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Finite-size corrections in the random assignment problem
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We analytically derive, in the context of the replica formalism, the first finite-size corrections to the average
optimal cost in the random assignment problem for a quite generic distribution law for the costs. We show that,
when moving from a power-law distribution to a ! distribution, the leading correction changes both in sign
and in its scaling properties. We also examine the behavior of the corrections when approaching a δ-function
distribution. By using a numerical solution of the saddle-point equations, we provide predictions that are confirmed
by numerical simulations.
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I. INTRODUCTION

Matching is a classical problem in combinatorial optimiza-
tion [1,2]. It can be defined on any graph G = (V,E), where
V is its set of vertices and E its set of edges. A matching on
G is a set of nonadjacent edges of G, that is, a set of edges
that do not share a common vertex. A matching is maximal
when the addition of any new edge to the set makes it no
longer a matching. A matching is said to be maximum when
it has the maximal cardinality among the maximal matchings.
All the maximum matchings have the same cardinality ν(G),
which is called the matching number of the graph G. A perfect
matching (or 1-factor) is a matching that matches all vertices
of the graph. That is, every vertex of the graph is incident to
exactly one edge of the matching. Every perfect matching is
maximum and hence maximal. A perfect matching is also a
minimum-size edge cover. We will denote by M the set of
perfect matchings.

Suppose now that we can assign a cost we ! 0 to each edge
e ∈ E . For each perfect matching π ∈ Mwe define a total cost
(energy)

E(π ) :=
∑

e∈π

we (1)

and a mean cost for edge

ϵ(π ) := 1
ν(G)

∑

e∈π

we. (2)

The matching problem consists in the choice of the optimal
perfect matching π∗ ∈ M, which minimizes the total cost

E(π∗) = min
π∈M

E(π ). (3)

Let us now consider the matching problem on the complete
bipartite graphKN,M , in which the vertex set is the union of two
disjoint sets V1 and V2 of cardinality N and M , respectively.
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Defining [n] := {1, . . . ,n}, we identifyV1 andV2 with [N ] and
[M], respectively, and the edge set is therefore the set of all
couples e = (i,j ) with i ∈ [N ] and j ∈ [M]. In this case the
matching problem is usually called the (general) assignment
problem and the matching number is ν(KN,M ) = min{N,M}.
In the following we will concentrate on the N = M case, in
which a perfect matching π is a permutation in the symmetric
group SN and can be represented by a square matrix with
entries πij ∈ {0,1} for all i ∈ [N ] and j ∈ [N ] such that

πij =
{

1 for e = (i,j ) ∈ π
0 otherwise, (4)

with the constraints
N∑

i=1

πij =
N∑

i=1

πji = 1 ∀j ∈ [N ]. (5)

The matching cost associated with π can be written as

E(π ) =
N∑

i=1

N∑

j=1

πijwij . (6)

From the point of view of computational complexity, matching
problems are simple problems, being in the P complexity class,
as Kuhn [3] proved with his celebrated Hungarian algorithm
for the assignment problem. Very fast algorithms are nowadays
available both to find perfect matchings and to solve the
matching problem on a generic graph [2,4–6].

The properties of the solution of a matching problem on a
given ensemble of realizations are often interesting as well [7].
In the random assignment problem, for example, we consider
the matching problem on KN,N , whereas the costs for all edges
are independent random variables, identically distributed with
a common law ρ. Each particular choice W = {we}e∈E for
the set of edge costs is called an instance of the problem. In
this random version of the problem, we are interested in the
typical properties of the optimal matching. In particular we
will concentrate on the asymptotic behavior for large N of the
average optimal cost

E := E(π∗) = min
π∈M

N∑

i=1

N∑

j=1

πijwij , (7)
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where we have denoted by an overbar the average over all
possible instances (i.e., the average over the disorder). In the
same way, we can consider the matching problem with random
weights on the complete graph K2N , having 2N vertices such
that each one of them is connected to all the others. We
simply call this variation of the problem a random matching
problem. Both the random matching problem and the random
assignment problem have been solved by Mézard and Parisi [8]
by means of the replica trick. The random assignment problem
and the random matching problem have also been generalized
to the Euclidean case, in which the weights in W are functions
of the distances between points associated with the vertices of
the graph and the points are assumed to be randomly generated
on a certain Euclidean domain [9–12]. Due to the underlying
Euclidean structure, dimensionality plays an important role in
the scaling of the optimal cost of random Euclidean matching
problems [10,13] and correlation functions can be introduced
and calculated [14,15]. Euclidean matching problems proved
to be deeply connected with Gaussian stochastic processes
[14,16] and with the theory of optimal transport [17]. In
the latter context, Ambrosio et al. [18] rigorously derived
the asymptotic behavior of the average optimal cost for
the two-dimensional random Euclidean assignment problem,
previously obtained in Ref. [13] using a proper scaling ansatz.
For a recent review on random Euclidean matching problems,
see Ref. [19].

Remarkably enough, after the seminal works of Kirkpatrick
et al. [20], Orland [21], and Mézard and Parisi, the application
of statistical physics techniques to random optimization
problems proved to be extremely successful in the study of the
typical properties of the solutions, but also in the development
of algorithms to solve a given instance of the problem [22,23].
In formulating a combinatorial problem as a model in statistical
mechanics, an artificial inverse temperature β is introduced to
define a Boltzmann weight exp(−βE) for each configuration.
Of course, configurations of minimal energy are the only ones
to contribute in the limit of infinite β. For example, in the
assignment problem, the corresponding partition function for
each instance is

Z[w] =
∑

π

⎡

⎣
N∏

j=1

δ

(

1 −
N∑

i=1

πij

)

δ

(

1 −
N∑

i=1

πji

)⎤

⎦e−βE(π),

(8)

where the energy E(π ) is given by (6). Thermodynamic
information is obtained from the average total free energy

F := − ln Z

β
, (9)

E = ∂

∂β
βF . (10)

In this paper we apply the formalism above to the random
assignment problem, where the costs of all the edges are taken
to be independent and identically distributed random variables
with probability distribution density ρr (w) such that, in the
neighborhood of the origin, ρr can be written as

ρr (w) = wr

∞∑

k=0

ηk(r)wk, r > −1, η0(r) ̸= 0. (11)

In the previous expression, ηk(r) are coefficients (possibly
dependent on r) of the Maclaurin series expansion of the
function ρr (w)w−r , which is supposed to be analytic in the
neighborhood of the origin. The constraint r > −1 is required
to guarantee the integrability of the distribution near the origin.
By the general analysis performed in Refs. [8,21], which we
will resume in Sec. II, the average cost, in the asymptotic
regime of an infinite number N of couples of matched points,
will depend on the power r that appears in Eq. (11) only, aside
from a trivial overall rescaling related to η0. More precisely, if
Er is the average optimal cost obtained using the law ρr , then

Êr = lim
N→∞

1
Nr/(r+1)

Er = r + 1

[η0!(r + 1)]1/(r+1)J
(r+1)
r

, (12a)

where

J (α)
r :=

∫ +∞

−∞
Ĝr (−u)Dα

u Ĝr (u)du (12b)

(we will later specify the meaning of the fractional order
derivative Dα

u). The function Ĝr (y) is the solution of the
integral equation

Ĝr (l) =
∫ +∞

−l

(l + y)r

!(r + 1)
e−Ĝr (y)dy (12c)

and it is analytically known for r = 0 and, after a proper
rescaling of its variable, in the r → ∞ limit.

