling assumptions are such that “proper”
inference can be based on established results relating to FGS2SLS estimation. A
corresponding scenario is not available for ML estimation, even if the model dis-
turbances are normally distributed.

Another noteworthy result relates to a comparison of the ML estimator, which
accounts for spatial correlation, and the two-stage least squares estimator, which
does not account for spatial correlation. Specifically, our results suggest that in
small-to-moderately large (49-400) samples, the ML estimator of a model parameter
may actually be inefficient relative to the corresponding two-stage least squares
(2SLS) estimator under certain conditions. This result may seem to be at odds with
commonly accepted notions concerning the efficiency of ML estimation, but it is
not! The reason for this is that the ML approach involves the estimation of more
parameters than does the 2SLS estimator (e.g., the autoregressive parameter) and
so standard arguments concerning relative efficiency do not apply.

The Monte Carlo model is specified in Sect. 2, and the particular estimators
considered are described in Sect. 3. The results are discussed in Sect. 4. A sum-
mary and certain conclusions are given in Sect. 5. Technical details are relegated to
appendices.

7 Rey and Boarnet (1998) consider, via Monte Carlo methods, the small sample efficiency of esti-
mators relating to a two equation linear spatial model containing spatially lagged dependent variables
as well as systems endogenous variables. In their study they also consider efficiency issues relating to
the number of instruments. However, they did not consider spatially correlated disturbance terms, nor
FGS2SLS estimation.
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2 The model

In our Monte Carlo study we investigate the finite sample properties of estimators
of the following important spatial model:

yn = λWnyn + Xnβ + un, |λ| < 1, (1)

un = ρWnun + εn, |ρ| < 1, (2)

where yn is the n × 1 vector of observations on the dependent variable of n spatial
units, Wn is an n × n spatial weights matrix of known constants, Xn denotes the
n × k matrix of non-stochastic exogenous explanatory variables, un is the n × 1
disturbance vector, εn is the n × 1 stochastic innovation vector, and λ and ρ are
scalar parameters – typically referred to as spatial autoregressive parameters – and
β is a k × 1 vector of regression parameters.

This model is a generalization of the model introduced by Cliff and Ord (1973,
1981). Consistent with the terminology described in Anselin and Florax (1995,
pp. 22–24) we refer to this model as a spatial autoregressive model with autoregres-
sive disturbances of order (1,1), for short SARAR(1,1). For this model Kelejian and
Prucha (1998) introduced a feasible generalized spatial 2SLS estimator, for short
FGS2SLS estimator, and derived its asymptotic distribution under a set of low level
regularity conditions.

The FGS2SLS estimator is an instrumental variable estimator based on an ap-
proximation of the ideal instrumentE(Wnyn) forWnyn, which makes the estimator
relatively simple to compute. Lee (1999a) proposed a modification of this estima-
tor which employs an estimate of the ideal instrument and derived the asymptotic
distribution of this estimator. He showed that his estimator is an asymptotically
optimal instrumental variable estimator and provided an algorithm to facilitate the
computation of the estimator even in large samples. We note that the FGS2SLS
estimator nevertheless seems simpler to compute.

In all the Monte Carlo experiments, which are each based on 5000 repetitions,
we took εn ∼ N(0, σ2In). Also all the specifications of the weights matrix consid-
ered, which are described below, are such that (I − aWn)−1 exists for all |a| < 1.
Therefore, via (1) and (2) it follows that:

yn = (I − λWn)−1Xnβ + (I − λWn)−1(I − ρWn)−1εn. (3)

For future reference, we note that the log likelihood function corresponding to
(3) is:

ln(L) = −n

2
ln(2π) − 1

2
ln |Ωn| (4)

−1
2
[yn − (I − λWn)−1Xnβ]′Ω−1

n [yn − (I − λWn)−1Xnβ]

where Ωn = σ2(I − λWn)−1(I − ρWn)−1(I − ρW ′
n)−1(I − λW ′

n)−1 denotes
the variance covariance matrix of yn. We also note for future reference that, given
(3) and un = (I − ρWn)−1εn,

E[(Wnyn)u′
n] = σ2Wn(I − λWn)−1(I − ρWn)−1(I − ρW ′

n)−1 �= 0. (5)
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In light of (5) it is not difficult to show that the least squares estimator of the
parameters in (1) is inconsistent for the spatial weights matrices considered in our
Monte Carlo study, assuming that regularity conditions such as those in Kelejian
and Prucha (1998) hold.8

We now describe the experiments in more detail. We consider three values of
the sample size n, namely 49, 100, and 400. For each value of the sample size we
consider three specifications of the weights matrix which essentially differ in their
degree of sparseness. The first is a matrix which relates each element of yn and un,
see (1) and (2), to the one immediately before it and to the one immediately after
it. Specifically, in this matrix the i-th row has non-zero elements only in positions
i − 1 and i + 1, for i = 2, . . . , n − 1. We consider a circular world and so the
non-zero elements in the first row are in positions 2 and n, and those in the last
row are in positions 1 and n − 1. Furthermore, the matrix is specified such that
all non-zero elements are equal and the respective rows sum to unity. Thus, for
this matrix all non-zero elements are equal to 1/2. For future reference, we will
henceforth refer to this matrix as “one ahead and one behind”. The second and third
matrices are defined in an analogous manner as “three ahead and three behind” and
“five ahead and five behind,” again in a circular world. The non-zero elements in
these matrices are, respectively, 1/6 and 1/10. The average number of neighbors
per unit, henceforth J , associated with these three matrices are, obviously, J = 2,
6, and 10. These matrices should be able to provide guidance for many applied
situations.9

We consider nine values for λ and nine values for ρ, namely −0.8, −0.6, −0.4,
−0.2, 0.0, 0.2, 0.4, 0.6, and 0.8. Three values are considered for σ2, which are
0.25, 0.50, and 1.0. These values of σ2 correspond to average R2 values over the
experiments considered of, roughly, 0.7, 0.8, and 0.9, where these R2 values relate
to the squared correlation coefficient between yn and the model explained mean
vector, namely E(yn) = (I − λWn)−1Xnβ.

Finally, our Monte Carlo model is specified in terms of two regressors, i.e., Xn

= (x1n, x2n). Values for the n × 1 regression vectors x1n and x2n are based on
data given in Kelejian and Robinson (1992) on income per capita in 1982 and on
the percent of rental housing in 1980 in 760 counties in the U.S. mid-western states.
Specifically, the 760 observations on the income and rental variables are normalized
so that their sample means and sample variances are, respectively, zero and one.
The values of x1n and x2n are then taken as the first n values of, respectively, the
normalized income and rental variables for the considered sample sizes of n = 49,
100, and 400. The same vectors x1n and x2n are used in all experiments in which the

8 Note that in general (5) holds even if the disturbance process is i.i.d., i.e., ρ = 0. In an interesting
paper, Lee (2002) considers a spatial autoregressive model of the form (1), but where the disturbance
process is assumed to be i.i.d. He shows that for a certain class of weights matrices the least squares
estimator of its parameters is consistent. One important characteristic of this class of weights matrices
is that all non-zero weights tend to zero as the sample size tends to infinity. A further analysis of some
of the issues considered in Lee (2002) is given in Kelejian and Prucha (2000).

