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Abstract

We study finite-size fluctuations in a network of spiking deterministic neurons coupled with 

nonuniform synaptic coupling. We generalize a previously developed theory of finite-size effects 

for globally coupled neurons with a uniform coupling function. In the uniform coupling case, 

mean-field theory is well defined by averaging over the network as the number of neurons in the 

network goes to infinity. However, for nonuniform coupling it is no longer possible to average over 

the entire network if we are interested in fluctuations at a particular location within the network. 

We show that if the coupling function approaches a continuous function in the infinite system size 

limit, then an average over a local neighborhood can be defined such that mean-field theory is well 

defined for a spatially dependent field. We then use a path-integral formalism to derive a 

perturbation expansion in the inverse system size around the mean-field limit for the covariance of 

the input to a neuron (synaptic drive) and firing rate fluctuations due to dynamical deterministic 

finite-size effects.

I. INTRODUCTION

The dynamics of neural networks have traditionally been studied in the limit of very large 

numbers of neurons, where mean-field theory can be applied, e.g., Refs. [1–10], or for a 

small number of neurons, where traditional dynamical systems approaches can be used, e.g., 

Refs. [11–13]. The intermediate regime of large but finite numbers of neurons can have 

interesting properties that are independent of the small and infinite system limits [14–21]. 

However, these previous works have not fully explored fluctuations due to finite-size effects 

at specific locations within the network when all the neurons receive nonhomogeneous input 

from other neurons because of nonuniform coupling. Here we consider finite-size effects in 

a network of spiking neurons with nonuniform synaptic coupling. Previously [14–16], a 

perturbation expansion in the inverse network neuron number had been developed for 

networks with global spatially uniform coupling and we generalize that theory to include 

nonuniform coupling. We first show that mean-field theory in the infinite nonuniform system 

limit can be realized in a single network if a spatial metric can be imposed on the network 

and the coupling function is a continuous function of this distance measure. We then analyze 

finite-size fluctuations around such mean-field solutions using a path-integral formalism to 

derive a perturbation expansion in the inverse network neuron number for the spatially 

dependent covariance function for the synaptic drive and spatially dependent neuron firing 

rate.
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II. COUPLED NEURON MODEL

Consider a network of N theta neurons (phase reduction of quadratic integrate-and-fire 

neurons [11]) on a one dimensional periodic domain of size L although the theory can be 

applied to any domain. The network obeys the following deterministic microscopic 

equations:

θ̇i = 1 − cosθi + Ii + ui(t) 1 + cosθi , (2.1)

ui =
L

N
∑
j = 1

N

wijsj, (2.2)

ṡj = − βsj + β∑
l

δ(t − tj
l),

(2.3)

where θi is the phase of neuron i, ui is the synaptic drive to neuron i, Ii is the external input 

to neuron i, β is the decay constant of the synaptic drive, sj is the time-dependent synaptic 

input from neuron j, and tj
l represents the spike times when the phase of neuron j crosses π. 

sj rises instantaneously when neuron j spikes and relaxes to zero with a time constant of 1/β. 

The synaptic drive represents the total time-dependent synaptic input where the contribution 

from each neuron is weighted by the synaptic coupling function wij (a real N × N matrix). 

When Ii + ui > 0, the neuron receives suprathreshold input and θi will progress in time. 

When it passes π, the neuron is said to spike. When Ii + ui < 0 the neuron receives 

subthreshold input and the phase will approach a fixed point. The theta neuron is the normal 

form of a Type I spiking neuron near the bifurcation point to firing [11]. By linearity, the 

synaptic drive obeys the more convenient form of

u̇i = − βui + β
L

N
∑
j = 1

N

wij∑
l

δ(t − tj
l) . (2.4)

We define an empirical density

ηj(θ, t) = δ θ − θj(t) (2.5)

that assigns a point mass to the phase of each neuron in the network. Hence, we can write 

the sum of a spike train as ∑lδ(t − tj
l) = ηj(π, t)θ̇j|θj = π. For the theta model, θ̇j|θj = π = 2 and 

thus we can then rewrite (2.4) as

u̇i = − βui + 2β
L

N
∑
j = 1

N

wijηj(π, t) . (2.6)

Neuron number is conserved so the neuron density formally obeys a conservation 

(Klimontovich) equation [16]:
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∂tηi(θ, t) + ∂θFi θ, ui ηi(θ, t) = 0, (2.7)

where Fi(θ, ui) = 1 – cos θ + (1 + cos θ )(Ii + ui ). The Klimontovich equation together with 

(2.6) fully describes the system. However, it is only a formal definition since η is not in 

general differentiable. In the following, we develop a method to regularize the Klimontovich 

equation so that desired quantities can be calculated.