Our main results concern the finite-size corrections to the
average optimal costs and they will be presented in Sec.
III, extending the classical achievements in Refs. [24,25]. In
particular, we obtain the expansion

Êr (N ) = Êr +
[r]+1∑

k=1

+F̂ (k)
r + +F̂ T

r + +F̂ F
r + o

(
1
N

)
,

(13a)

where [r] is the integer part of r , [r] " r < [r] + 1 (the sum
is absent for r < 0), and the corrections have the structure

+F̂ (k)
r = +φ(k)

r

Nk/(r+1)
, r ! 0, 1 " k " [r] + 1, (13b)

+F̂ T
r = − 1

N

!(2r + 2)J (0)
r

(r + 1)η1/(r+1)
0 [!(r + 1)](2r+3)/(r+1)

, (13c)

+F̂ F
r = − 1

N

1
2[η0!(r + 1)]1/(r+1)

1

J
(r+3)
r

, (13d)

+φ(k)
r being independent of N . In particular, for r > 0, we

have that, provided η1 ̸= 0, the first finite-size correction is
given by

+F̂ (1)
r = − η1

N1/(r+1)

r + 1
η0[η0!(r + 1)]2/(r+1)

J (r)
r . (13e)

In our discussion, we will consider in particular two prob-
ability distribution densities, namely, the Gamma distribution

ρ!
r (w) := wre−wθ (w)

!(r + 1)
, (14)
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defined on R+, and the power-law distribution

ρP
r (w) := (r + 1)wrθ (w)θ (1 − w), (15)

defined on the compact interval [0,1]. In the previous expres-
sions we have denoted by θ (w) the Heaviside theta function
on the real line. Observe that, for the distribution ρ!

r , we have

η!
k (r) = 1

!(r + 1)
(−1)k

k!
, k ! 0, (16)

whereas in the case of ρP
r ,

ηP
k (r) = (r + 1)δk,0, k ! 0. (17)

The case r = 0 has already been considered by Mézard and
Parisi [24] and subsequently revised and corrected by Parisi
and Ratiéville [25]. In the case analyzed in their works, the
contributions +F̂

(1)
0 , +F̂ T

0 , and +F̂ F
0 are of the same order.

This is not true anymore for a generic distribution with r ̸= 0.
As anticipated, a relevant consequence of our evaluation is
that, if η1 ̸= 0, for r > 0 the most important correction comes
from +F̂ (1)

r and scales as N−1/(r+1). It follows that, in order to
extrapolate to the limit of an infinite number of points, the best
choice for the law for random links (in the sense of the one
that provides results closer to the asymptotic regime) is the
pure power law ρP

r , where only analytic corrections in inverse
power of N are present. Such a remark is even more pertinent
in the limit when r → ∞ at a fixed number of points, where
the corrections +F̂ (k)

r become of the same order of the leading
term. Indeed, the two limits r → ∞ and N → ∞ commute
only if the law ρP

r is considered.
The paper is organized as follows. In Sec. II we review,

in full generality, the calculation of the replicated partition
function of the random assignment problem. In Sec. III we
evaluate the finite-size corrections, discussing the different
contributions and proving Eqs. (13). In Sec. IV we evaluate the
relevant r → ∞ case, pointing out the noncommutativity of
this limit with the thermodynamic limit. In Sec. V we provide
the numerical values of the necessary integrals and we compare
our prediction with a Monte Carlo simulation for different
values of r . In Sec. VI we summarize and give our conclusions.

II. REPLICATED ACTION

In the present section we perform a survey of the classical
replica computation for the random assignment problem,
following the seminal works of Mézard and Parisi [8,24] (for
a slightly different approach see also Ref. [21]), but we do not
adopt their choice to replace β with β/2. As anticipated in
Sec. I, the computation of the average of ln Z goes through the
replica trick [26]

ln Z = lim
n→0

Zn − 1
n

. (18)

In other words, in order to compute ln Z we introduce
n noninteracting replicas of the initial system, denoted by
the index a ∈ [n]. For each i ∈ [N ], 2n replicated fields
{λa

i ,µ
a
i }a=1,...,n appear to impose the constraints in Eq. (5),

using the relation
∫ 2π

0
eikλdλ = 2πδk0. (19)

We obtain

Zn[w] =
[

n∏

a=1

N∏

i=1

∫ 2π

0

dλa
i

2π

∫ 2π

0

dµa
i

2π
ei(λa

i +µa
i )

]

×
N∏

i=1

N∏

j=1

n∏

a=1

[
1 + e−i(λa

j +µa
i )−βwij

]
. (20)

Let P([n]) be the set of subsets of the set [n] and for each
subset α ∈ P([n]) let |α| be its cardinality. Then

n∏

a=1

[
1 + e−i(λa

j +µa
i )−βwij

]

=
∑

α∈P([n])

exp

(

−β|α|wij − i
∑

a∈α

(
λa

j + µa
i

)
)

= 1 +
n∑

p=1

e−βpwij

∑

α ∈ P([n])
|α| = p

exp

(

−i
∑

a∈α

(
λa

j + µa
i

)
)

,

(21)

where we have extracted the contribution from the empty set in
the sum, which is 1, and we have partitioned the contribution
from each subset of replicas in terms of their cardinality. This
expression is suitable for the average on the costs. From the
law ρr we want to extract the leading term for large β of
the contribution of each subset α ∈ P([n]) with |α| = p. In
particular, we define

gα ≡ gp :=
∫ +∞

0
ρr (w)e−βpwdw. (22)

Due to the fact that short links only participate in the optimal
configuration, approximating ρr (w) ∼ η0w

r , we obtain that
the minimal cost for each matched vertex is of the order
N−1/(r+1), so the total energy E and the free energy should
scale as Nr/(r+1), that is, the limits

lim
N→∞

1
Nr/(r+1)

F = F̂ , (23)

lim
N→∞

1
Nr/(r+1)

E = Ê (24)

are finite. This regime can be obtained by considering in the
thermodynamic limit

β = β̂N1/(r+1), (25)

where β̂ is kept fixed. As a consequence we set

ĝp := Ngp = N

∫ +∞

0
ρr (w)e−pβ̂N1/(r+1)wdw

=
+∞∑

k=0

1
Nk/(r+1)

ηk!(k + r + 1)

(β̂p)k+r+1
. (26)
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The replicated partition function can be written therefore as

Zn =
[

n∏

a=1

N∏

i=1

∫ 2π

0

dλa
i

2π

∫ 2π

0

dµa
i

2π
ei(λa

i +µa
i )

]
N∏

i,j

(
1 + Tij

N

)

=
[

n∏

a=1

N∏

i=1

∫ 2π

0

dλa
i

2π

∫ 2π

0

dµa
i

2π
ei(λa

i +µa
i )

]

× exp

⎡

⎣ 1
N

N∑

i=1

N∑

j=1

(

Tij −
T 2

ij

2N

)

+ o

(
1

N2

)⎤

⎦, (27)

with

Tij :=
∑

α∈P([n])

′
ĝα exp

(

−i
∑

a∈α

(λa
j + µa

i )

)

, (28)

where in the sum
∑′ on subsets the empty set is excluded. If

we introduce, for each subset α ∈ P([n]), the quantities

xα + iyα√
2

:=
N∑

k=1

exp

(

−i
∑

a∈α

λa
k

)

, (29a)

xα − iyα√
2

:=
N∑

k=1

exp

(

−i
∑

a∈α

µa
k

)

, (29b)

we can write

N∑

i=1

N∑

j=1

Tij =
∑

α∈P([n])

′
ĝα

x2
α + y2

α

2
, (30a)

N∑

i=1

N∑

j=1

T 2
ij =

∑

α,β∈P([n])

′
ĝαĝβ

x2
α∪β + y2

α∪β

2
. (30b)

As observed by Mézard and Parisi [24] and Parisi and
Ratiéville [25], in Eq. (30b) we can constrain the sum on the
right-hand side to the couples α,β ∈ P([n]) such that α ∩ β =
∅. Indeed, let us consider α,β ∈ P([n]) and α ∩ β ̸= ∅. Then,
defining α△β := (α ∪ β) \ (α ∩ β), we have that

x2
α∪β + y2

α∪β

2

=
∑

l,k

exp

⎡

⎣−2i
∑

a∈α∩β

(
λa

l + µa
k

)
− i

∑

b∈α△β

(
λb

l + µb
k

)
⎤

⎦.