9 These matrices were also considered in Kelejian and Prucha (1999) together with several “real
world” matrices. It is important to note that the results obtained in that study from the stylized matrices
and from the “real world” matrices were very similar.
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Table 1. Design values of σ2 in the 729 experiments

n = 49 n = 100 n = 400

λ σ2 λ σ2 λ σ2

−0.8 1.0 −0.8 0.25 −0.8 0.5
−0.6 0.5 −0.6 0.5 −0.6 0.25
−0.4 0.25 −0.4 1.0 −0.4 1.0
−0.2 1.0 −0.2 0.25 −0.2 0.5

0.0 0.5 0.0 0.5 0.0 0.25
0.2 0.25 0.2 1.0 0.2 1.0
0.4 1.0 0.4 0.25 0.4 0.5
0.6 0.5 0.6 0.5 0.6 0.25
0.8 0.25 0.8 1.0 0.8 1.0

Table 2. Experiments in which either λ or ρ equal 0.9 in absolute value

J = 2 J = 6 J = 10
λ ρ n σ2 n σ2 n σ2

−0.9 0.0 49 0.5 400 1.0 49 1.0
0.0 −0.9 400 0.5 49 1.0 196 1.0
0.0 0.9 400 0.5 49 1.0 196 1.0
0.9 0.0 49 0.5 400 1.0 49 1.0

−0.9 −0.7 49 0.25 400 0.5 49 0.25
0.9 0.7 49 0.25 400 0.5 100 0.25

−0.7 0.9 100 0.5 196 1.0 100 0.5
0.7 −0.9 100 0.5 196 1.0 49 0.5

sample size is n. The elements of the parameter vector β = (β1, β2) are specified
as β1 = β2 = 1.

As a review we consider nine values of λ, nine values of ρ, three values of n,
three values of σ2, and three values of J . Instead of considering all combinations
of λ, ρ, n, σ2 and J , which would have led to 2187 experiments, we only consider
all combinations of λ, ρ, n, and J , which result in 729 experiments. The three
values of σ2 are related to the values of λ and n, and hence are woven into the 729
experiments. These values of σ2 are described in Table 1.

In addition to the experiments described above we also performed 24 experi-
ments in which either λ or ρ is 0.9 in absolute value. These additional experiments
were considered because preliminary results suggest a certain sensitivity of the root
mean squared errors of the considered estimators to the more extreme values of ρ
and λ. These 24 experiments are described in Table 2.

Note from Table 2 that the 24 experimental values of λ and ρ are orthogonal to
each other, as well as to those of n, J , and σ2. Since the values of n, J , and σ2 are
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positive they, of course, are not orthogonal. However, the R2 statistics relating the
24 experimental values of n to those of J , of n to those of σ2, and of J to those
of σ2, are, respectively, 0.021, 0.026, and 0.12. The experimental values of these
parameters are therefore virtually uncorrelated. As described below, we present our
results in terms of tables as well as response functions relating a measure of the
root mean squared error of a considered estimator to the parameters of the Monte
Carlo model. Our design of the experiments should facilitate the estimation of these
response functions.

3 The estimators considered

Denote the regressor matrix in (1) as Zn = (Wnyn, Xn), and the corresponding
parameter vector as δ = (λ, β′)′ so that (1) and (2) can be written as:

yn = Znδ + un, un = ρWnun + εn. (6)

Let:
yn(a) = yn − aWnyn, Zn(a) = Zn − aWnZn,

where a is any finite scalar. Applying a Cochrane-Orcutt type transformation to (6)
then yields:

yn(ρ) = Zn(ρ)δ + εn.

Consistent with suggestions in Kelejian and Prucha (1998), let the independent
columns of Hn = (Xn, WnXn, W 2

nXn) be the set of instruments used in con-
junction with their FGS2SLS procedure. Note that our model does not contain an
intercept term and so the six columns of Hn are linearly independent. Also note
that if W 2

nXn is computed recursively as Wn(WnXn), its computational count is
O(n2); on the other hand, if W 2

n is first computed and then postmultiplied by Xn,
the computational count would be O(n3). We therefore recommend the former cal-
culation procedure. As a point of comparison we also indicate that the computation
of the eigenvalues of Wn involved in the computation of the ML estimator has an
operational count of O(n3).

The ideal instruments are given by EZn(ρ) = (WnEyn − ρW 2
nEyn, Xn −

ρWnXn) and so are determined by E(yn) and Xn, given the autoregressive pa-
rameter ρ and the weights matrix Wn. Observe that for the model at hand:

Eyn = (I − λWn)−1Xnβ =
∞∑

i=0

λiW i
nXnβ,

and hence, these ideal instruments are linear combinations of the matrices Xn,
WnXn, . . . . Our choice of Hn is motivated by this observation, i.e., Hn contains
the first three matrices in this sequence.10

10 In a related study which involved the estimation of a regression model containing a spatially lagged
dependent variable as well as a systems endogenous variable, but a non-spatially correlated error term,
Rey and Boarnet (1998) also considered the instrument matrix Hn. We note that the discussion above,
as well as that in Kelejian and Prucha (1998), suggests that it may be reasonable to include the product
of higher powers of the spatial weights matrix and Xn in Hn.
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Based on Hn, the instrument matrices used in the first and third steps of the
FGS2SLS procedure are:

Ẑn = PHnZn, Ẑn(ρ̂) = PHnZn(ρ̂),

where PHn
= Hn(H ′

nHn)−1H ′
n and ρ̂ is an estimator for ρ. Let ρ̂GM and ρ̂

(i)
GM

be, respectively, the nonlinear generalized moments (GM) estimator of ρ suggested
in Kelejian and Prucha (1998, 1999), and the nonlinear GM estimator of ρ based
upon the ith iteration of the FGS2SLS procedure.11 Let ρ̂ML be the ML estimator
of ρ.

Then in this study the considered estimators of δ in (6) are:

• Maximum Likelihood based on (4): δ̂ML

• Least squares:
δ̂OLS = (Z ′

nZn)−1Z ′
nyn.

• Two-stage least squares:

δ̂2SLS = (Ẑ ′
nẐn)−1Ẑ ′

nyn.

• GS2SLS based on the true value of ρ :

δ̂GS2SLS = (Ẑn(ρ)′Ẑn(ρ))−1Ẑ ′
n(ρ)yn(ρ).

• FGS2SLS based on ρ̂GM :

δ̂FGS2SLS = (Ẑn(ρ̂GM )′Ẑn(ρ̂GM ))−1Ẑ ′
n(ρ̂GM )yn(ρ̂GM ).

• Iterated FGS2SLS based on ρ̂
(i)
GM , i = 1, ..., 5 :

δ̂IF i = (Ẑn(ρ̂(i)
GM )′Ẑn(ρ̂(i)

GM ))−1Ẑ ′
n(ρ̂(i)

GM )yn(ρ̂(i)
GM ).