III. MEAN-FIELD THEORY

The Klimontovich equation (2.7) only exists in a weak sense. We can regularize it by taking 

a suitable average over an ensemble of initial conditions:

∂t ηi(θ, t) + ∂θ Fi θ, ui ηi(θ, t) = 0. (3.1)

This equation is not closed because it involves covariances such as 〈ηη〉, which in turn 

depend on higher-order cumulants in a Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) 

hierarchy [14–16]. This hierarchy can be rendered tractable if we can truncate it. Mean-field 

theory truncates the hierarchy at first order by assuming that all cumulants beyond the first 

are zero so we can write

∂tρi(θ, t) + ∂θFi θ, ai ρi(θ, t) = 0, (3.2)

where ai = 〈ui〉 and ρi = 〈ηi〉. The full set of closed mean-field equations are given by

∂tρi(θ, t) + ∂θ 1 − cosθ + Ii + ai (1 + cosθ) ρi(θ, t) = 0

ȧi = − βai + 2β
L

N
∑

j

wijρj(π, t) . (3.3)

Although we can always write the mean-field equations (3.3), it is not clear that a given 

network would obey it in the infinite-N limit. In previous work [8,16,22], it was shown that 

mean-field theory applies to a network of coupled oscillators with uniform coupling in the 

infinite-N limit. However, it is not known when or if mean-field theory applies for 

nonuniform coupling.

To see this, consider first the stationary system

∂θ 1 − cosθ + Ii + ui (1 + cosθ) ηi(θ) = 0, (3.4)

ui = 2
L

N
∑

j

wijηj(π), (3.5)

with uniform coupling, wij = w, and uniform external input, Ii = I. If the neurons are 

initialized with random phases and remain asynchronous, then we can suppose that in the 

limit of N → ∞ the quantity
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ρ(π) =
L

N
∑

j

ηj(π) (3.6)

converges to an invariant quantity [8,16,22]. This then implies that ui = 2wρ ≡ a is also a 

constant. Thus each neuron will have identical inputs so if we apply the network averaging 

operator L

N
∑i = 1

N  to (3.4) we obtain

∂θ[1 − cosθ + (I + a)(1 + cosθ)]ρ(θ) = 0, (3.7)

a = 2wρ(π) . (3.8)

Covariances vanish and mean-field theory is realized in the infinite network limit. Given that 

the drive equation (2.6) is linear, the time-dependent mean-field theory will similarly hold in 

the large-N limit.

In the case where wij is not uniform, covariances are not guaranteed to vanish and an infinite 

network need not obey mean-field theory. Our goal is to find conditions such that mean-field 

theory applies. Again, consider the stationary equations (3.4) and (3.5). Now, instead of 

averaging over the entire domain, take a local interval around j, [j − cN/2, j + cN/2], where c 

< 1 is a constant that can depend on N and we map j − cN/2 < 1 to N + j − cN/2 and j + cN/2 

> N to j + cN/2 − N. We want to express our mean-field equation in terms of the locally 

averaged empirical density

ρj =
1

cN
∑

k = j −
cN

2

j +
cN

2

ηk . (3.9)

If cN → ∞ for N → ∞, then it is feasible that the local empirical density can be invariant 

(to random initial conditions) and correlations can vanish; we seek conditions on the 

coupling for which this is true.

Inserting (3.5) into (3.4) and taking the local average yields

1
cN

∑
i = k −

cN

2

k +
cN

2

∂θ 1 − cosθ

+ Ii + 2
L

N
∑
j = 1

N

wijηj(π) (1 + cosθ) ηi(θ) = 0.

(3.10)

We immediately see that correlations can arise from the sums over the product of ηj(π)ηi(θ). 

Consider the identity ∑j = 1
N

wijηj(π) = ∑j = 1
N (cN)−1∑

l = j −
cN

2

j +
cN

2
wilηl(π), which is exact for 

periodic boundary conditions. For nonperiodic boundary conditions there will be an edge 
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contribution but this should be negligible in the large network limit. Using this summation 

identity, we can rewrite the sum as

∑
j = 1

N
1

cN
∑

i = k −
cN

2

k +
cN

2

wijηj(π)ηi(θ) = ∑
j = 1

N

wkjρj(π)ρk(θ) + Rjk , (3.11)

where the remainder

Rjk =
1

(cN)2 ∑
l = j −

cN

2

j +
cN

2

∑
i = k −

cN

2

k +
cN

2

wij − wkj ρj(π)ηi(θ)

