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Finite Sample Properties of System Identification Methods

M. C. Campi and Erik Weyer

Abstract—In this note, we study the quality of system identification
models obtained using the standard quadratic prediction error criterion
for a general linear model class. The main feature of our results is that
they hold true for a finite data sampleand they are not asymptotic. The
main theorems bound the difference between the expected value of the
identification criterion evaluated at the estimated parameters and at the
optimal parameters. The bound depends naturally on the model and
system order, the pole locations, and the noise variance, and it shows that
although these variables often do not enter in asymptotic convergence
results, they do play an important role when the data sample is finite.

Index Terms—Finite sample, nonasymptotic theory, prediction error
methods, system identification.

I. INTRODUCTION

In this note, we study the finite sample properties of system iden-
tification methods based on a quadratic criterion applied to a general
linear model class. The asymptotic properties of these methods have
been extensively studied over the last three decades (see, e.g., [8] or
[14]) and are now well understood.

Frequently asked questions in system identification are: 1) what can
we say about the model quality with these many data points?; 2) can we
sensibly apply the asymptotic theory?; and 3) what does the applica-
bility of the asymptotic theory depend on? All these questions involve
mathematical issues of difficult treatment, and questions of this kind
have remained unsolved so far.

The main result of this note (Theorem 4.2) quantitatively assesses
the discrepancy between minimizing a theoretical identification cost
and minimizing its empirical counterpart when only a finite number of
data points is available. The estimate is given by

�̂N = argmin
�2�

VN (�)

whereVN (�) = (1=N) N

t=1
�2(t; �), and�(t; �) is the prediction

error at timet of the model parameterized by�, andN is the number
of data points. The best estimate is given by

�N = argmin
�2�

V N (�)

whereV N(�) = (1=N) N

t=1
E�2(t; �) andE is the expectation

operator. Theorem 4.2 gives a probabilistic bound on the difference
V N(�̂N)�V N(�N ) for a finiteN . In this note, we focus on the iden-
tification criterion and not on the estimated parameter. In certain situ-
ations, such as when the model is going to be used for prediction, the
main concern is in fact the differenceV N(�̂N) � V N (�N) and not
�̂N � �N . Of course, in other cases the estimated parameter can be im-
portant as well (see [19] for a discussion on this).

The differenceV N(�̂N)�V N (�N) depends on a number of factors,
including the variance of the noise, the model order, and the singular-
ities of the model and data generation mechanism. All these depen-
dencies have meaningful interpretations. A remarkable fact is that they
often do not show up in asymptotic convergence results, and a finite
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sample theory is, therefore, needed in order to capture these dependen-
cies. Although our results are valid for a finite number of data points,
they are still mainly of conceptual interest since they are rather conser-
vative.

The note is organized as follows. In Section I-A, we present an
example which illustrate the difference between asymptotic and
finite sample properties and shows that asymptotic theory can give
misleading results even for an arbitrary large number of data points.
In Section I-B, our results are put into perspective relative to previous
results in the literature. The data generating mechanism and the
model class under consideration are introduced in Section II. The
identification criterion is discussed in Section III and the main results
are presented in Section IV.

A. A Motivating Example

Consider the system

y(t) = ay(t� 1) + bu(t� 1) + e(t)

with jaj < 1, b = 0, u(t) = 1 for all t, ande(t) a zero mean Gaussian
white noise process with variance1 � a2. It follows that the variance
of y(t) is 1. As a model, we use

ŷ(t; �) = �u(t� 1):

The expected value of the identification criterion is

V N(�) =E[(y(t)� ŷ(t; �))2]

=E[(ay(t� 1) + e(t)� �u(t� 1))2] = 1 + �2

and, consequently,�N = 0. This is not a surprising result since in
the true system we haveb = 0, so there is no dependence ofy(t) on
u(t� 1). The least–squares estimate is given by

�̂N =

N

t=1

u2(t� 1)

�1
N

t=1

u(t� 1)y(t) =
1

N

N

t=1

y(t)

and, hence, the difference between the empirical and theoretical iden-
tification cost isV N(�̂N) � V N(�N) = ((1=N) N

t=1
y(t))2. After

a bit of calculations, we find that

EjV N(�̂N)� V N (�N)j

=
1

N2(1� a)2
(1� aN )2 +

N�1

t=1

(1� at)2(1� a2) :

Now, if we letN ! 1, EjV N (�̂N)� V N(�N )j ! 0, regardless of
the value ofa, namely,supjaj<1 limN!1EjV N(�̂N)�V N(�N )j =
0.