In passing we note that the FGS2SLS estimator of δ′ = (λ, β′) described above
does not impose the restriction |λ| < 1. A nonlinear variant of this estimator which
does impose this restriction is discussed in the Appendix B.

4 Monte Carlo results

Due to space limitations, we present our results in two ways. We first give tables
of the root mean squared errors (RMSEs) of all respective estimators considered
for a subset of our experimental parameter values. Afterwards, we give response
functions for the RMSEs of the ML and FGS2SLS estimators, which are estimated
in terms of the entire set of (729+24 = 753) Monte Carlo experiments, and present
graphs of those response functions.

11 These estimators are outlined in Appendix A.
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4.1 Root mean squared errors in tabular form

To conserve space we characterize the bias and spread of the finite sample distri-
bution of the respective estimators in terms of a single measure. This measure is
closely related to the standard RMSE, but unlike that standard measure the com-
ponents of our measure relating to the bias and spread of our considered estimators
are assured to exist. Details about this are described in Appendix C.

Our measure is defined as [bias2 +(IQ/1.35)2]1/2 where bias is the difference
between the median, or 0.5 quantile, and the true parameter value, and IQ is the
inter-quantile range. That is, IQ = c1 − c2 where c1 is the 0.75 quantile and
c2 is the 0.25 quantile. If the distribution is normal, the median is equal to the
mean and IQ/1.35, except for a rounding error, is equal to the standard deviation;
thus our measure coincides with the standard RMSE measure in this case. In
discussing the tables we refer to our measure simply as the RMSE. The results in
the tables are Monte Carlo estimates of [bias2+(IQ/1.35)2]1/2 based on quantiles
computed from the empirical distributions corresponding to the 5000 Monte Carlo
replications.

In total we performed 753 Monte Carlo experiments. To conserve space we
only report RMSEs for a subset of those experiments here. As a point of interest
the biases of all our considered estimators, with the exception of OLS, which is
inconsistent, were “quite small”, typically less than 0.01 in absolute value. As a
point of comparison, we also calculated the RMSEs in the standard way and found
the results to be quite similar.

In Tables 3–10 we give results on the RMSE of the considered estimators of
the parameters λ, β1, β2, and ρ corresponding to 50 experimental parameter values.
The set of 50 is based on all combinations of five values of λ, five values of ρ and
two values of n. The values of σ2 are woven into the 25 combinations of λ and ρ.
In all tables the value of J = 6. The first table corresponding to each parameter
contains Monte Carlo estimates of the RMSEs when n = 100; the second table
relates to cases in which n = 400.

First note from the tables that results corresponding to iterations on the
FGS2SLS estimators for λ, β1, and β2 and for the GM estimator for ρ beyond
the first iteration are not reported. The reason is that these estimators do not have
consistently lower RMSEs than the estimators which only involve one, or no
iterations. As seen from the tables, even the first iteration itself often does not lead
to lower RMSEs.

Focusing first on the regression coefficients λ, β1, and β2 we see from the tables
that the RMSEs of the OLS estimators are typically largest, while those of the
ML estimators are typically the lowest. This is consistent with theoretical notions
since the OLS estimator is not consistent, while the ML estimator is consistent
and efficient (assuming standard maximum likelihood theory applies for the model
under investigation). Note also that the RMSEs of the 2SLS estimators, while
typically lower than those of OLS estimators, are typically larger than those of
FGS2SLS estimators. Again, this accords with the theoretical notions that, although
both are consistent, the 2SLS estimators do not account for the spatial correlation,
while the FGS2SLS estimators do. In comparing the ML and FGS2SLS estimators
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Table 3. Root mean square errors of the estimators of λ, N = 100, J = 6

λ ρ σ2 OLS ML 2SLS GS2SLS FGS2SLS IF1

−0.8
−0.8
−0.8
−0.8
−0.8
−0.4
−0.4
−0.4
−0.4
−0.4

0
0
0
0
0

0.4
0.4
0.4
0.4
0.4
0.8
0.8
0.8
0.8
0.8

−0.8
−0.4

0
0.4
0.8

−0.8
−0.4

0
0.4
0.8

−0.8
−0.4

0
0.4
0.8

−0.8
−0.4

0
0.4
0.8

−0.8
−0.4

0
0.4
0.8

0.25
0.25
0.25
0.25
0.25
0.50
0.50
0.50
0.50
0.50
1.00
1.00
1.00
1.00
1.00
0.25
0.25
0.25
0.25
0.25
0.50
0.50
0.50
0.50
0.50

0.181
0.127
0.095
0.100
0.394
0.242
0.162
0.113
0.152
0.610
0.258
0.161
0.115
0.222
0.684
0.040
0.034
0.040
0.070
0.248
0.016
0.017
0.023
0.043
0.133

0.066
0.068
0.075
0.091
0.110
0.082
0.086
0.097
0.127
0.168
0.091
0.096
0.113
0.153
0.224
0.030
0.032
0.038
0.056
0.113
0.015
0.017
0.021
0.032
0.079

0.076
0.070
0.075
0.101
0.238
0.091
0.089
0.098
0.135
0.315
0.098
0.097
0.113
0.160
0.346
0.031
0.033
0.038
0.057
0.145
0.016
0.017
0.021
0.031
0.075

0.065
0.067
0.075
0.091
0.115
0.081
0.085
0.098
0.128
0.185
0.091
0.097
0.113
0.153
0.264
0.030
0.032
0.038
0.055
0.112
0.015
0.017
0.021
0.031
0.071

0.066
0.068
0.076
0.093
0.126
0.083
0.086
0.099
0.129
0.210
0.092
0.097
0.114
0.155
0.298
0.030
0.032
0.039
0.056
0.116
0.015
0.017
0.021
0.032
0.070

0.067
0.068
0.076
0.093
0.121
0.083
0.086
0.100
0.130
0.197
0.091
0.097
0.115
0.156
0.284
0.030
0.033
0.039
0.056
0.113
0.015
0.017
0.021
0.032
0.072

Column average 0.171 0.083 0.103 0.085 0.089 0.088

we note that the ML estimator for λ, is on average, roughly seven percent more
efficient that the FGS2SLS estimator. The RMSEs of the ML and FGS2SLS
estimators of β1 and β2, conversely, are on average roughly the same. As a general
observation it seems that for the regression coefficients the loss of efficiency of the
FGS2SLS estimator relative to the ML estimator is fairly small. This is important
because of the computational advantages of the FGS2SLS estimator, especially in
large samples. A related observation is that the instrument matrix Hn seems to yield
a reasonable “approximation” to the set of optimal instruments, so any efficiency
gain based on use of those optimal instruments should be limited.