(30c)

Due to Eq. (19) and to the presence of the coefficients
exp(−2iλa

l − 2iµa
k ), the contribution of the term above will

eventually be suppressed because of the integration over the
Lagrange multipliers in the partition function. We can therefore
simplify our calculation by substituting immediately

N∑

i=1

N∑

j=1

T 2
ij =

∑

α,β ∈ P([n])
α ∩ β = ∅

′
ĝαĝβ

x2
α∪β + y2

α∪β

2
. (30d)

We perform now a Hubbard-Stratonovich transformation, neglecting o(N−2) terms in the exponent in Eq. (27), obtaining

exp

⎡

⎣ 1
N

N∑

i=1

N∑

j=1

(

Tij −
T 2

ij

2N

)⎤

⎦ =

⎡

⎣
∏

α∈P([n])

′
∫∫

NdXαdYα

2π ĝα

exp(xαXα + yαYα)

⎤

⎦

× exp

⎡

⎢⎢⎢⎣
−N

∑

α∈P([n])

′ X2
α + Y 2

α

2ĝα

−
∑

α,β ∈ P([n])
α ∩ β = ∅

′
ĝα ĝβ

X2
α∪β + Y 2

α∪β

4ĝ2
α∪β

⎤

⎥⎥⎥⎦
(31)

up to higher-order terms in the exponent. Now let us observe that

xαXα + yαYα =
[

N∑

i=1

exp

(

−i
∑

a∈α

λa
i

)]
Xα − iYα√

2
+

[
N∑

i=1

exp

(

−i
∑

a∈α

µa
i

)]
Xα + iYα√

2
. (32)

Introducing the function of vα ,

z[vα] :=
[

n∏

a=1

∫ 2π

0

dλa

2π
eiλa

]

exp

[

vα exp

(

−i
∑

b∈α

λb

)]

, (33)

and the order parameters

Qα := Xα + iYα√
2

, (34)
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we can write

Zn =

⎡

⎣
∏

α∈P([n])

′ N

2π ĝα

∫∫
dQαdQ∗

α

⎤

⎦

×e−NS[Q]−N+ST [Q], (35a)

with

S[Q] =
∑

α∈P([n])

′
( |Qα|2

ĝα

− ln z[Qα] − ln z[Q∗
α]

)
, (35b)

+ST [Q] =
∑

α,β ∈ P([n])
α ∩ β = ∅

′
ĝαĝβ

|Qα∪β |2

2Nĝ2
α∪β

, (35c)

a form that is suitable to be evaluated, in the asymptotic
limit for large N , by means of the saddle-point method. It
is immediately clear that +ST contains a contribution to the
action that is O(N−1) and therefore it can be neglected in
the evaluation of the leading contribution. It follows that the
stationarity equations are of the form

Q∗
α

ĝα

= d ln z[Qα]
dQα

,
Qα

ĝα

= d ln z[Q∗
α]

dQ∗
α

. (36)

The application of the saddle-point method gives

Zn ≃ exp
(
−NS[Qsp] − N+ST [Qsp] − 1

2 ln det ![Qsp]
)
,

(37)

where ! is the Hessian matrix of S[Q] and Qsp is the
saddle-point solution. As we will show below, the contri-
bution ln det ![Qsp] provides finite-size corrections to the
leading contribution of the same order of the corrections in
N+ST [Qsp].

Replica symmetric ansatz and limit of vanishing
number of replicas

To proceed with our calculation, we adopt, as usual in
the literature, a replica symmetric ansatz for the solution of
the saddle-point equations. A replica symmetric solution is of
the form

Qα = Q∗
α = q|α|. (38)

In particular, this implies that Yα = 0. In order to analytically
continue to n → 0 the value at the saddle point of S in Eq.
(35b), let us first remark that under the assumption in Eq. (38),

∑

α∈P([n])

′ |Qα|2

ĝα

=
n∑

k=1

(
n

k

)
q2

k

ĝk

= n

∞∑

k=1

(−1)k−1

k

q2
k

ĝk

+ o(n).

(39)
Moreover, as shown in Appendix A,

∑

α∈P([n])

′
ln z[Qα] = n

∫ +∞

−∞

(
e−el − e−G(l))dl, (40)

where

G(l) :=
∞∑

k=1

(−1)k−1qk

elk

k!
. (41)

In conclusion, under the replica symmetric ansatz in Eq. (38),
the functional to be minimized is

β̂F̂ =
∞∑

k=1

(−1)k−1

k

q2
k

ĝk

− 2
∫ +∞

−∞
[e−el − e−G(l)]dl. (42)

A variation with respect to qk gives the saddle-point equation

1
k

qk

ĝk

=
∫ +∞

−∞
e−G(y) e

yk

k!
dy, (43)

which is to say

G(l) =
∞∑

k=1

(−1)k−1qk

elk

k!

=
∫ +∞

−∞
e−G(y)

∞∑

k=1

(−1)k−1kĝk

e(y+l)k

(k!)2
dy. (44)

This implies that

∞∑

k=1

(−1)k−1

k

q2
k

ĝk

=
∞∑

k=1

(−1)k−1qk

∫ +∞

−∞
e−G(y) e

yk

k!
dy

=
∫ +∞

−∞
G(y)e−G(y)dy. (45)

These formulas are for a general law ρr . Observe also that the
expression of ĝp is not specified. For finite r and N → ∞, Eq.
(26) simplifies as

lim
N→∞

ĝp = η0!(r + 1)

(β̂p)r+1
. (46)

We will restrict the analysis to the case in which Eq. (46) holds.
Then Eq. (44) becomes

Gr (l) = η0!(r + 1)

β̂r+1

∫ +∞

−∞
Br (l + y)e−Gr (y)dy, (47)

with

Br (x) :=
∞∑

k=1

(−1)k−1 exk

kr (k!)2
. (48)

In Eq. (47), and in the following, we introduce the subindex
r to stress the dependence of G and of the thermodynamical
functionals on r . The average cost is therefore

Êr = ∂

∂β̂
β̂F̂r = r + 1

β̂

∫ +∞

−∞
Gr (y)e−Gr (y)dy. (49)

Using the fact that (see Appendix B)

lim
δ→∞

1
δr

Br (δx) = xrθ (x)
!(r + 1)

, (50)

if we introduce

Ĝr (l) := Gr

(
β̂

[η0!(r + 1)]
1

r+1

l

)
(51)

in the limit β̂ → +∞, the function Ĝr satisfies Eq. (12c) and
the value of Êr is the one reported in Eq. (12a). In particular,
at fixed r , if we consider the two laws ρP

r and ρ!
r , the ratio
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between the corresponding average optimal costs is given by

λr := ÊP
r

Ê!
r

=
(

η!
0

ηP
0

)1/(r+1)

= [!(r + 2)]−1/(r+1). (52)

In the case r = 0, we have the classical result by Mézard and
Parisi [8]

Ĝ0(l) = ln(1 + el), (53)

Ê0 = 1
η0(0)

∫ +∞

−∞

ln(1 + ey)
1 + ey

dy = 1
η0(0)

π2

6
, (54)

a result that was later obtained with a cavity approach
by Aldous [27]. For the evaluation of the integral, see
Appendix D.

III. FINITE-SIZE CORRECTIONS

The evaluation of the first-order corrections for a finite
number of points has been considered in Refs. [24,25] in
the r = 0 case. For this particular choice and assuming a
distribution law ρ!

0 , a much stronger conjecture was proposed
by Parisi [28] and later proved by Linusson and Wästlund,
Nair et al. [29,30], that is, for every N ,

Ê!
0 (N ) = HN,2 :=

N∑

k=1

1
k2

. (55)

For large N , Parisi’s formula implies

Ê!
0 (N ) = π2

6
− 1

N
+ o

(
1
N

)
. (56)

Using instead the law ρP
0 (uniform distribution on the interval)

we have [24,25]

ÊP
0 (N ) = π2

6
− 1 + 2ζ (3)

N
+ o

(
1
N

)
, (57)

from which we see that corrections for both laws are analytic,
with the same inverse power of N , but different coefficients.