This result is consistent with the asymptotic theory according
to which, given a system (i.e., a value of the parametera), when
N ! 1, V N (�̂N) � V N(�N) tends to zero. On the other hand, it
should be clear that the above result is totally different from saying
that limN!1 supjaj<1EjV N(�̂N) � V N(�N)j = 0 (i.e., lim and
sup do not commute). In fact, by sendinga to 1, we obtain

1

N2(1� a)2
(1� aN )2 +

N�1

t=1

(1� at)2(1� a2) ! 1

for all N

and, therefore,limN!1 supjaj<1EjV N (�̂N)� V N (�N )j = 1.
This result has an important interpretation; no matter how largeN

is, there exists a strictly stable data generation mechanism such that the
asymptotic theory fails to hold even approximately.
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The example illustrates that the quality of a model identified on the
basis of afinite data set cannot be assessed by means of the asymp-
totic theory, unless further information is provided. The reason for
this is that, for any large data sample, there are systems for which
such a theory does not apply. Furthermore, the example shows that the
model quality will depend on variables—such as the location of the
true system pole (thea parameter in the example)—that do not show
up in the asymptotic theory. The goal of this note is to shed light on
these dependencies.

Admittedly, in the previous example the asymptotic variance of the
estimate is alerting us to the problem. The asymptotic variance of(�̂N�
�N ) is (1=N)((1� a2)=(1� a)2) which for fixedN tends to1 as
a! 1. However, it is not difficult to find another example where also
the asymptotic variance give misleading results for any finite number
of data points. An example is the system

y(t) = b1u1(t� 1) + b2u2(t� 1) + e(t)

wheree(t) is i.i.d. and zero mean with variance 1. Letu1(t) andu2(t)
be generated byu1(t) = a1u1(t� 1) + e1(t) andu2(t) = a2u2(t�
1) + e2(t) wheree1(t) ande2(t) are independent of each other, i.i.d.,
and zero mean with variances1 � a21 and1 � a22, respectively. As a
model we usêy(t) = �1u1(t� 1) + �2u2(t� 1).

The asymptotic theory [8] tells us that

p
N

�̂1

�̂2
�

b1

b2

is asymptotically Gaussian with zero mean and covariance matrix
I2�2. On the other hand, for a finiteN the variance is given by
NE[( N

t=1
�(t)�(t)T )�1] where�(t) = [u1(t � 1) u2(t � 1)]T .

The norm of this matrix tends to infinity when botha1 anda2 tend to
one. The reason being thatu1 andu2 tend to constant values whena1
anda2 tend to one, so that the system looses excitation. This entails
that the asymptotic result can be completely misleading for any fixed
N .

B. Putting Our Results Into Perspective Within the Existing Literature

Finite sample properties of quadratic identification methods have
been studied in [20] and [18]. Results similar to our Theorem 4.1
were obtained under much more restrictive conditions using the
Vapnik–Chervonenkis dimension. It was essentially assumed that the
observed data werem-dependent or�-mixing, and the model class
was restricted to autoregression with exogeneous variables (ARX) and
finite-impulse response (FIR) models. However, the assumptions of
those papers do not fit the standard identification context, as signals
generated by dynamical systems are not�-mixing in general. These
efforts witness the difficulty of extending to a dynamical context the
results developed by the statistical learning literature (see, e.g., [15],
[16], or [4]).

Other related results can be found in [7] (see also [9] and [17]).
There, the problem of optimizing the choice of the model order in
the context of FIR system identification is studied as the problem of
balancing the approximation and the estimation errors. Nonasymptotic
bounds on the accuracy of the least–squares estimate are presented in
the note and they are used in order to quantify the estimation error in
the aforementioned balancing problem. However, only FIR models and
m-dependent regressors are considered, and the input signal and the
noise is assumed to be i.i.d. These stringent conditions are necessary in
order to obtain the many interesting results in that paper, but are over
restrictive if we specialize to the problem considered in this note.