+
1

(cN)2 ∑
l = j −

cN

2

j +
cN

2

∑
i = k −

cN

2

k +
cN

2

wil − wij ηl(π)ηi(θ)

(3.12)

carries the correlations. Mean-field theory is valid in the N → ∞ limit if Rjk vanishes. Its 

magnitude obeys

Rjk ⩽
1

(cN)2 ∑
l = j −

cN

2

j +
cN

2

∑
i = k −

cN

2

k +
cN

2

wij − wkj ρj(π)ηi(θ)

+
1

(cN)2 ∑
l = j −

cN

2

j +
cN

2

∑
i = k −

cN

2

k +
cN

2

wil − wij ηl(π)ηi(θ)

⩽ ρj(π)
1

cN
∑

i = k −
cN

2

k +
cN

2

ηi(θ) sup
i ∈ (k −

cN

2
, k +

cN

2
)

wij − wkj

+
1

(cN)2 ∑
l = j −

cN

2

j +
cN

2

∑
i = k −

cN

2

k +
cN

2

ηl(π)ηi(θ)

sup
i ∈ (k −

cN

2
, k +

cN

2
), l ∈ (j −

cN

2
, j +

cN

2
)

wil − wij

(3.13)

since the density is non-negative.

Applying (3.9) then leads to
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|R | ⩽ ρj(π)ρk(θ) sup
i ∈ (k −

cN

2
, k +

cN

2
)

wij − wkj

+ sup
i ∈ (k −

cN

2
, k +

cN

2
), l ∈ (j −

cN

2
, j +

cN

2
)

wil − wij .

(3.14)

We introduce a distance measure z = iL/N, z′ = jL/N, z″ = kL/N, z‴ = lL/N and write ρi(θ)|

i=zN/L = ρ(z, θ) and wij i = zN /L, j = z′N /L = w z, z′ . Then

|R | ⩽ ρ z′, π ρ z″, θ sup
z ∈ z″ − cL/2, z″ + cL/2

w z, z′ − w z″, z′ (3.15)

+ sup
z ∈ z″ − cL/2, z″ + cL/2 , z‴ ∈ z′ − cL/2, z′ + cL/2

w z, z‴ − w z, z′ . (3.16)

Hence, if we set c = N−α, 0 < α < 1, then as N → ∞, the number of neurons in the local 

neighborhood cN approaches infinity as N1−α while c → 0. Then |R| → 0 as N → ∞ if 

limz z″w z, z′ − w z″, z′ = 0 and limz‴ z′w z, z‴ − w z, z′ = 0, i.e., wij is a continuous 

function in both indices. A similar argument shows that

1
cN

∑
i = k −

cN

2

k +
cN

2

Ii − Ik ηi(θ) 0 (3.17)

if Ii approaches a continuous function in index i in the infinite-N limit. Then (3.4) and (3.5) 

can be written as

∂θ 1 − cosθ + Ik + ak (1 + cosθ) ρk(θ) = 0, (3.18)

ak = 2
L

N
∑

j

wkjρj(π) . (3.19)

Equations (3.18) and (3.19) form a mean-field theory that is realized in a nonuniform 

coupled network in the infinite size limit as long as the input and coupling function are 

continuous functions. By linearity, the time-dependent mean-field theory should equally 

apply if the external input and the coupling are continuous functions of the indices.

In the N → ∞ limit, setting i → zN/L, ai(t) → a(z, t), ρi(θ, t) → ρ(z, θ, t), Ii → I(z) is 

continuous, ∑i (N /L)∫Ωdz, and wij → w(z, z′) is continuous, we can write mean-field 

theory in continuum form as
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∂tρ(z, θ, t) + ∂θ 1 − cosθ + [I(z) + a(z, t)]

× (1 + cosθ) ρ(z, θ, t) = 0

∂ta(z, t) = − βa(z, t) + 2β∫ w z, z′ ρ z′, π, t dz′ .

(3.20)

The stationary solutions obey

∂θ 1 − cosθ + [I(z) + a(z)](1 + cosθ) ρ(z, θ) = 0, (3.21)

a(z) = 2∫ w z, z′ ρ z′, π dz′ . (3.22)

The stationary solutions will be qualitatively different depending on the sign of I + a. 