In their study of the finite-size corrections, the authors of
Ref. [25] show that, in their particular case, there are two
kind of finite-size corrections. The first one comes from the
application of the saddle-point method, giving a series of
corrections in the inverse powers of N . This contribution
is the sum of two terms. The first term in this expansion
corresponds to the contribution of the +ST term given in
Eq. (35c) appearing in the exponent in Eq. (37). The second
term is related to the fluctuations, also appearing in Eq. (37),
involving the Hessian of S. The second kind of corrections
instead is due to the particular form of the law ρr (w) for the
random links and in particular to the series expansion in Eq.
(26). This contribution can be seen at the level of the action S
in Eq. (35b), being

|Qα|2

ĝα

≈ |Qα|2 (β̂|α|)r+1

η0!(r + 1)
− |Qα|2 (r + 1)

N1/(r+1)

η1

η2
0

(β̂|α|)r

!(r + 1)

+O(N−[2/(r+1)]). (58)

In full generality, the expansion of 1/ĝα generates a sum over
terms, each one of order N−[k/(r+1)] with k ! 1. All these

corrections are o(N−1) for r ∈ (−1,0), whereas the corrections
obtained from the contributions with 1 " k " r + 1 are of
the same order as the analytic term, or greater, for r ! 0. In
particular, if η1 ̸= 0, for r > 0 the k = 1 term provides the
leading correction, scaling as N−[1/(r+1)]. It is also evident
that all these corrections are absent if ηk = 0 for k ! 1, as it
happens in the case of the ρP

r law.

A. Correction due to η1

Let us consider the r ! 0 case and let us restrict ourselves to
the k = 1 term, of order N−[1/(r+1)] in Eq. (13). Its contribution
to the total free energy is given by

β̂+F̂ (1)
r = − r + 1

N1/(r+1)

η1

η2
0

∞∑

p=1

(−1)p−1

p

(β̂p)r

!(r + 1)
q2

p, (59)

where we already made a replica symmetric assumption and
considered the n → 0 limit. Imposing the saddle-point relation
in Eq. (43) and using the limit in Eq. (46), we obtain

N1/(r+1)+F̂ (1)
r

= −η1(r + 1)

β̂2η0

∫ +∞

−∞
e−Gr (y)

∞∑

p=1

(−1)p−1qpepy

pp!
dy

= −η1(r + 1)

β̂2η0

∫ +∞

−∞
e−Gr (y)

∫ y

−∞
Gr (u)dy du

= − η1(r + 1)

η0[η0!(r + 1)]2/(r+1)

∫ +∞

−∞
e−Ĝr (y)

∫ y

−∞
Ĝr (u)dy du.

(60)

To put the expression above in the form presented in Eq. (13e),
observe that

∫ +∞

−∞
e−Ĝr (y)

∫ y

−∞
Ĝr (u)dy du

=
∫ +∞

−∞
Ĝr (−u)

∫ +∞

−∞
e−Ĝr (y)θ (y + u)dy du

=
∫ +∞

−∞
Ĝr (−u)Dr

u Ĝr (u)du ≡ J (r)
r , (61)

a structure that can be more useful for numerical evaluation, at
least for r integer. In this equation we have used Eq. (C4)
and we have introduced the Riemann-Liouville fractional
derivative

Dα
t f (t) := d [α]+1

dt [α]+1

∫ t

−∞

(t − τ )[α]−α

!([α] − α + 1)
f (τ )dτ,

α ! 0, f ∈ Lp(1) ∀p ∈
[

1,
1

[α] − α + 1

)
, (62)

where 1 := (−∞,t) is the domain of integration (see the
monographs in Refs. [31,32] for further details).

B. Correction due to the saddle-point approximation

Let us now consider the corrections due to the saddle-point
approximation. The first contribution is expressed by +ST ,
given in Eq. (35c). In the replica symmetric hypothesis, we
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have that
∑

α,β ∈ P([n])
α ∩ β = ∅

′
ĝαĝβ

|Qα∪β |2

2Nĝ2
α∪β

= 1
2N

∞∑

s=1

∞∑

t=1

(
n

s,t,n − s − t

)
ĝs ĝt

ĝ2
s+t

q2
s+t . (63)

We can write the corresponding correction to the free energy
as

+F̂ T
r = 1

2β̂N

∞∑

s=1

∞∑

t=1

(−1)s+t−1 (s + t − 1)!
s!t!

ĝs ĝt

ĝ2
s+t

q2
s+t . (64)

In Appendix E we show that the previous quantity can be
written as

+F̂ T
r = − !(2r + 2)

Nη
1/(r+1)
0 !2+1/(r+1)(r + 1)

1
r + 1

×
∫ +∞

−∞
Ĝr (−u)Ĝr (u)du

= − !(2r + 2)

Nη
1/(r+1)
0 !2+1/(r+1)(r + 1)

J (0)
r

r + 1
. (65)

Another type of finite-size correction comes from the
fluctuations around the saddle point (see [25], Sec. B 3), related
to the Hessian matrix ! appearing in Eq. (37). The evaluation
of the contribution of the Hessian matrix is not trivial and it has
been discussed by Mézard and Parisi [24] and later by Parisi
and Ratiéville [25]. They proved that the whole contribution
comes from a volume factor due to a nontrivial metric !̂
obtained from ! imposing the replica symmetric assumption
and such that

ln
√

det ! = ln
√

det !̂. (66)

The n × n matrix !̂ can be written as

!̂ = na1# + (a0 − a1)In, (67)

where In is the n × n identity matrix and we have introduced
the quantities

a0 :=
∞∑

p=1

(
n − 1
p − 1

)
q2

p

ĝp

, (68a)

a1 :=
∞∑

p=2

(
n − 2
p − 2

)
q2

p

ĝp

, (68b)

and # is a projection matrix on the constant vector defined as

# := Jn

n
, (69)

where Jn is the n × n matrix with all entries equal to 1. The
matrix # has one eigenvalue equal to 1 and n − 1 eigenvalues
equal to 0. It follows that, because the two matrices #
and In obviously commute, !̂ has one eigenvalue equal to
a0 + (n − 1)a1 and n − 1 eigenvalues equal to a0 − a1. Its
determinant is therefore simply given by

det !̂ = (a0 − a1)n−1[a0 + (n − 1)a1]. (70)

In the limit of n → 0 we easily get

a0 =
∞∑

p=1

(−1)p−1 q2
p

ĝp

=
∞∑

p=1

(−1)p−1pqp

∫ +∞

−∞
e−Gr (y) e

py

p!
dy

=
∫ +∞

−∞
e−Gr (y) dGr (y)

dy
dy =

∫ +∞

−∞
e−Ĝr (y) dĜr (y)

dy
dy

= −
∫ +∞

−∞

d

dy
e−Ĝr (y)dy = e−Ĝr (−∞) − e−Ĝr (+∞) = 1 (71)

for all values of r . Similarly,

a1 = −
∞∑

p=2

(−1)p−1(p − 1)
q2

p

ĝp

= −
∞∑

p=1

(−1)p−1(p − 1)
q2

p

ĝp

,

(72)

so

a0 − a1 =
∞∑

p=1

(−1)p−1p
q2

p

ĝp

=
∞∑

p=1

(−1)p−1p2qp

∫ +∞

−∞
e−Gr (y) e

py

p!
dy

=
∫ +∞

−∞
e−Gr (y) d2

dy2
Gr (y)dy

= [η0!(r + 1)]1/(r+1)

β̂

∫ +∞

−∞
e−Ĝr (y) d2

dy2
Ĝr (y)dy.

(73)

Therefore,
√

det !̂ = 1 + n

2

[
a1

a0 − a1
+ ln(a0 − a1)

]
+ o(n). (74)

In conclusion, integrating by parts and using Eq. (C6), we
obtain

+F̂ F
r = − lim

β̂→∞

1

nN β̂
ln

√
det !̂

= − 1
2N [η0!(r + 1)]1/(r+1)

1

J
(r+3)
r

. (75)

C. Application: The r = 0 case

The results obtained in the r = 0 case, analyzed by Parisi
and Ratiéville [25], can be easily recovered. From the general
expression in Eq. (13), by setting r = 0, we get

+F̂0 := +F̂
(1)
0 + +F̂ T

0 + +F̂ F
0

= − 1
η0(0)N

[(
1 + η1(0)

η0(0)

)
J

(0)
0

η0(0)
+ 1

2J
(3)
0

]

= − 1
η0(0)N

[(
1 + η1(0)

η0(0)

)
2ζ (3)
η0(0)

+ 1
]
, (76)

where we have used the results discussed in the Appendix
D for the two integrals involved in the expression above.
Equations (56) and (57) are obtained using Eqs. (16) and (17),
respectively.
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IV. LIMITING CASE r → +∞
In this section we concentrate on the limiting case in which

r → +∞. We can easily verify that, in the weak sense,

lim
r→+∞

ρP
r (w) = δ(w − 1), (77)

so all the weights become equal to unity. We expect therefore
that

lim
r→+∞

ÊP
r (N ) = 1, (78)

independently of N . The average cost obtained using ρ!
r

instead diverges and it is therefore more interesting to consider
the modified law