The results of the present note are much more general. We consider
a general linear model structure (6) for identification of a general linear
data generation mechanism [see (1)]. The identification criterion is the

standard quadratic cost and, therefore, our results address the model
quality assessment problem in a standard identification setting.

The results of this note are heavily based on exponential inequalities
for stochastic processes. Identification and estimation methods have
been analyzed in [2], [12], and [13] using similar techniques. However,
those papers focused on the asymptotic properties when identification
and estimation were carried out over an increasing model or function
class, and the finite sample properties were not considered.

It should also be mentioned that finite-sample properties have been
studied in the set membership and worst case identification setting, see,
e.g., [17], [5], [6], and [3]. As a matter of fact, in this setting, identifi-
cation algorithms are conceived so as to return all models that comply
with the collected data, so that finite-sample results are automatically
included in the identification result. As these are deterministic frame-
works, the results are deterministic and quite different from ours. How-
ever, the results do involve entities such as gain, stability margins, size
of disturbances, and unmodeled dynamics, which are related to and
play a similar role as the pole and zero locations and model and system
orders used in this note. Milanese and Taragna [11] consider similar
problems as the above listed references and derive finite sample result
in a stochastic setting starting from frequency domain measurement
corrupted by i.i.d. Gaussian noise.

II. THE IDENTIFICATION SETTING

A. The Data Generation Mechanism

We assume that the observed data are generated by a linear system

y(t) = G0u(t) +H0e(t) (1)

wheree(t) is a sequence of independent Gaussian random variables
with zero mean and variance�2. The system is assumed to operate
in open-loop. Correspondingly,u(t) is seen as a deterministic signal.
We also assume thatu(t) is bounded according toju(t)j � U . G0

andH0 are transfer functions in the backward shift operatorq�1, i.e.,
q�1y(t) = y(t � 1); however, for the sake of readability, we omit
throughout to explicitly indicate the dependence onq�1. G0 andH0

can be written asG0 = B0=A0 andH0 = C0=D0 where

A0 =1 + a01q
�1 + � � �+ a0n q�n (2)

B0 = b01q
�1 + � � �+ b0n q�n (3)

C0 =1 + c01q
�1 + � � �+ c0n q�n (4)

D0 =1 + d01q
�1 + � � �+ d0n q�n (5)

andn0 is an upper bound on the degrees. Moreover, we assume that the
zeros ofA0, C0, andD0 are inside a circle of radius�0 < 1, i.e., we
assume stability of the system and also thatH0 has a stable inverse.

B. Model Class

The model class considered is

y(t) = G(�)u(t) +H(�)w(t) (6)

wherew(t) is a sequence of independent Gaussian random variables
with zero mean,G(�) = B(�)=A(�) andH(�) = C(�)=D(�). The
order ofA(�), B(�), C(�), andD(�) are upper bounded byn1, but
otherwise similar to (2)–(5). It should be noted that we do not assume
that the model class contains the true system.� contains the unknown
coefficients of these polynomials, and we assume that� belongs to a set
�, such thatA(�),C(�), andD(�) have all their zeros inside a circle
of radius�1 < 1, andB(�) has all zeros inside acircle of radius�1 and
the leading coefficientb1 is bounded according tojb1j � B1.
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For future use, we define

� := maxf�0; �1g

� := maxfmagnitude of the zeroes ofB0; �1g

B := maxfb01; B1g

~n := maxfn0; n1g:

The model quality depends on�, �, ~n, andB, and in this note, we make
these dependencies explicit.

III. T HE IDENTIFICATION CRITERION

From a system identification perspective, the most important feature
of the aforementioned model is its associated predictor, which is given
by

ŷ(t; �) = (1�H�1(�))y(t)+H�1(�)G(�)u(t): (7)

As we only have data available fort � 1, it is common to use the
computational scheme

A(�)C(�)ŷ(t; �) = (A(�)C(�)�A(�)D(�))y(t)+B(�)D(�)u(t)

(8)

with ŷ(t; �) = 0; y(t) = 0, andu(t) = 0 for t � 0. On the other
hand, if we assume that the system is initially at rest (as we certainly
do in order to avoid cumbersome computations due to initial condition
issues), there is no difference betweenŷ(t; �) in (7) and (8).