The results in the tables also indicate that the relative size of the RMSEs of the
ML and FGS2SLS estimators depends on the true values of ρ and λ. In particular,
in the tables corresponding to λ, this difference is largest when λ is negative and
large in absolute value, and ρ is large and positive. When λ and ρ are positive and
large the difference is actually negative in that the FGS2SLS estimator has the lower
RMSEs. Interestingly, in this case the RMSEs of the 2SLS estimator are also
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Table 4. Root mean square errors of the estimators of λ, N = 400, J = 6

λ ρ σ2 OLS ML 2SLS GS2SLS FGS2SLS IF1

−0.8
−0.8
−0.8
−0.8
−0.8
−0.4
−0.4
−0.4
−0.4
−0.4

0
0
0
0
0

0.4
0.4
0.4
0.4
0.4
0.8
0.8
0.8
0.8
0.8

−0.8
−0.4

0
0.4
0.8

−0.8
−0.4

0
0.4
0.8

−0.8
−0.4

0
0.4
0.8

−0.8
−0.4

0
0.4
0.8

−0.8
−0.4

0
0.4
0.8

0.50
0.50
0.50
0.50
0.50
1.00
1.00
1.00
1.00
1.00
0.25
0.25
0.25
0.25
0.25
0.50
0.50
0.50
0.50
0.50
1.00
1.00
1.00
1.00
1.00

0.398
0.266
0.150
0.090
0.711
0.511
0.318
0.140
0.207
0.918
0.093
0.054
0.033
0.089
0.419
0.064
0.032
0.041
0.123
0.401
0.014
0.016
0.035
0.079
0.184

0.055
0.057
0.062
0.072
0.081
0.067
0.072
0.080
0.099
0.116
0.026
0.028
0.033
0.044
0.073
0.023
0.026
0.031
0.044
0.085
0.011
0.013
0.016
0.024
0.063

0.064
0.059
0.062
0.080
0.196
0.078
0.074
0.080
0.109
0.266
0.030
0.029
0.033
0.047
0.120
0.026
0.027
0.031
0.045
0.116
0.013
0.014
0.016
0.024
0.060

0.055
0.057
0.062
0.074
0.098
0.068
0.071
0.080
0.103
0.154
0.026
0.028
0.033
0.044
0.077
0.024
0.026
0.031
0.044
0.091
0.012
0.013
0.016
0.024
0.058

0.056
0.057
0.062
0.075
0.104
0.068
0.071
0.080
0.102
0.171
0.026
0.028
0.033
0.045
0.081
0.024
0.026
0.031
0.044
0.094
0.012
0.013
0.016
0.024
0.056

0.056
0.057
0.062
0.075
0.100
0.068
0.072
0.080
0.103
0.163
0.026
0.028
0.033
0.045
0.079
0.024
0.026
0.031
0.044
0.092
0.012
0.013
0.016
0.024
0.059

Column average 0.215 0.052 0.068 0.055 0.056 0.056

lower than those of the ML estimator.12 Perhaps the reason for this is that the ML
estimator of λ requires the estimation of ρ, whereas the 2SLS estimator does not.
That is, the ML procedure estimates more parameters than the 2SLS procedure so
the standard results on relative ML efficiency do not apply here.

RMSE differences between FGS2SLS and GS2SLS (based on the true value
of ρ) are quite small. For example, these differences averaged over all six tables
corresponding to λ, β1, and β2 are only 1.6%. If Table 3 is excluded, these differ-
ences average to only 0.7 percent. These results suggest that if the sample is at least
moderately sized, the loss in finite sample efficiency, as measured by RMSE, due
to use of the GM estimator of ρ as compared to the true value of ρ in the Kelejian
and Prucha (1998) instrumental variable procedure, is “slight”.

Tables 9 and 10 relate to the estimators of ρ. The RMSEs of the ML estimators
are generally somewhat lower than those of the GM estimators. The difference
between the RMSEs of the ML and GM estimators of ρ is, averaged over Tables

12 For further results along these lines when ρ = λ = 0.9 (See Das 2000).
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Table 5. Root mean square errors of the estimators of β1, N = 100, J = 6

λ ρ σ2 OLS ML 2SLS GS2SLS FGS2SLS IF1

−0.8
−0.8
−0.8
−0.8
−0.8
−0.4
−0.4
−0.4
−0.4
−0.4

0
0
0
0
0

0.4
0.4
0.4
0.4
0.4
0.8
0.8
0.8
0.8
0.8

−0.8
−0.4

0
0.4
0.8

−0.8
−0.4

0
0.4
0.8

−0.8
−0.4

0
0.4
0.8

−0.8
−0.4

0
0.4
0.8

−0.8
−0.4

0
0.4
0.8

0.25
0.25
0.25
0.25
0.25
0.50
0.50
0.50
0.50
0.50
1.00
1.00
1.00
1.00
1.00
0.25
0.25
0.25
0.25
0.25
0.50
0.50
0.50
0.50
0.50

0.044
0.042
0.042
0.045
0.066
0.065
0.061
0.060
0.063
0.090
0.100
0.090
0.086
0.093
0.139
0.051
0.046
0.044
0.047
0.092
0.072
0.065
0.064
0.071
0.142

0.043
0.043
0.043
0.044
0.048
0.063
0.062
0.060
0.061
0.066
0.090
0.089
0.086
0.085
0.088
0.045
0.045
0.044
0.042
0.043
0.064
0.064
0.063
0.060
0.059

0.047
0.043
0.043
0.045
0.074
0.068
0.062
0.060
0.062
0.093
0.099
0.090
0.085
0.088
0.120
0.051
0.046
0.043
0.044
0.056
0.072
0.065
0.062
0.063
0.081

0.042
0.042
0.043
0.044
0.049
0.062
0.061
0.060
0.061
0.067
0.089
0.088
0.085
0.085
0.091
0.045
0.045
0.043
0.042
0.043
0.063
0.064
0.062
0.060
0.058

0.043
0.043
0.043
0.044
0.050
0.063
0.061
0.060
0.061
0.069
0.091
0.089
0.086
0.086
0.091
0.046
0.045
0.044
0.042
0.043
0.064
0.064
0.064
0.061
0.059

0.043
0.043
0.043
0.044
0.049
0.063
0.061
0.060
0.061
0.068
0.091
0.090
0.087
0.085
0.091
0.046
0.045
0.044
0.042
0.044
0.065
0.064
0.064
0.061
0.059

Column average 0.071 0.060 0.066 0.060 0.060 0.061

9 and 10, roughly 7%. Returns to iteration on the GM estimator seem marginal.
Finally, consistent with prior notions, the RMSEs in all the tables corresponding
to λ, β1, β2 and ρ generally decrease as the sample size increases.

4.2 Root mean squared error response functions

The relationship between the RMSEs of the considered estimators and the model
parameters cannot easily be determined from Tables 3–10, so we now describe those
results in terms of response functions. To conserve space we only consider the ML
estimators and the FGS2SLS estimators of λ, β1, and β2 and the ML estimator
and the GM estimator of ρ. In doing so we consider separate functions for each
estimator of each parameter; in total this leads to eight response functions.