ργ
r (w) := (r + 1)r+1

!(r + 1)
wre−(r+1)wθ (w)

r→∞−−−→ δ(w − 1). (79)

According to our general discussion, we have that

η
γ
k (r) = (r + 1)k+r+1

!(r + 1)
(−1)k

k!
, k ! 0, (80)

implying that, independently of N ,

Êγ
r (N ) = 1

r + 1
Ê!

r (N ) (81)

and therefore

Êγ
r = !(r + 2)1/(r+1)

r + 1
ÊP

r (82)

in the limit of infinite N . In particular,

lim
r→+∞

Êγ
r = 1

e
. (83)

It follows that, even though the two laws ρP and ργ both
converge to the same limiting distribution, according to our
formulas, the corresponding average costs are not the same.
This is due to the fact that the two limits N → +∞ and r →
+∞ do not commute for the law ργ , because of the presence
of O(N−[k/(r+1)]) corrections that give a leading contribution
if the r → ∞ limit is taken first.

To look into more details in the r → +∞ limit, we find
it convenient, when looking at the saddle-point solution, to
perform a change of variables, following the approach in Refs.
[33,34], that is, writing

Gr (x) := Ĝr

[
!1/(r+1)(r + 2)

(
1
2

+ x

r + 1

)]
, (84)

then Eq. (12c) becomes

Gr (x) =
∫ +∞

−x−r−1

(
1 + x + t

r + 1

)r

e−Gr (t)dt, (85)

so in the r → +∞ limit

G∞(x) = ex

∫ +∞

−∞
et−G∞(t)dt. (86)

If we set G∞(x) = aex , with

a =
∫ +∞

−∞
et−G∞(t)dt, (87)

we recover

a =
∫ +∞

−∞
et−aet

dt =
∫ +∞

0
e−azdz = 1

a
⇒ G∞(x) = ex.

(88)
From Eq. (12a) with the change of variable in Eq. (84), we get

Êr =
(

r + 1
η0(r)

)1/(r+1) ∫ +∞

−∞
Gr (x)e−Gr (x)dx, (89)

so

Ê∞ = lim
r→+∞

(
r + 1
η0(r)

)1/(r+1)

= lim
r→+∞

η0(r)−1/(r+1) =
{

1 for ρP
r

1
e

for ρ
γ
r ,

(90)

in agreement with the previous results.
Let us now evaluate the integrals appearing in the finite-size

corrections in Eq. (13). Let us first start with the +FT
r and the

+FF
r corrections. From the definition, for large r ,

J (0)
r =

∫ +∞

−∞
Ĝr (y)Ĝr (−y)dy

=
∫ +∞

−∞
dy

∫ ∞

−y

dt1
(t1 + y)r

!(r + 1)
e−Ĝr (t1)

×
∫ ∞

y

dt2
(t2 + y)r

!(r + 1)
e−Ĝr (t2)

= !1/(r+1)(r + 2)
∫ +∞

−∞
dt1

×
∫ +∞

−∞
dt2Kr (t1,t2)e−Gr (t1)−Gr (t2), (91)

where

Kr (t1,t2) :=
∫ x2

−x1−r−1

(t + t1 + r + 1)r (t2 − t)r

(r + 1)2r+1
dt

=
(

1 + x1 + x2

r + 1

)2r+1
!2(r + 1)
!(2r + 2)

, (92)

and therefore for large r ,

J (0)
r ≃ !1/(r+1)(r + 2)

!2(r + 1)
!(2r + 2)

(∫ +∞

−∞
ex−ex

dx

)2

= !1/(r+1)(r + 2)
!2(r + 1)
!(2r + 2)

≃ !2+1/(r+1)(r + 1)
!(2r + 2)

, (93)

so we get

+F̂ T
r ≃ − 1

Nη
1/(r+1)
0 (r)r

, (94)

a contribution that vanishes as r−1 both for the law ρP
r and for

the law ρ
γ
r (indeed we know that, in this case, all corrections

must vanish when r → ∞ at fixed N ). In particular, if we
consider the law ρ!

r , we have, in the r → ∞ limit,

+F̂ T
∞ = − 1

eN
. (95)
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Similarly, for large r , we have that

1

J
(r+3)
r

= !(r + 2)1/(r+1)

r + 1

[∫ +∞

−∞
e−Gr (x)

(
d

dx

)2

Gr (x)

]−1

= 1
e

(96)

and therefore

+F̂ F
r ≃ − 1

2Nη
1/(r+1)
0 (r)r

= +F̂ T
r

2
. (97)

Instead, if we consider +F̂ (1)
r , we have that

J (r)
r =

[
!(r + 2)1/(r+1)

r + 1

]2 ∫ +∞

−∞
du e−Gr (u)

∫ u

−∞
dv Gr (v)

r→∞−−−→ 1
e2

∫ +∞

−∞
du e−eu

∫ u

−∞
dv ev = 1

e2
, (98)

finally obtaining

+F̂ (1)
r ≃ − η1(r)

N1/(r+1)η
1+2/(r+1)
0 (r)r

, (99)

so that, considering the law ρ
γ
r , if we send r → ∞ before

taking the limit N → ∞, +F̂
(1)
+∞ ∼ O(1) and we get a new

contribution to the average optimal cost

Ê = Ê∞ +
∞∑

k=1

+F̂ (k)
∞ = 1

e
+ 1

e2
+ · · · , (100)

a series where we miss the contributions of order Nk/(r+1) for
k ! 2 and that we know will sum to 1.

V. NUMERICAL RESULTS

In this section we discuss some numerical results. First,
we present a numerical study of our theoretical predictions
obtained in the previous sections. Second, we compare with
numerical simulations, in which the random assignment
problem is solved using an exact algorithm.

The evaluation of all quantities in Eq. (13) depends on the
solution of Eq. (12c). We solved numerically this equation for
general r by a simple iterative procedure. In particular, for
r > 0 we generated a grid of 2K − 1 equispaced points in an
interval [−ymax,ymax] and we used a discretized version of the
saddle-point equation in Eq. (12c) in the form

Ĝ[s+1]
r (yi) = ymax

K

2K∑

k=2K−i

(yi + yk)re−Ĝ[s]
r (yk )

!(r + 1)
,

yi = i − K

K
ymax, i = 0,1, . . . ,2K. (101)

We imposed as the initial function Ĝ[0]
r of the iterative

procedure

Ĝ[0]
r (yi) ≡ Ĝ0(yi) = ln(1 + eyi ). (102)

We observed that the quantity

+G[s]
r =

2K∑

i=0

∣∣Ĝ[s]
r (yi) − Ĝ[s−1]

r (yi)
∣∣ (103)

decays exponentially with s and therefore convergence is very
fast. For our computation, we used typically 30 iterations.

For r < 0 the term (l + y)r in the saddle-point equation
is divergent in y = −l and Eq. (101) cannot be adopted. We
have therefore rewritten the saddle-point equation using an
integration by parts, obtaining

Ĝr (l) =
∫ +∞

−l

(l + y)r+1e−Ĝr (y)

!(r + 2)
dĜr (y)

dy
dy. (104)

After discretizing the previous equation, we used the same
algorithm described for the r ! 0 case [for a discussion on the
uniqueness of the solution of Eq. (12c), see Ref. [35]].

In Table I we present our numerical results for the quantities

η
1/(r+1)
0 Êr ,

(
Nη2

0

)1/(r+1) η0+F̂ (1)
r

η1
,

Nη
1/(r+1)
0 +F̂ T

r , Nη
1/(r+1)
0 +F̂ F

r

for different values of r . Observe that the quantities appearing
in the expansion in Eqs. (13) can be calculated using these
values for any ρr at given r , in addition to simple prefactors
depending on the chosen distribution ρr .

In order to test our analysis for correction terms, we
performed direct Monte Carlo sampling on a set of instances.
Previous simulations have been reported, for example, in Refs.
[8,33,36,37]. In our setting, each realization of the matching
problem has been solved by a C++ implementation of the
Jonker-Volgenant algorithm [38].