The corresponding prediction error is given by

�(t; �) = y(t)� ŷ(t; �) = H�1(�)y(t)�H�1(�)G(�)u(t): (9)

Ideally, one would like to choose� such that

V N(�) =
1

N

N

t=1

E�2(t; �) (10)

is minimized, whereN is the number of data points. Since the data
generation mechanism is unknown, one cannot compute the expected
value, and, in place of (10), its sample version

VN (�) =
1

N

N

t=1

�2(t; �) (11)

is used. Clearly, the minimization ofVN (�) can only be expected to
be equivalent to minimization ofV N(�) whenN ! 1 (and, this is
indeed the case under mild assumptions, see, e.g., [8]). One question
that arises naturally is to quantify the deterioration in the model quality
due to the finiteness of the data sample. In a formal way, answering this
question requires quantitative bounds for

V N (�̂N)� V N(�N ) (12)

where �̂N = argmin�2� VN (�) and �N = argmin�2� V N(�).
Equation (12) quantifies the discrepancy between the ideal identifica-
tion result [measured byV N(�N)] and the achieved resultV N (�̂N).
The expected valueV N(�) depends on the input signal, as does the
optimal value�N and the estimatê�N . As we are considering the dif-
ference between two expected values of the squared prediction errors
(12), issues such as identifiability and persistence of excitation do not
enter the picture, and we do not have to impose any conditions in this
regard. Needless to say, such issues are of major importance when the
focus shifts to properties of the estimated parameters.

IV. A B OUND ON THE MODEL QUALITY

Deriving exact expressions for the probability distribution of (12)
is truly overwhelming. Instead, bounds for (12) are derived. The final

expressions are very interesting as they reveal the dependence of the
identification result on a number of variables which often disappear in
the asymptotic analysis. The bound for (12) is given in Theorem 4.2
below. The proof of the bound is immediate from the more general
result presented first as Theorem 4.1.

Theorem 4.1: Assume the data has been generated by the process
(1) as described in Section II-A, and let the model class be given by
(6) as described in Section II-B. Let the prediction error be computed
according to (9). Given any two real numbers�0 > 0 and�0 > 0, let
� = �1 + �2 and� = �1 + �2 with

�1 =24~n�0
4~n� + (1� �)

(1� �)4~n+1
(13)

�2 =23~n+2�0B 1 +
�

�

~n�1
(4~n� 1)�+ 2(1� �)

(1� �)4~n+1
(14)

�1 =4
e�(N� =4� (4� +� ))

1� e�(N� =4� (4� +� )) 2 (15)

�2 =2
e�(N� =2U�(2U�+� ))

1� e�(N� =2U�(2U�+� ))
2 : (16)

Then, the following bound holds:

Pr sup
�2�

1

N

N

t=1

�2(t; �)�
1

N

N

t=1

E�2(t; �) � � � �:

Proof: See Appendix A.
Theorem 4.1 provides auniformbound for the differenceVN (�)�

V N(�) between the empirical and the theoretical identification cost.
This bound is the key to establish the following main result

Theorem 4.2: With � and� as in Theorem 4.1, we haveV N(�̂N)�
V N(�N) � 2� with probability at least1 � �.

Proof: By applying Theorem 4.1 twice, it follows with proba-
bility at least1 � � thatV N (�̂N) � VN (�̂N) + � � VN (�N) + � �
V N(�N) + 2�.

Theorem 4.2 is believed to be the first result addressing the problem
of quantifying the identification performance obtained by minimization
of the criterion (11) for a general linear model class (6). It is important
to stress that the result holds true for anyfinite data sample of sizeN ,
that is, it is not asymptotic inN and, hence, as can be seen from (15)
and (16),� and� depend onN . Also notice that the assumption that
e(t) is Gaussian is not crucial. It is only used to establish (24) in the
Appendix and other cases can be considered as well.