Let λi, β1i, β2i, ρi, Ji, and σ2
i be the values, respectively, of λ, β1, β2, ρ, J ,

and σ2 in the i-th experiment, i = 1, . . . , 753. Let ni be the corresponding value
of the sample size. Given this notation, the eight response functions we consider
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Table 6. Root mean square errors of the estimators of β1, N = 400, J = 6

λ ρ σ2 OLS ML 2SLS GS2SLS FGS2SLS IF1

−0.8
−0.8
−0.8
−0.8
−0.8
−0.4
−0.4
−0.4
−0.4
−0.4

0
0
0
0
0

0.4
0.4
0.4
0.4
0.4
0.8
0.8
0.8
0.8
0.8

−0.8
−0.4

0
0.4
0.8

−0.8
−0.4

0
0.4
0.8

−0.8
−0.4

0
0.4
0.8

−0.8
−0.4

0
0.4
0.8

−0.8
−0.4

0
0.4
0.8

0.50
0.50
0.50
0.50
0.50
1.00
1.00
1.00
1.00
1.00
0.25
0.25
0.25
0.25
0.25
0.50
0.50
0.50
0.50
0.50
1.00
1.00
1.00
1.00
1.00

0.045
0.040
0.038
0.043
0.081
0.090
0.068
0.055
0.065
0.151
0.037
0.030
0.027
0.036
0.115
0.052
0.041
0.042
0.071
0.198
0.063
0.061
0.074
0.128
0.274

0.036
0.036
0.037
0.040
0.043
0.052
0.053
0.053
0.056
0.059
0.027
0.027
0.027
0.028
0.030
0.038
0.039
0.039
0.039
0.040
0.053
0.056
0.057
0.056
0.054

0.040
0.037
0.037
0.042
0.083
0.058
0.055
0.053
0.059
0.106
0.030
0.028
0.027
0.029
0.050
0.044
0.041
0.039
0.042
0.066
0.064
0.059
0.057
0.059
0.092

0.036
0.035
0.037
0.040
0.045
0.052
0.053
0.053
0.055
0.063
0.027
0.027
0.027
0.028
0.030
0.039
0.039
0.039
0.039
0.040
0.054
0.056
0.057
0.056
0.055

0.036
0.036
0.037
0.040
0.047
0.052
0.053
0.053
0.055
0.064
0.027
0.027
0.027
0.028
0.030
0.038
0.039
0.039
0.039
0.040
0.055
0.056
0.057
0.056
0.055

0.036
0.036
0.037
0.040
0.046
0.052
0.053
0.053
0.056
0.064
0.027
0.027
0.027
0.028
0.030
0.039
0.039
0.039
0.039
0.040
0.055
0.056
0.057
0.056
0.054

Column average 0.077 0.043 0.052 0.043 0.043 0.043

all have the form:

RMSEi =
σdi

i√
ni

exp(a1 + a2(1/Ji) + a3(ρi/Ji) + a4(λi/Ji) (7)

+a5ρi + a6ρ
2
i + a7λi + a8λ

2
i + a9(λiρi)

+a10(Ji/ni) + a11(Ji/ni)2 + a12(1/ni) + a13σ
2
i ),

i = 1, ..., 753,

where RMSEi is the RMSE of an estimator of a given parameter in the i-th
experiment, di = 1 if RMSEi relates to an estimator of λ, β1, or β2 and di =
0 otherwise (when RMSEi relates to ρ), and where the parameters a1, ..., a13
are different for each estimator of each parameter. For each case considered, the
parameters of (7) are estimated by least squares after taking logs with ln(n1/2

i

RMSEi/ σdi
i ) as the dependent variable.
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Table 7. Root mean square errors of the estimators of β2, N = 100, J = 6

λ ρ σ2 OLS ML 2SLS GS2SLS FGS2SLS IF1

−0.8
−0.8
−0.8
−0.8
−0.8
−0.4
−0.4
−0.4
−0.4
−0.4

0
0
0
0
0

0.4
0.4
0.4
0.4
0.4
0.8
0.8
0.8
0.8
0.8

−0.8
−0.4

0
0.4
0.8

−0.8
−0.4

0
0.4
0.8

−0.8
−0.4

0
0.4
0.8

−0.8
−0.4

0
0.4
0.8

−0.8
−0.4

0
0.4
0.8

0.25
0.25
0.25
0.25
0.25
0.50
0.50
0.50
0.50
0.50
1.00
1.00
1.00
1.00
1.00
0.25
0.25
0.25
0.25
0.25
0.50
0.50
0.50
0.50
0.50

0.058
0.053
0.053
0.058
0.087
0.081
0.076
0.074
0.080
0.097
0.121
0.111
0.107
0.110
0.124
0.065
0.058
0.054
0.056
0.091
0.092
0.083
0.079
0.084
0.150

0.055
0.054
0.053
0.053
0.057
0.079
0.077
0.075
0.074
0.079
0.114
0.111
0.108
0.104
0.107
0.058
0.057
0.054
0.051
0.052
0.083
0.081
0.078
0.073
0.070

0.060
0.054
0.053
0.058
0.102
0.087
0.077
0.075
0.080
0.126
0.126
0.112
0.107
0.110
0.152
0.065
0.058
0.054
0.054
0.074
0.093
0.083
0.078
0.077
0.102

0.055
0.054
0.053
0.054
0.057
0.080
0.077
0.075
0.073
0.081
0.114
0.111
0.107
0.101
0.110
0.058
0.057
0.054
0.051
0.051
0.084
0.081
0.078
0.073
0.070

0.055
0.054
0.054
0.053
0.059
0.080
0.078
0.075
0.074
0.083
0.114
0.112
0.108
0.104
0.110
0.059
0.057
0.055
0.051
0.051
0.084
0.081
0.079
0.074
0.070

0.055
0.054
0.054
0.053
0.058
0.080
0.078
0.075
0.074
0.082
0.115
0.112
0.108
0.103
0.111
0.059
0.057
0.055
0.051
0.052
0.084
0.081
0.079
0.074
0.070

Column average 0.084 0.074 0.087 0.074 0.075 0.075

A few points concerning (7) should be noted. First, the asymptotic variance
covariance matrix of the estimators of λ, β1, and β2 being considered is proportional
to σ2/n. Corresponding asymptotic standard deviations are therefore proportional
to σ/n1/2. The response functions for the RMSEs of λ, β1, and β2 in (7) reflect
this proportionality. As suggested by (7), we do not expect13 the variance of the
two considered estimators of ρ to be directly proportional to σ2. One reason for
this is that ρ only appears in (2) and σ is just a scale factor in (2). Because of this
we have specified the response functions for the RMSEs for the estimators for
ρ only as proportional to n−1/2. Nevertheless, we allow for some possible forms
of dependence on σ of the RMSEs of the estimators of ρ by including σ in the
exponent in (7).