We first evaluated the asymptotic average optimal costs ÊP
r

and Ê!
r , obtained, for different values of r , using the laws ρP

r

and ρ!
r , respectively. In the case of the law ρP

r , the asymptotic
estimate for ÊP

r has been obtained using the fitting function

f P(N ) = αP
r + βP

r

N
, (105)

with αP
r and βP

r fitting parameters to be determined, αP
r

corresponding to the value of the average optimal cost in the
N → ∞ limit. For a given value of r , we averaged over IN

instances for each value of N according to Table II.
Similarly, the asymptotic average optimal cost Ê!

r has been
obtained using a fitting function in the form

f !(N ) =
{

α!
r + β!

r N−1 + γ !
r N−[1/(r+1)] for − 1

2 " r < 1

α!
r + γ !

r N−[1/(r+1)] + δ!
r N−[2/(r+1)] for r ! 1.

(106)

We adopted therefore a three-parameter fitting function,
constructed according to Eq. (13) including the finite-size

correction up to o(N−1) for r ! 0 and up to O(N−2) for
1
2 " r < 2. As in the case before, the asymptotic estimation
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TABLE I. Numerical values of the rescaled corrections appearing in Eqs. (13) for different values of r .

r η
1/(r+1)
0 Êr (Nη2

0)1/(r+1) η0+F̂
(1)
r

η1
Nη

1/(r+1)
0 +F̂ T

r Nη
1/(r+1)
0 +F̂ F

r

−0.5 1.125775489 −2.777285153 −3.917446075 −1.192663973
−0.4 1.334614017 −2.952484269 −3.665262242 −1.250475151
−0.3 1.471169704 −2.921791666 −3.324960744 −1.222990786
−0.2 1.558280634 −2.784084499 −2.984917100 −1.157857158
−0.1 1.612502443 −2.600804197 −2.675513663 −1.079610016
0 1.644934067 −2.404113806 −2.404113806 −1
0.1 1.662818967 −2.215821874 −2.168528577 −0.924257491
0.2 1.671039856 −2.038915744 −1.966713438 −0.854501434
0.3 1.672729262 −1.877696614 −1.792481703 −0.791231720
0.4 1.670005231 −1.732453452 −1.641566768 −0.734262435
0.5 1.664311154 −1.602337915 −1.510248399 −0.683113178
0.6 1.656639222 −1.486024319 −1.395391897 −0.637204338
0.7 1.647677145 −1.382051819 −1.294397704 −0.595951390
0.8 1.637905005 −1.288993419 −1.205124002 −0.558807473
0.9 1.627659755 −1.205532353 −1.125808312 −0.525279810
1 1.617178636 −1.130489992 −1.054997763 −0.494933215
2 1.519733739 −0.670341811 −0.626403698 −0.303146650
3 1.446919560 −0.461144035 −0.431759755 −0.211631545
4 1.393163419 −0.346056113 −0.324185048 −0.159938240
5 1.352087648 −0.274505368 −0.257174804 −0.127356338
6 1.319651066 −0.226200326 −0.211931870 −0.105200594
7 1.293333076 −0.191617643 −0.179566694 −0.089276830
8 1.271505390 −0.165752490 −0.155385461 −0.077340947
9 1.253073980 −0.145742887 −0.136697943 −0.068095120
10 1.237277174 −0.129842072 −0.121861122 −0.060741591

for Ê!
r is given by α!

r . Our data were obtained extrapolating
the N → ∞ limit from the average optimal cost for different
values of N . The investigated sizes and the number of
iterations were the same adopted for the evaluation of ÊP

r . To
better exemplify the main differences in the finite-size scaling
between the ρP

r case and the ρ!
r case, we have presented the

numerical results for r = 1 in Fig. 1. In the picture, it is clear
that the asymptotic value ÊP

1 = 1√
2
Ê!

1 is the same in the two
cases, as expected from Eq. (52), but the finite-size corrections
are different both in sign and in their scaling properties. In
Table III we compare the results of our numerical simulations
with the ones in the literature (when available) for both ÊP

r (N )
and λr Ê

!
r (N ), λr being defined in Eq. (52). In Fig. 2 we plot

our theoretical predictions and the numerical results.
Let us now consider the finite-size corrections. In the case of

the ρP
r law, the O(N−1) corrections are given by +F̂ T

r + +F̂ F
r

and no nonanalytic corrections to the leading term appear.
We obtain the finite-size corrections from the data used for
Table III, using Eq. (105) but fixing αP

r to the average optimal

TABLE II. Number of iterations IN performed for a given size N

in the numerical simulations.

N IN

500 100000
750 75000
1000 50000
2500 20000
5000 10000

cost ÊP
r given by the theoretical prediction in Table I and

therefore with one free parameter only, namely, βP
r . In Fig. 3

we compare our predictions for +F̂ T
r + +F̂ F

r , deduced by the
values in Table I, with the results of our numerical simulations
for different values of r .

In the case of the ρ!
r law with r > 0, the first correction

to the average optimal cost is given by +F̂ (1)
r , whereas +F̂ (1)

r

is o(N−1) for r < 0. Again, this correction can be obtained

FIG. 1. Numerical results for ÊP
1 (N ) and Ê!

1 (N ) for several
values of N . Note that finite-size corrections have a different sign
for N → +∞. We have represented also the theoretical predictions
for both cases obtained including the finite-size corrections up to
O(N−1).
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TABLE III. Numerical results for the average optimal cost for different values of r and theoretical predictions. The value ÊP
r from Ref.

[33], due to a different convention adopted in that paper, is obtained as ÊP
r = ( 2π (r+1)/2!(r+1)

!( r+1
2 )!(r+2)

)1/(r+1)
βnum(r + 1) from Table II therein. The data

for ÊP
r from Ref. [37] have been obtained via a linear fit, using a fitting function in the form of Eq. (105).

r ÊP
r λr Ê

!
r ÊP

r [33] ÊP
r [37] Theoretical prediction

−0.5 4.5011(3) 4.504(1) 4.503101957
−0.4 3.12611(5) 3.1268(2) 3.126825159
−0.3 2.4484(1) 2.4488(3) 2.448788557
−0.2 2.0593(5) 2.0593(3) 2.059601452
−0.1 1.8127(3) 1.8126(2) 1.812767212
0 1.64500(5) 1.6449(2) 1.645(1) 1.6450(1) 1.644934067
0.1 1.5245(2) 1.5253(9) 1.524808331
0.2 1.4356(2) 1.4357(5) 1.435497487
0.3 1.3670(1) 1.3670(4) 1.367026464
0.4 1.31323(6) 1.3132(3) 1.3132296
0.5 1.27007(8) 1.2697(4) 1.270107121
0.6 1.2350(1) 1.2348(3) 1.234960167
0.7 1.20585(6) 1.2062(6) 1.205907312
0.8 1.18143(3) 1.1812(7) 1.181600461
0.9 1.16099(8) 1.1605(6) 1.161050751
1 1.14344(7) 1.1433(4) 1.143(2) 1.14351798
2 1.05371(1) 1.054(1) 1.054(1) 1.054(1) 1.053724521
3 1.02311(1) 1.0288(9) 1.0232(1) 1.0236(2) 1.023126632
4 1.009690(4) 1.010(3) 1.0098(1) 1.009736514
5 1.00303(2) 1.005(3) 1.00306(8) 1.0026(8) 1.003027802

by a fit of the same data used to extrapolate the average
optimal cost, fixing the fitting parameter α!

r in Eq. (106) to
the theoretical prediction and performing a two-parameter fit
in which the quantity γ !

r appearing in Eq. (106) corresponds
to +F̂ (1)

r . In Fig. 4 we compare our prediction for +F̂ (1)
r ,

given in Table I, with the results of our fit procedure for
γ !

r for − 1
2 < r " 5. Observe that the numerical evaluation

of the single contribution +F̂ (1)
r is not possible for r = 0.