For a fixed�, the number of data points required in order to guar-
antee the bound in Theorem 4.1 increases only aslog(1=�) as� ! 0.
On the other hand for a fixed�, the number of data points required in-
creases roughly as1=�2 as� ! 0. This is often popularly phrased as
“confidence is cheap, but accuracy is expensive.”

We see that even though the dependence on�2, �, �, ~n, andB often
disappears in asymptotic results, they play a fundamental role in the
finite sample properties.

The bound tells us that, with a certain confidence1� �, minimizing
the empirical cost (11) corresponds to minimizing the theoretical cost
(10) to within an accuracy2�. The presence of a confidence1� � is a
natural ingredient stemming from the stochastic nature of the problem.
When the data sample is finite, there is always a nonzero (even though
possibly small) probability that the noise plays against the identifica-
tion objective, resulting in a deterioration of the accuracy. Suppose we
want to decrease�. This corresponds to increase�0 and�0. In turn,
this entails that� increases, and not surprisingly,� tends to infinity in
the limit as� ! 0. This is in agreement with the fact that no level of
accuracy can be guaranteed with probability 1 for a finite data sample.
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This is in contrast with the asymptotic theory, where the assumption
N ! 1 leads to a result valid with probability 1.

When�2 ! 0, the stochastic nature of the problem disappears result
can be guaranteed with probability 1 for any�: for arbitrary small�0
and�0 in (13) and (14),�1 and�2 given by (15) and (16) tend to zero
as�2 ! 0.

Suppose now we fix a certain confidence level�. Then, we can find
�0 = �0(N; �2; �) and�0 = �0(N; �2; �) such that the desired con-
fidence level is achieved. Substituting such�0 and�0 in (13) and (14),
we see that the accuracy depends on~n, �, �, B, andN , besides� and
�2. These dependencies are now analyzed.
�!1, both when the system and/or the model complexity (as mea-

sured by~n) tend to infinity and when� ! 1. This behavior can easily
be understood. Increasing~n or sending� to 1 leads to a prediction error
process (8) with a long correlation tail (the prediction error transfer
functions increase in size and their poles get close to the unit circle).
When this happens, the averaging effect on the noise is decreased and
a large number of data points is necessary to guarantee a certain accu-
racy.

When� orB !1, �2 in (14) tends to infinity too, so that�!1.
This is also expected since a large value of� and/orB inflates the
contribution to the error due to the input signalu. Finally, �0 and�0
tend to zero asN ! 1, and hence� ! 0 whenN ! 1, as it is
expected because of averaging effects.

V. CONCLUSION AND DISCUSSION

In this note, we have studied the issue of model quality for system
identification methods based on the standard quadratic prediction error
criterion for a general linear model class. The main feature of our re-
sults is that they hold true for a finite data sample and they are not
asymptotic in nature. Theorem 4.2 bounds the difference between the
expected value of the identification criterion evaluated at the estimated
parameter value and at the optimal value. The bound depends naturally
on the model and system order, the pole locations and the noise vari-
ance, and it shows that although these variables often do not enter in
asymptotic convergence results, they do play an important role when
the data sample is finite which of course is always the situation in prac-
tice.

The results in this note can certainly not be considered as final. For
example, we have made no attempts of optimizing the bounds. The
main goal is that of stimulating research activity in the field of model
quality assessment. It is our belief that certain recent advances in the
statistical literature (some of which have been used in the appendices)
give us today the opportunity to attack this important problem, and our
results should be considered as a first step in this direction.

While we credit our results for being a significant step in the direc-
tion of clarifying the model quality dependencies, we also recognize
that they are not tight enough to compute the needed amount of data
points in real situations. More effort has to be devoted in the direction
of working out applicable bounds.

APPENDIX A
PROOF OF THEMAIN THEOREM

Theorem 4.1 follows by combining Lemmas A.1 and A.2. In Lemma
A.1, the difference between the expected and empirical values of the
identification criterion is expressed in terms of the noise sequencee(t)
and the input sequenceu(t). The probability that these expressions
exceed a certain value is then bounded in Lemma A.2 using exponential
inequalities.