13 Recall that Kelejian and Prucha (1999) demonstrated the consistency of the GM estimator of ρ.
The large sample distribution of that estimator was not determined.
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Table 8. Root mean square errors of the estimators of β2, N = 400, J = 6

λ ρ σ2 OLS ML 2SLS GS2SLS FGS2SLS IF1

−0.8
−0.8
−0.8
−0.8
−0.8
−0.4
−0.4
−0.4
−0.4
−0.4

0
0
0
0
0

0.4
0.4
0.4
0.4
0.4
0.8
0.8
0.8
0.8
0.8

−0.8
−0.4

0
0.4
0.8

−0.8
−0.4

0
0.4
0.8

−0.8
−0.4

0
0.4
0.8

−0.8
−0.4

0
0.4
0.8

−0.8
−0.4

0
0.4
0.8

0.50
0.50
0.50
0.50
0.50
1.00
1.00
1.00
1.00
1.00
0.25
0.25
0.25
0.25
0.25
0.50
0.50
0.50
0.50
0.50
1.00
1.00
1.00
1.00
1.00

0.049
0.043
0.041
0.043
0.074
0.056
0.055
0.055
0.058
0.064
0.030
0.028
0.027
0.029
0.043
0.044
0.040
0.040
0.045
0.079
0.063
0.058
0.060
0.076
0.129

0.037
0.038
0.039
0.040
0.042
0.054
0.053
0.055
0.056
0.057
0.027
0.027
0.027
0.027
0.029
0.039
0.039
0.039
0.038
0.039
0.056
0.056
0.055
0.054
0.053

0.042
0.039
0.039
0.044
0.085
0.060
0.055
0.055
0.060
0.109
0.031
0.028
0.027
0.030
0.051
0.044
0.040
0.039
0.042
0.068
0.064
0.058
0.055
0.059
0.090

0.037
0.037
0.039
0.040
0.043
0.054
0.054
0.055
0.056
0.060
0.027
0.027
0.027
0.027
0.029
0.039
0.039
0.039
0.038
0.039
0.057
0.056
0.055
0.054
0.054

0.037
0.037
0.039
0.041
0.044
0.054
0.053
0.055
0.056
0.062
0.027
0.027
0.027
0.027
0.030
0.040
0.039
0.039
0.038
0.039
0.057
0.056
0.056
0.055
0.054

0.037
0.037
0.039
0.041
0.044
0.054
0.054
0.055
0.056
0.062
0.027
0.027
0.027
0.027
0.029
0.040
0.039
0.039
0.038
0.040
0.057
0.056
0.056
0.055
0.054

Column average 0.053 0.043 0.053 0.043 0.043 0.043

Second, the function in (7) is relatively simple, and yet is non-negative and
able to account for certain patterns suggested by time series considerations. For
example, consider the time series model:

yt = λyt−1 + xtβ + ut, |λ| < 1, (8)

ut = ρut−1 + εt, |ρ| < 1,

where xt is a scalar exogenous variable and εt is i.i.d. N(0, σ2). The variance-
covariance matrix of the asymptotic distribution of the ML estimators of λ and β
is, under typical assumptions, a function of (1 − ρ2), (1 − λ2), and (1 − λρ).14

Although the spatial model we consider is not identical to the model in (8) we
might nevertheless expect the exponent in (7) to be nonlinear in ρ and λ, and to
involve an interaction between them. The squares and cross product terms in (7)
are obvious choices. Interactions between ρ and J, and λ and J are also considered

14 See Dhrymes (1981, pp. 199–200).
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Table 9. Root mean square errors of the estimators of ρ, N = 100, J = 6

λ ρ σ2 ML GM GM1

−0.8
−0.8
−0.8
−0.8
−0.8
−0.4
−0.4
−0.4
−0.4
−0.4

0
0
0
0
0

0.4
0.4
0.4
0.4
0.4
0.8
0.8
0.8
0.8
0.8

−0.8
−0.4

0
0.4
0.8

−0.8
−0.4

0
0.4
0.8

−0.8
−0.4

0
0.4
0.8

−0.8
−0.4

0
0.4
0.8

−0.8
−0.4

0
0.4
0.8

0.25
0.25
0.25
0.25
0.25
0.50
0.50
0.50
0.50
0.50
1.00
1.00
1.00
1.00
1.00
0.25
0.25
0.25
0.25
0.25
0.50
0.50
0.50
0.50
0.50

0.229
0.229
0.202
0.153
0.067
0.234
0.234
0.213
0.166
0.076
0.241
0.244
0.227
0.183
0.100
0.221
0.223
0.200
0.156
0.086
0.220
0.224
0.202
0.157
0.102

0.240
0.225
0.198
0.156
0.102
0.247
0.233
0.208
0.171
0.130
0.259
0.248
0.228
0.190
0.179
0.237
0.227
0.200
0.157
0.105
0.238
0.230
0.204
0.161
0.113

0.251
0.239
0.208
0.155
0.076
0.258
0.247
0.218
0.166
0.096
0.271
0.261
0.235
0.185
0.143
0.250
0.237
0.206
0.158
0.089
0.249
0.239
0.209
0.161
0.098

Column average 0.184 0.195 0.196

because both ρ and λ multiply the weights matrix which contains J, see (1) and (2).
The reciprocal form of J was considered because the considered weights matrices
involve the reciprocal of J. Finally, the innovation variance, σ2 is considered for
obvious reasons, e.g., ceteris paribus, the larger is σ2, the more noise the model
contains and so the larger should be the RMSEs of most estimators.

A final point should be noted before turning to the empirical results is that the
response functions were estimated in terms of results based on 5000 iterations for
each of 753 Monte Carlo experiments, yielding a total of 5000 ∗ 753 = 3, 765, 000
trials. In a manner similar to typical practice in time series analysis, the restrictions
|ρ| < 1 and |λ| < 1 were not imposed in any of these trials. The number of trials
in which our estimates violated one or both of these parameter space restrictions
was approximately 1,500. This is roughly .04% of the total number of trials and so
we expect that our results would be approximately the same had we imposed these
restrictions as described in Appendix B.
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Table 10. Root mean square errors of the estimators of ρ, N = 400, J = 6

λ ρ σ2 ML GM GM1

−0.8
−0.8
−0.8
−0.8
−0.8
−0.4
−0.4
−0.4
−0.4
−0.4

0
0
0
0
0

0.4
0.4
0.4
0.4
0.4
0.8
0.8
0.8
0.8
0.8

−0.8
−0.4

0
0.4
0.8

−0.8
−0.4

0
0.4
0.8

−0.8
−0.4

0
0.4
0.8

−0.8
−0.4

0
0.4
0.8

−0.8
−0.4

0
0.4
0.8

0.50
0.50
0.50
0.50
0.50
1.00
1.00
1.00
1.00
1.00
0.25
0.25
0.25
0.25
0.25
0.50
0.50
0.50
0.50
0.50
1.00
1.00
1.00
1.00
1.00

0.115
0.115
0.105
0.079
0.035
0.122
0.124
0.115
0.092
0.041
0.107
0.107
0.096
0.075
0.037
0.107
0.108
0.100
0.081
0.048
0.107
0.109
0.100
0.083
0.068

0.130
0.120
0.105
0.082
0.065
0.139
0.128
0.113
0.096
0.093
0.119
0.112
0.097
0.075
0.054
0.121
0.116
0.101
0.082
0.068
0.122
0.117
0.104
0.085
0.077

0.127
0.121
0.105
0.081
0.043
0.135
0.129
0.115
0.093
0.062
0.121
0.113
0.098
0.075
0.042
0.123
0.117
0.102
0.081
0.056
0.124
0.118
0.105
0.085
0.070

Column average 0.091 0.101 0.098

The response function estimation results are given in Table 11. The first line
corresponding to each parameter is the OLS estimate of the coefficient of that pa-
rameter based on the log transform of (7) indicated above. The second line contains
the absolute value of the corresponding t-ratio. The t-ratios are given for descrip-
tive purposes; while suggestive of statistical significance, these t-ratios, of course,
cannot be used in the typical way to formally test hypotheses.