In this case, the result of our fit for the O(N−1) correction

−0.5 0 0.5 1 1.5 2

1

2

3

4

r

Ê
P r

Ε̂ P
r

Theoretical prediction

2 4 6 8 10 12 14 16 18 20

0.995

1

1.005

1.01

1.015

1.02

1.025

FIG. 2. Theoretical prediction of ÊP
r for several values of r (solid

line), compared with our numerical results. The dashed line is the
large-r asymptotic estimate, equal to 1. Error bars do not appear
because they are smaller than the marks in the plot. The values for
λr Ê

!
r almost coincide with the values of ÊP

r (see Table III) and are
not represented.

was β!
r + γ !

r = −0.97(4), to be compared with the theoretical
prediction N (+F̂

(1)
0 + +F̂ F

0 + +F̂ T
0 ) = −0.998 354 732 . . . .

VI. CONCLUSION

In the present paper we have discussed the finite-size
corrections in the random assignment problem for a generic
distribution law ρr (w) for the weights in the form of Eq. (11).
We have shown that, for r > 0 and η1 ̸= 0, the first finite-size
correction scales as O(N−1/(r+1)) and it is proportional to η1.
In particular, the integrals J (0)

r , J (r)
r , and J (r+3)

r are positive
quantities (see Appendix C). Therefore, independently of r ,

1 10

0.1

1

10

r + 1

−
N

∆F̂
F r

−
N

∆F̂
T r

Data
Theoretical prediction

FIG. 3. Numerical estimates of +F̂ T
r + +F̂ F

r for several values
of r (red squares) and theoretical prediction (blue line) obtained using
the law ρP

r . The dashed line is the large-r asymptotic estimate.
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1 10
0.1

1

10

100

ε−2

r + 1

Ν
1

r
+1

r+
1

∆F̂
(1

)
r

Data
Theoretical prediction

FIG. 4. Numerical estimates of +F̂ (1)
r for several values of r (red

squares) and theoretical prediction (blue line with circles) obtained
using the law ρ!

r . Observe that a discrepancy between the theoretical
prediction and the numerical results appears for r ! 1: We interpret
this fact as a consequence of the similar scaling of +F̂ (1)

r and
+F̂ (2)

r for r ≫ 1, which makes the numerical evaluation of the single
contribution +F̂ (1) difficult. The dashed line is the large-r asymptotic
estimate.

the corrections +F̂ T
r and +F̂ F

r are negative, while +F̂ (1)
r has

opposite sign with respect to η1, so that, for example, it is
positive for the law ρ!

r , while it vanishes for the law ρP
r . We

also provided a general expression for the coefficients of the
O(N−[1/(r+1)]) and O(N−1) corrections. Moreover, we have
shown that, if limr→+∞ ρr = ρ, then in general

lim
r→∞

lim
N→∞

Êr (N ) ̸= lim
N→∞

lim
r→∞

Êr (N ). (107)

We have finally numerically verified our results, by a numerical
integration of our formulas and a comparison with simulations.

The O(N−[k/(r+1)]) corrections appearing in Eq. (13), for
2 " k " [r] + 1, remain to be computed. As discussed above,
in the r → ∞ limit, it is expected that all these finite-size
corrections contribute to the leading term, justifying the
noncommutativity of the limits in Eq. (107).
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APPENDIX A: EVALUATION OF z[ Q] ON THE SADDLE
POINT AND ANALYTIC CONTINUATION FOR n → 0

Let us evaluate now the quantity z[Q] on the saddle point.
Using the fact that, for any analytic function f ,

∫ 2π

0

dλ

2π
eiλf (e−iλ) =

∮
dξ

2π i

f (ξ )
ξ 2

= df

dξ

∣∣∣∣
ξ=0

, (A1)

we can write
[

n∏

a=1

∫ 2π

0

dλa

2π
eiλa

]

exp

⎧
⎨

⎩
∑

α∈P([n])

′
q|α| exp

(

−i
∑

b∈α

λb

)⎫
⎬

⎭

= ∂n

∂ξ1 · · · ∂ξn

∣∣∣∣
ξ1=···=ξn=0

exp

⎧
⎨

⎩
∑

α∈P([n])

′
q|α|

∏

b∈α

ξb

⎫
⎬

⎭

=
∑

α

∏

αi∈α

q|αi |, (A2)

where α = {αi}i and αi ∈ P([n]) are disjoint subsets whose
union is [n]; however,

∑

α

∏

αi∈α

q|αi | =
n∑

m=1

∑

k1, . . . ,km

k1 + · · · + km = n

(
n

k1 · · · km

)
qk1 · · · qkm

m!

=
(

d

dt

)n ∞∑

m=0

1
m!

∑

k1,...,km

qk1 · · · qkm

k1! · · · km!
t k1+···+km

∣∣∣∣
t=0

=
(

d

dt

)n ∞∑

m=0

1
m!

( ∞∑

k=1

qk

tk

k!

)m∣∣∣∣
t=0

=
(

d

dt

)n

exp

( ∞∑

k=1

qk

tk

k!

)∣∣∣∣
t=0

. (A3)

To perform the analytic prolongation, we prove now that, if
f (0) = 1, then

lim
n→0

1
n

ln
[(

d

dt

)n

f (t)
∣∣∣∣
t=0

]
=

∫ +∞

−∞
[e−el − f (−el)]dl.

(A4)

This fact can be seen observing that, for n → 0,
(

d

dt

)n

f (t) = f

(
∂

∂J

)
J neJ t

∣∣∣∣
J=0

≈ f (t) + nf

(
∂

∂J

)
ln JeJ t

∣∣∣∣
J=0

= f (t) + nf

(
∂

∂J

)∫ ∞

0

ds

s
(e−s − e−sJ )eJ t

∣∣∣∣
J=0

= f (t) + n

∫ ∞

0

ds

s
[e−sf (t) − f (t − s)]. (A5)

By the change of variable s = el , Eq. (A4) follows.

APPENDIX B: ASYMPTOTIC BEHAVIOR
OF THE FUNCTION Br

In this appendix we study the asymptotic behavior for large
λ of the function Br (λx). By definition in Eq. (48)

1
λr

Br (λx) :=
∞∑

k=1

(−1)k−1 eλxk

(λk)r (k!)2
, (B1)
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so that

Br (λx)
λr

= − 1
!(r)

∫ ∞

0
t r−1

∞∑

k=1

(−1)k

(k!)2
eλ(x−t)kdt

= − 1
!(r)

∫ ∞

0
t r−1{J0[2eλ(x−t)/2] − 1}dt

λ→+∞−−−−→ 1
!(r)

∫ ∞

0
t r−1θ (x − t)dt = xr

!(r + 1)
θ (x),

(B2)

where we have used the fact that

J0(x) :=
∞∑

m=0

(−1)m

(m!)2

(
x

2

)2m

=
{

1 when x → 0,

0 when x → +∞ (B3)

is the Bessel function of zeroth order of the first kind.

APPENDIX C: PROPERTIES OF THE FUNCTION Ĝr

In this appendix we give some properties of the function
Ĝr , defined by the integral equation (12c). From the definition,
we have that, for 0 " α < β + 1 and r > −1,

Ĝ(α)
r (l) := Dα

l Ĝr (l)

=
∫ +∞

−∞

(l + y)r−α

!(r − α + 1)
e−Ĝr (y)θ (l + y)dy. (C1)

Observe that

Ĝ(α)
r (l) ! 0 for 0 " α < r + 1. (C2)

In this equation we have used the fact that, for 0 " α < β + 1,
we have [32]

Dα
t

[
tβ

!(β + 1)
θ (t)

]
= tβ−α

!(β − α + 1)
θ (t). (C3)

In particular, for α = r we have the simple relation

Ĝ(r)
r (l) := Dr

l Ĝr (l) =
∫ ∞

−∞
e−Ĝr (y)θ (y + l)dy. (C4)

Moreover, for 0 " α < r + 1,

lim
l→−∞

Ĝ(α)
r (l) = 0. (C5)

From Eq. (C4)

Ĝ(r+1)
r (l) = e−Ĝr (−l) ! 0 ⇒ lim

l→+∞
Ĝ(r+1)

r (l) = 1. (C6)

The relations above imply that

J (α)
r :=

∫ +∞

−∞
Ĝr (−u)Dα

u Ĝr (u)du > 0, 0 " α < r + 1.