Lemma A.1:

sup
�2�

1

N

N

t=1

�
2(t; �)�

1

N

N

t=1

E�
2(t; �)

�

1

k=0

1

l=0

sksl
1

N

N

t=1

(e(t� k)e(t� l)

�Ee(t� k)e(t� l))

+

1

k=0

1

l=1

skrl
2

N

N

t=1

e(t� k)u(t� l)

with

rk =2n +1
B 1 +

�

�

~n�1
k � � � (k + n1 + ~n� 2)

(n1 + ~n� 1)!
�
k�1 (17)

sk =2n +n (k + 1) � � � (k + n1 + n0 � 1)

(n1 + n0 � 1)!
�
k
: (18)

Proof: By introducing

R(�) :=H
�1(�)(G0 �G(�)) = r1; �q

�1 + r2; �q
�2 + � � � (19)

S(�) :=H
�1(�)H0 = 1 + s1; �q

�1 + s2; �q
�2 + � � � (20)

the prediction error can be written as�(t; �) = R(�)u(t)+ S(�)e(t).
The difference between the empirical and theoretical value of the iden-
tification criterion is given by

1

N

N

t=1

1

k=0

1

l=0

sk; �sl; �(e(t� k)e(t� l)� Ee(t� k)e(t� l))

+
2

N

N

t=1

1

k=0

1

l=1

sk; �rl; �e(t� k)u(t� l):

Let sk := sup�2� jsk; �j andrk := sup�2� jrk; �j. The Lemma fol-
lows by interchanging the summations. The bounds onrk andsk are
given by Lemma C.2.

Lemma A.2:

Pr

1

k=0

1

l=0

sksl
1

N

N

t=1

(e(t� k)e(t� l)

�Ee(t� k)e(t� l)) > �1 � �1 (21)

Pr

1

k=0

1

l=1

skrl
2

N

N

t=1

e(t� k)u(t� l) > �2 � �2 (22)

where�1; �2; �1 and�2 are given by (13)–(16).
Proof: First, we prove (21). Suppose that

1

N

N

t=1

(e(t� k)e(t� l)�Ee(t� k)e(t� l)) � �(k; l) (23)

where�(k; l) = (k+ l+ 1)�0. Then (we use the bounds ofrk andsk
in Lemma A.1)

1

k=0

1

l=0

sksl
1

N

N

t=1

(e(t� k)e(t� l)� Ee(t� k)e(t� l))

�

1

k=0

1

l=0

22n +2n (k + 1) � � � (k + n1 + n0 � 1)

(n1 + n0 � 1)!

� �k
(l+ 1) � � � (l+ n1 + n0 � 1)

(n1 + n0 � 1)!
�
l(k + l+ 1)�0

� 24~n�0
4~n� + (1� �)

(1� �)4~n+1
= �1



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 47, NO. 8, AUGUST 2002 1333

where we have used 1

k=0((k + 1) � � � (k + n � 1)=(n � 1)!)�k =
1=(1 � �)n and 1

k=0(k(k + 1) � � � (k + n � 1)=(n � 1)!)�k =
n�=(1 � �)n+1.

Next, we compute the probability that (23) holds true simultaneously
for all k; l � 0. For a fixed pair ofk andl this probability is bounded by
Corollary B.2. Hence, using (25) and (26) we find that this probability
is at least1 � �0 where

�0 =

1

k=0

2e�(N(2k+1) � =4� (2� +(2k+1)� ))

+

1

k=0

1

l=0; l 6=k

4e�(N(k+l+1) � =4� (4� +(k+l+1)� ))

�

1

k=0

1

l=0

4e�(N(k+l+1) � =4� (4� +(k+l+1)� ))

=

1

m=0

(m+ 1)4e�(N(m+1) � =4� (4� +(m+1)� ))

�

1

m=0

(m+ 1)4e�(N(m+1)� =4� (4� +� )) = �1

where we have used 1

m=0(m + c1)a
m+c = (ac =(1 � a)2)(1 +

(c1 � 1)(1� a)). Equation (22) follows along similar lines.