We first note that the fit of the functions to the actual data is quite good in that
the R2 values between the actual RMSEs and the corresponding predicted val-
ues based on (7) are at least 0.95. The interpretations of the individual coefficients
corresponding to λ, ρ, J , and n are not straightforward because each of these pa-
rameters appears in more than one form and/or interacts with other parameters. The
only exception is the coefficient corresponding to σ2. This coefficient is “seemingly
significant” only in the response function for the ML estimator of λ. However, even
in this case its coefficient is “small” in absolute value and suggests that, once σ2

is accounted for in the proportionality factor, σ2 is only a minor component in the
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Fig. 1. RMSEs of the ML and FGS2LS estimators of λ (N = 100, σ2 = 0.5)

response function for the range of values of σ considered. For example, the absolute
value of the elasticity of (n1/2/σ) ∗ RMSE with respect to σ2 is .04σ2 ≤ 0.04
since the largest value of σ2 considered is 1.0.

Because the interpretations of most of the coefficients in Table 11 are not
straightforward, we describe these eight functions in terms of figures. Figure 1
describes the response functions of the RMSEs of the ML and FGS2SLS estima-
tors of λ. This is done in terms of six sub-figures. The three on the left hand side
of the page relate to the ML estimator of λ and correspond to J = 2, 6, 10. The
three on the right hand side of the page relate to the FGS2SLS estimator and have
the same format. In all the figures σ2 = 0.5 and n = 100. Figures 2, 3 and 4 have
the same format but correspond to the considered estimators of, respectively, β1,
β2, and ρ.

Consider Fig. 1. Note first that for both the ML and the FGS2SLS estimators the
RMSEs increase as J increases. One reason for this may be that λ is the coefficient
of Wnyn in (1) and, since Wn is row normalized, Wnyn is a vector of averages.
The number of terms in these averages is J . Clearly, as J increases the variation of
the elements of Wnyn decreases and hence the precision of estimation concerning
λ decreases.

From the figures we also note that the relationship between the RMSEs of both
the ML and FGS2SLS estimators depends upon ρ and λ in a complex fashion. For
instance, these RMSEs generally increase as ρ → 1 for J = 6 and 10, but decrease
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Fig. 2. RMSEs of the ML and FGS2LS estimators of β1 (N = 100, σ2 = 0.5)

as λ → 1. For a given value of λ the RMSEs relate to ρ in a convex fashion; on
the other hand, for a given value of ρ the RMSEs relate to λ in a concave fashion.
One reason for such a seemingly complex dependence of the RMSEs on ρ and
λ may relate to the variance of some of the model components. For example, as
ρ → 1 the average variance of the error terms un in (1) increases. Ceteris paribus,
this should make the estimation of the model parameters less precise. However, the
ceteris paribus condition is not a relevant one in this case because as the average
variance of the error terms un increases, so does the variation of the elements of
Wnyn and this would lead to a more precise estimate of λ. Therefore, one would
expect that the effect of the experimental value of ρ on the RMSE of an estimator
of λ depends, among other things, upon the net effect of these two conditions.
Somewhat similar issues relate to λ because as λ → 1 the average variance of the
elements of yn, and hence those of Wnyn, increases. Furthermore, since the model
solution for yn in terms of Xn involves the error term (I −λWn)−1(I −ρWn)−1εn

interactions between ρ and λ, and of course J , should be evident.
Consider now Figs. 2 and 3 which relate to the remaining regression coefficients

β1 and β2. Clearly, the RMSEs of both the ML and FGS2SLS estimators of β1
and β2 slightly decrease as J increases. This is the opposite of the results for
the estimators of λ. The reason for this may be that as J increases, the average
variation in the elements of Wnyn decreases, and hence the correlation between
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Fig. 3. RMSEs of the ML and FGS2LS estimators of β2 (N = 100, σ2 = 0.5)

x1n and Wnyn, and x2n and Wnyn decreases.15 Thus, the precision of estimation
concerning β1 and β2 increases.

Again the dependence between the RMSEs of both the ML and FGS2SLS
estimators of β1 and β2 on ρ and λ, while slight, is complex. Specifically, for λ < 0
these RMSEs decrease as ρ decreases, while for λ > 0 these RMSEs increase
as ρ decreases, and the RMSEs appear to minimize as ρ and λ approach −1.

Finally consider Fig. 4. In a manner similar to the cases for λ, the RMSEs
of both the ML and GM estimators of ρ generally increase as J increases. On an
intuitive level the reason for this is that ρ is the coefficient of Wnun in (2), and
the average variance of the elements of Wnun decreases as J increases; hence the
precision of estimation decreases. Conversely, unlike in the case for λ, the RMSEs
of the considered estimators of ρ do not seem to depend much on the value of λ.
However, they do depend on ρ. Specifically, these RMSEs decrease as ρ → 1;

15 Observe that in light of the above discussion:

E(Wnyn) = WnE(yn) = Wn(I − λWn)−1Xnβ

=
∞∑

i=0

λiW i+1
n Xnβ.

As J increases E(Wnyn) becomes a vector of averages involving more terms of the elements of x1n

and x2n, and so the correlation between between x1n and x2n, and Wnyn would be expected to
decrease.
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Fig. 4. RMSEs of the ML and FGS2LS estimators of ρ (N = 100, σ2 = 0.5)

they also decrease as ρ → −1 when J = 2. For a given value of λ the RMSEs
seem to have a maximum at ρ = 0 when J = 2; this maximum occurs at a negative
value of ρ for J = 6 or 10. The reason for this shift, as explained in Kelejian and
Prucha (1999), is that the values of a for which I − aWn is singular are less than
−1 when J = 6, 10.

5 Summary and suggestions for further research

Among other things, we have given Monte Carlo results relating to the finite sample
properties of the ML and FGS2SLS estimators of the regression parameters of a
linear spatial model containing a spatially lagged dependent variable as well as a
spatially autocorrelated disturbance term. Our results suggest that the difference in
finite sample efficiency between the ML and FGS2SLS estimators is fairly small,
so the FGS2SLS estimator can be considered with little penalty. This is important
because the FGS2SLS estimator is computationally feasible even in cases involving
large samples with non-sparse and non-symmetric weights matrices; in such cases
the computation of the ML estimator may not be feasible, or is at least “challenging”.