(C7)
Similarly, for 0 < k < r + 1 an integer,

J (r+k+1)
r :=

∫ +∞

−∞
Ĝr (−u)Dr+k+1

u Ĝr (u)du

=
∫ +∞

−∞
Ĝr (−u)

dk

duk
e−Ĝr (−u)du

=
∫ +∞

−∞
Ĝ(k)

r (u)e−Ĝr (u)du ! 0. (C8)

For large l we have

Ĝr (l) ≈ lr+1

!(r + 2)
, (C9)

Ĝr (−l) ≈ exp
[

− lr+1

!(r + 2)

]
. (C10)

As anticipated, an exact solution is available in the r = 0 case.
In particular, for r = 0, the second derivative

Ĝ
(2)
0 (l) = e−Ĝ0(−l)Ĝ

(1)
0 (−l) = Ĝ

(1)
0 (l)Ĝ(1)

0 (−l) (C11)

is an even function of l,

Ĝ
(2)
0 (l) − Ĝ

(2)
0 (−l) = 0 ⇒ Ĝ

(1)
0 (l) + Ĝ

(1)
0 (−l) = c, (C12)

with the constant c = 1 by evaluating the left-hand side in the
limit of infinite l and

Ĝ
(1)
0 (0) = e−Ĝ0(0) = 1

2 . (C13)

Then we have that

Ĝ0(l) − Ĝ0(−l) = l ⇒ Ĝ
(1)
0 (l) = e−Ĝ0(−l) = el−Ĝ0(l),

(C14)
which means that

d

dl
eĜ0(l) = el ⇒ eĜ0(x) − eĜ0(0) = ex − 1, (C15)

where we have used the initial condition at l = 0, that is,
because of Eq. (C13),

eĜ0(x) = 1 + ex ⇒ Ĝ0(x) = ln(1 + ex). (C16)

APPENDIX D: EVALUATION OF THE INTEGRALS
IN THE r = 0 CASE

To explicitly evaluate some of the integrals above, let us
introduce the polygamma function

ψm(z) := dm+1

dzm+1
ln !(z) = (−1)m+1

∫ ∞

0

tme−zt

1 − e−t
dt, (D1)

which satisfies the recursion relation

ψm(z + 1) = ψm(z) + (−1)m
m!

zm+1
, (D2)

which, for a positive integer argument and assuming m ! 1,
leads to

ψm(k)
(−1)m+1m!

= ζ (m + 1) −
k−1∑

r=1

1
rm+1

=
∞∑

r=k

1
rm+1

. (D3)

For m = 0 this implies

ψ0(k) = −γE + Hn−1 ⇒ ψ0(1) = −γE, (D4)

with γE is Euler’s gamma constant and

Hn :=
n∑

k=1

1
k

(D5)

are the harmonic numbers.
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With these considerations in mind and using Eq. (C16), we
have that

J
(1)
0 :=

∫ +∞

−∞

ln(1 + ey)
1 + ey

dy

=
∫ +∞

0

te−t

1 − e−t
dt = ψ1(1) = ζ (2)

=
∑

k!1

1
k2

= π2

6
. (D6)

Then we compute

J
(0)
0 :=

∫ +∞

−∞
dy

1
1 + ey

∫ y

−∞
du ln(1 + eu)

=
∫ +∞

0
dt

e−t

1 − e−t

∫ t

0
dw

w

1 − e−w

= −
∫ +∞

0
dt t

ln(1 − e−t )
1 − e−t

=
∞∑

k=1

1
k

∫ +∞

0

te−kt

1 − e−t
dt =

∞∑

k=1

1
k
ψ1(k). (D7)

We remark now that
∑

k!1

ψ1(k)
k

=
∞∑

k=1

∞∑

r=0

1
k

1
(r + k)2

=
∑

s!1

s∑

k=1

1
k

1
s2

=
∑

s!1

1
s2

Hs. (D8)

Applying now the identity
∞∑

s=1

Hs

s2
= 2ζ (3), (D9)

discovered by Euler, we recover the result obtained by Parisi
and Ratiéville [25],

J
(0)
0 = 2ζ (3) = −ψ2(1). (D10)

To finally evaluate J
(3)
0 , we remark now that

∫ +∞

−∞

dy

1 + ey

d

dy
ln(1 + ey) = −

∫ +∞

−∞
dy

d

dy

1
1 + ey

= 1.

(D11)
Then, as

d2

dy2
ln(1 + ey) = d

dy
ln(1 + ey) −

[
d

dy
ln(1 + ey)

]2

,

(D12)

we have

J
(3)
0 =

∫ +∞

−∞
dy

1
1 + ey

d2

dy2
ln(1 + ey)

= −
∫ +∞

−∞
dy

(
d

dy

1
1 + ey

)
d

dy
ln(1 + ey)

=
∫ +∞

−∞
dy

1
1 + ey

[
d

dy
ln(1 + ey)

]2

= 1
2
. (D13)

APPENDIX E: CALCULATION OF %FT
r

To evaluate explicitly +FT
r , let us start from Eq. (64),

+F̂ T
r = 1

2β̂N

∞∑

s=1

∞∑

t=1

(−1)s+t−1 (s + t − 1)!
s!t!

ĝs ĝt

ĝ2
s+t

q2
s+t = η0!(r + 1)

2β̂r+2N

∞∑

s=1

∞∑

t=1

(−1)s+t−1

s!t!

(
t + s

st

)r+1 ∫ +∞

−∞
e−Gr (y)ey(s+t)qs+t dy

= η0!(r + 1)

2β̂r+2N

∞∑

k=2

k−1∑

s=1

(−1)k−1

s!(k − s)!
kr+1

sr+1(k − s)r+1

∫ +∞

−∞
e−Gr (y)eykqkdy, (E1)

and, in order to perform the sum over s, we introduce integral representations

k−1∑

s=1

1
s!(k − s)!

1
sr+1(k − s)r+1

=
k−1∑

s=1

(
k

s

) ∫ +∞

0
du

∫ +∞

0
dv

urvre−sue−(k−s)v

k!!2(r + 1)

=
∫ +∞

0
du

∫ +∞

0
dv urvr (e−u + e−v)k − e−uk − e−vk

k!!2(r + 1)
. (E2)

Observing now that the value k = 1 can be included in the sum over k and defining

h := β̂

[η0!(r + 1)]1/(r+1)
, (E3)

we can write

2β̂r+2!(r + 1)N
η0

+F̂ T
r

=
∞∑

k=1

(−1)k−1

k!
qk

∫ +∞

−∞
dy e−Gr (y) Dr+1

y eyk

∫ +∞

0
du

∫ +∞

0
dv urvr [(e−u + e−v)k − e−uk − e−vk]
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=
∫ +∞

−∞
dy e−Gr (y) Dr+1

y

{∫ +∞

0
du

∫ +∞

0
dv urvr{Gr [y + ln(e−u + e−v)] − Gr (y − u) − Gr (y − v)}

}

= 2hr

∫ +∞

−∞
dy e−Ĝr (y) Dr+1

y

{∫ +∞

0
du

∫ u

0
dv urvr{Gr [h(y − v) + ln(e−h(u−v) + 1)] − Ĝr (y − u) − Ĝr (y − v)}

}
. (E4)

This implies that, for h → ∞,

+F̂ T
r = 1

Nη
1/(r+1)
0 !2+1/(r+1)(r + 1)

∫ +∞

−∞
dy e−Ĝr (y) Dr+1

y

[∫ +∞

0
du

∫ u

0
dv urvrĜr (y − u)

]

= − 1

Nη
1/(r+1)
0 !2+1/(r+1)(r + 1)

1
r + 1

∫ +∞

−∞
dy e−Ĝr (y) Dr+1

y

[∫ y

−∞
(y − u)2r+1Ĝr (u)du

]

= − !(2r + 2)

Nη
1/(r+1)
0 !3+1/(r+1)(r + 1)

1
r + 1

∫ +∞

−∞
dy e−Ĝr (y)

∫ y

−∞
(y − u)r Ĝr (u)du

= − !(2r + 2)

Nη
1/(r+1)
0 !2+1/(r+1)(r + 1)

1
r + 1

∫ +∞

−∞
Ĝr (−u)Ĝr (u)du, (E5)

which is exactly Eq. (65).
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