APPENDIX B
EXPONENTIAL INEQUALITIES

Theorem B.1 (Bernstein’s Inequality, [1, Th. 1.2]):Let
X1; . . . ; XN be independent zero-mean random variables and
let SN = N

t=1Xt. Assume there exists ac > 0 such that

EjXtj
p � cp�2p!EX2

t <1; t = 1; . . . ; N ; p = 3; 4; . . . :

(24)

ThenPrfjSN j � �g � 2 exp(�(�2=4 N
t=1 EX

2
t + 2c�)).

Corollary B.2: Let e(t), t 2 be zero mean i.i.d. Gaussian vari-
ables with variance�2, and letu(t), t 2 be deterministic variables
satisfyingju(t)j � U . Then

Pr
1

N

N

t=1

e2(t� k)� �2 � �(k; k)

� 2e�(N� (k; k)=4� (2� +�(k; k))) (25)

Pr
1

N

N

t=1

e(t� k)e(t� l) � �(k; l)

� 4e�(N� (k; l)=4� (4� +�(k; l))) k 6= l (26)

Pr
1

N

N

t=1

e(t� k)u(t� l) � �(k; l)

� 2e�(N� (k; l)=2U�(2U�+�(k; l))): (27)

Proof: Equations (25) and (27) follow directly from Theorem B.1
withXt = e2(t�k)��2,c = 2�2 andXt = e(t�k)u(t�l),c = U�,
respectively. For (26), we can group the time indexesf1; 2; . . . ; Ng
into two setsA1 andA2 such thate(t�k)e(t� l) andt 2 A1 are i.i.d.
random variables ande(t � k)e(t � l) andt 2 A2 are i.i.d. random
variables. Equation (26) then follows withXt = e(t� k)e(t� l) and
c = �2.

APPENDIX C
BOUNDS ONCOEFFICIENTS

We first present a general result bounding the magnitude of the co-
efficients of certain polynomials. Then, we use this result to bound the
magnitude of the coefficients ofR(�) andS(�).

Lemma C.1: Let M(q�1) = 1 + m1q
�1 + � � �mn q�n and

P (q�1) = 1 + p1q
�1 + � � � pn q�n be polynomials with all zeros

inside a circle of radius� < 1. Furthermore, letW (q�1) = w1q
�1 +

� � �wn q�n be a polynomial with all zeros inside a circle of radius
� and leading coefficient bounded byjw1j < B. Then, the coefficients
of the polynomials

M�1(q�1) = 1 +m1q
�1 +m2q

�2 + � � � (28)

M�1(q�1)P(q�1) = 1 + p1q
�1 + p2q

�2 + � � � (29)

M�1(q�1)P(q�1)W(q�1) =w1q
�1 + w2q

�2 + � � � (30)

are bounded by

jmkj �
(k + 1) � � � (k + nm � 1)

(nm � 1)!
�k (31)

jpkj � 2n
(k + 1) � � � (k + nm � 1)

(nm � 1)!
�k (32)

jwkj � 2n B 1 +
�

�

n �1
k � � � (k + nm � 2)

(nm � 1)!
�k�1: (33)

Proof: First, we bound the coefficients ofM�1(q�1).
1=M(q�1) = n

j=1(1=(1 � zjq
�1)). 1=(1 � zjq

�1) =

1+zjq
�1+z2j q

�2+z3j q
�3+ � � � with jzj j < � and, hence, the coeffi-

cient in front ofq�k is less than�k in absolute value. With two rootsz1
andz2, we have1=(1�z1q�1)(1�z2q�1) = 1+m1q

�1+m2q
�2 � � �

wherejmkj � (k + 1)�k. Continuing recursively in the number of
roots, we end up with (31). The other bounds follow similarly.

Lemma C.2: Let R(�) andS(�) be the polynomials given by (19)
and (20), respectively. Then, for all� 2 � the coefficients of the poly-
nomials are bounded by

jrkj � 2n +1B 1 +
�

�

~n�1
k � � � (k + n1 + ~n� 2)

(n1 + ~n� 1)!
�k�1 (34)

jskj � 2n +n (k + 1) � � � (k + n1 + n0 � 1)

(n1 + n0 � 1)!
�k: (35)
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A Globally Stabilizing Hybrid Variable
Structure Control Strategy

A. Ferrara, L. Magnani, and R. Scattolini

Abstract—A hybrid variable structure control strategy for a class of
second order systems is presented in this note. It relies on a system state de-
composition into regions, and on a suitable event-driven switching among
the corresponding control laws. By enforcing conventional and unconven-
tional sliding-mode behaviors, as well as avoiding the generation of limit
cycles, the proposed strategy proves to globally asymptotically stabilize the
origin of the system state space.