We have also given finite sample results relating to the ML and GM estimator of
the autoregressive parameter ρ in the disturbance process. Again, the results suggest
minor differences in their finite sample efficiencies. Thus, the computationally
simple GM estimator can be considered with little penalty.
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An obvious suggestion for future research relates to nonlinear models. Specif-
ically, to the best of our knowledge neither theoretical nor Monte Carlo results
are available for nonlinear spatial models which contain both a spatially correlated
error term and a spatially lagged dependent variable. Although certain estimation
procedures may seem evident for such models, use of Monte Carlo as well as formal
estimation results concerning estimation would be interesting.

Appendix A: GM estimator

Consider (6) in the text and let ûn = yn − Znδ̂2SLS . Also let:

νn1(ρ, σ2
ε) = n−1(ûn − ρWnûn)′(ûn − ρWnûn) − σ2

ε ,

νn2(ρ, σ2
ε) = n−1(Wnûn − ρW 2

n ûn)′(Wnûn − ρW 2
n ûn) − σ2

ε n−1tr(W ′
nWn) ,

νn3(ρ, σ2
ε) = n−1(Wnûn − ρW 2

n ûn)′(ûn − ρWnûn) .

Let ν′
n(ρ, σ2

ε) = (νn1(ρ, σ2
ε), νn2(ρ, σ2

ε), νn3(ρ, σ2
ε)). Then, the GM estimators of

ρ and σ2
ε , say ρ̂ and σ̂2

ε , suggested by Kelejian and Prucha (1999) are:

(ρ̂, σ̂2
ε) = arg min(ν′

n(ρ, σ2
ε)νn(ρ, σ2

ε) : ρ ∈ [−a, a];σ2
ε ∈ [0, s2]

where a ≥ 1 and s2 is the upper limit considered for σ2
ε . The first iterated GM

estimator is identical to that defined above except that ûn is replaced by û
(1)
n =

yn − Znδ̂FGS2SLS , etc.

Appendix B: Nonlinear FGS2SLS estimator

Consider the 2SLS objective function:

Qn(λ, β) =
[
yn(ρ̂GM ) − Ẑn(ρ̂GM )δ

]′
PHn

[
yn(ρ̂GM ) − Ẑn(ρ̂GM )δ

]
(B.1)

with δ = (λ, β
′
)′ and PHn

= Hn(H ′
nHn)−1H ′

n. The (linear) FGS2SLS based
on ρ̂GM considered in our Monte Carlo study, that is δ̂FGS2SLS = (λ̂FGS2SLS ,
β̂′

FGS2SLS)′, is then readily seen to be the unconstrained minimizer of the objective
function (B.1). That is, it is obtained by solving the problem:

min
λ∈R,β∈Rk

Qn(λ, β)

where R and Rk denote the real line and the k-dimensional real space, respec-
tively. Now let δ̂NFGS2SLS = (λ̂NFGS2SLS , β̂′

NFGS2SLS)′ denote the estimator
obtained by solving the corresponding constrained problem:

min
|λ|<1,β∈Rk

Qn(λ, β).

Consistent with usual terminology we refer to this estimator as the nonlinear
FGS2SLS estimator. Clearly, by construction this estimator satisfies the constraint
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∣∣∣λ̂NFGS2SLS

∣∣∣ < 1. Also note that whenever the unconstrained (linear) FGS2SLS

estimator for λ is less than one in absolute value, i.e., whenever
∣∣∣λ̂FGS2SLS

∣∣∣ < 1,

then the linear and nonlinear FGS2SLS coincide, i.e., δ̂FGS2SLS = δ̂NFGS2SLS .
The asymptotic distribution of δ̂FGS2SLS was derived in Kelejian and Prucha

(1998) under a general set of assumptions. We next show that δ̂FGS2SLS and
δ̂NFGS2SLS have the same asymptotic distribution, and thus the results obtained
for δ̂FGS2SLS carry over to δ̂NFGS2SLS . A sufficient condition for δ̂FGS2SLS and
δ̂NFGS2SLS to have the same asymptotic distribution is that:

p lim
n→∞ n1/2(δ̂FGS2SLS − δ̂NFGS2SLS) = 0.

This clearly holds if the probability of the event where δ̂FGS2SLS = δ̂NFGS2SLS

goes to one as n → ∞. Since the true parameter vector δ = (λ, β′)′ is an in-
terior point of the open parameter space {(λ, β

′
)′ :

∣∣λ∣∣ < 1, β ∈ Rk} it fol-

lows from the consistency of δ̂FGS2SLS that the probability of the event where

δ̂FGS2SLS falls inside the parameter space, or equivalently where
∣∣∣λ̂FGS2SLS

∣∣∣ < 1,

goes to one as n → ∞. However, as remarked above, whenever
∣∣∣λ̂FGS2SLS

∣∣∣ <

1, then δ̂FGS2SLS = δ̂NFGS2SLS , and thus the probability of the event where
δ̂FGS2SLS = δ̂NFGS2SLS goes to one as n → ∞, which proves the claim.

Appendix C: Discussion of the RMSE measure

Let θ̂n be an estimator of θ based on a sample of size n. Then the standard measure
of the root mean squared error of θ̂n is RMSE∗

n = [E(θ̂n − θ)2]1/2. Assuming
that the mean and variance of θ̂n exist,

RMSE∗
n =

[
[E(θ̂n) − θ]2 + E[θ̂n − E(θ̂n)]2

]1/2
. (C.1)

The expression in (C.1) provides a decomposition of RMSE∗
n in terms of the bias

and variance of the estimator.
The measure used in this study, which is described in the text, is:

RMSEn =
[
[med(θ̂n) − θ]2 + [IQ(θ̂n)/1.35]2

]1/2
(C.2)

where med(θ̂n) is the median (or the 0.5 quantile) and IQ(θ̂n) is the inter-quantile
range of the distribution of θ̂n. As described in the text, IQ is the difference between
the 0.75 and 0.25 quantiles.

If the distribution of θ̂n is normal, med(θ̂n) = E(θ̂n) and, except for a slight
rounding error, [IQ(θ̂n)/1.35]2 = E[θ̂n − E(θ̂n)]2. Therefore RMSE∗

n =
RMSEn. If the distribution of θ̂n is not normal RMSE∗

n and RMSEn will not
generally be equal.
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The decomposition in (C.1) is defined in terms of the first two (population)
moments of the distribution of the estimator θ̂n. That decomposition will therefore
exist, i.e., be meaningful, only if the first two (population) moments exist. As is
well known, in certain cases the (population) mean and variance of the finite sample
distribution of an estimator may not exist. See, e.g., Phillips (1983). This existence
problem is relevant for all estimators considered in this study, even if the distribution
of the error vector in (2) is normal. The reason for this is that all of these estimators
are nonlinear in the endogenous vector yn. In other words, these nonlinearities not
only make the determination of the (population) moments “difficult”, but raise the
possibility that at least some of them may not even exist! Clearly, if these moments
do not exist, Monte Carlo estimates of them are meaningless. In contrast, we note
that in all cases the 0.25, 0.5, and 0.75 quantiles of a distribution do exist; and hence
our measure RMSEn, as well as its components, always exist. Corresponding
Monte Carlo estimates are therefore meaningful. It is for this reason that we have
adopted the measure RMSEn.
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