Index Terms—Continuous-time systems, hybrid systems, variable struc-
ture systems.

I. INTRODUCTION

During recent years, an extensive literature has been devoted to the
subject of hybrid systems [1]–[6]. Even if the term “hybrid” allows var-
ious interpretations, the definition which is becoming the conventional
one is that a hybrid system is a system the evolution of which is charac-
terized by the interlacing of continuous-time and discrete-valued sig-
nals. Since plenty of computer supervised continuous-time controlled
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systems satisfy this definition, a great number of practical applications
of hybrid systems can be envisaged, such as traffic or intelligent vehicle
control systems, communication networks, chemical process control,
robotic systems [5], [6].

As far as hybrid system modeling is concerned, various approaches
have been pursued [7]. One of the most commonly used relies on a
state space decomposition into regions delimited by borders which can
be interpreted as the switching boundaries of the switched controlled
systems. These systems can be modeled by equations with event or
transition-dependent parts. Alternatively or contemporarily, it could be
the control law to be switched on the crossing of the switching bound-
aries in a sort of gain-scheduling fashion. The crucial problem of the
existence of solutions of the event-driven equation modeling the hybrid
system requires to be faced by making reference to the theory of differ-
ential inclusions [8]. On the other hand, stability issues are not trivial
at all, since it is sensible to foresee that letting the controller switch
among different control laws one may obtain an unstable closed-loop
system [9], [10].

Also variable structure control (VSC) systems, to which a large num-
bers of works have been devoted during the past two decades [11]–[14],
comply with the aforementioned definition of hybrid systems. They are
“hybrid” in the sense that the control design is still based on a state
space decomposition through a border which is a linear or nonlinear
function of the full system state, so that the control law is switched
on crossing it. Yet, they do not fit the intuitive idea one has of hybrid
systems, since the key point in the theory of VSC systems is to force
the state trajectory not to instantaneously cross the commutation man-
ifold as expected in classical hybrid systems, but to slide on it. Indeed,
in this way, the desired dynamical features turn out to be assigned to
the controlled system (accordingly, the switching boundary is called
sliding manifold). Moreover, since the control is designed so that, once
the sliding manifold is reached, the state trajectory is maintained on it
featuring a regime called sliding mode, the origin of the state space,
regarded as the equilibrium point to be asymptotically stabilized, must
belong to the sliding manifold.

The aim of the present note is to design and analyze a truly hybrid
VSC strategy for a class of second-order systems which relies on a pe-
culiar system state decomposition into countable regions by means of a
grid of conventional sliding manifolds, and commutation manifolds not
including the origin. Each region is a “block” in the sense used in [16],
and a block invariant control law is associated with it. On the whole, the
control laws corresponding to the blocks included between two com-
mutation manifolds (note that also infinity and the origin of the state
space can be interpreted in this way) concur to the attainment of either
the sliding mode objective to reach a particular sliding manifold, or to
the aim of crossing the commutation manifold closer to the origin. The
overall hybrid VSC strategy proves to globally asymptotically stabi-
lize the origin of the system state space, even if unconventional sliding
modes can be generated on the commutation manifolds. Indeed, these
behaviors, in contrast to what happens in classical hybrid systems ex-
hibiting chattering solutions, the so-called “Zeno systems” [17], turns
out to be of finite time duration.

The motivation for using VSC to design a hybrid strategy mainly re-
lies on the appreciable features of the VSC methodology, such as sim-
plicity and robustness versus matched uncertainties and disturbancies,
which are naturally inherited by the proposed control approach. Note
that, the combination of VSC with hybrid control has already been in-
vestigated in [18] and [19]. Yet, the control strategies proposed in such
papers are characterized by a continuous adaptation of the control gain,
and switching is driven by a logic relying on the decomposition of the
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