Consider first the suprathreshold regime where I + a > 0. We can then solve (3.21) to obtain

ρ(z, θ) =
I(z) + a(z)

π 1 − cosθ + [I(z) + a(z)](1 + cosθ)
, (3.23)

which has been normalized such that ∫ ρ(z, θ)dθ = 1. Inserting this back into (3.22) gives

a(z) =
1
π∫ w z, z′ I(z) + a(z)dz′ . (3.24)

In the subthreshold regime, I + a < 0, (3.23) has a singularity at 1 – cos θ + [I(z) + a(z)](1 + 

cos θ) = 0, for which there are two solutions θ± that coalesce in a saddle node bifurcation at 

I + a = 0. Although ρ is no longer differentiable at equilibrium in the subthreshold regime 

there is still a weak solution. It has been shown previously [11] that θ− is stable and θ+ is 

unstable for a single theta neuron. This implies that the density is given by ρ(z, θ) = δ(θ – θ
−) and that ρ(z, π) = 0 (i.e., no firing) as expected in the subthreshold regime. Figure 1 

shows an example of a stationary “bump” solution for the periodic coupling function, w(z) = 

−J0 + J2 cos(2π/Lz), which has been used in models of orientation tuning of visual cortex 

[23] and the rodent head direction system [24]).

IV. BEYOND MEAN-FIELD THEORY

In the infinite-N limit when mean-field theory applies, the fields η and u are completely 

described by their means. The time trajectories of these fields are independent of the initial 

conditions of the individual neurons. For finite N, the trajectories can differ for different 

initial conditions and going beyond mean-field theory involves understanding these 

fluctuations. Implicit in going beyond mean-field theory is that these fields are themselves 

random variables that are drawn from a distribution functional. In this section, we will derive 

this distribution functional formally and then use it to compute perturbative expressions for 

the covariances of η and u.

Recall that the microscopic system is fully described by
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∂tηi(θ, t) + ∂θFi θ, ui ηi(θ, t) − δ t − t0 ηi
0(θ) = 0, (4.1)

u̇i(t) + βui(t) − 2β
L

N
∑
j = 1

N

wijηj(π, t) − δ t − t0 ui
0 = 0, (4.2)

where we have expressed the initial conditions as forcing terms. The probability density 

functional for the fields is then composed of point masses constrained to the dynamical 

system marginalized over the distribution of the initial data densities:

P[η, u] = ∫ Dη0∏
i

δ ∂tηi + ∂θFi θ, ui ηi − δ t − t0 ηi
0(θ) δ

u̇i + βui − 2β
L

N
∑

j

wijηj(π, t) − δ t − t0 ui
0 P η0 ,

(4.3)

where P[η0] is the probability density functional of the initial neuron densities for all 

neurons and Dη0 is the functional integration measure. We consider the initial condition of u 

to be fixed to u0. Using the functional Fourier transform for the Dirac delta functionals, we 

then obtain

P[η, u] = ∫ DηDη0Du

e−∑i∫ dtdθ ηi[∂tηi + ∂θFi θ, ui ηi − δ t − t0 ηi
0(θ)]e−∑i∫ dtui[u̇i + βui − 2β

L

N
∑jwijηj(π, t) − δ t − t0 ui

0]P

η0

,

(4.4)

where ηi and ui are response fields for neuron i with functional integration measures Dη and 

Du over all neurons. If we set ηi
0(θ) = δ θ − θi(t = 0) , then the distribution over initial 

densities is given by the distribution over the initial phase, ρi
0(θ). Thus we can write 

∫ Dη0P η0 = ∫ ∏idθρi
0(θ). The initial condition contribution is given by the integral

e
W 0[η] = ∫ ∏

i

dθiρi
0 θi e

∑iηi θi, t0 , (4.5)

= ∏
i
∫ dθρi

0(θ)eηi θ, t0 , (4.6)

= e∑i ln{1 − ∫ dθρi
0(θ)[eηi θ, t0 − 1]} . (4.7)

Hence, the system given by (2.6) and (2.7) can be mapped to the distribution functional 

P[η, u] = ∫ DηDη0Due−S with action S = Sη + Su given by
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Sη = ∑
i
∫

t0

t1
dt∫

−π

π

dθ ηi(θ, t) ∂tηi(θ, t) + ∂θF θ, ui ηi(θ, t)

+ ∑
i

ln 1 − ∫ dθρi
0(θ) e

ηi θ, t0 − 1 ,
(4.8)

Su = ∑
i
∫

t0

t1
dt ui(t) u̇i + βui − 2β

L

N
∑

j

wijηj(π, t) − δ t − t0 ui
0 . (4.9)

The exponential in the initial data contribution to the action (which corresponds to a 

generating function for a Poisson distribution) can be bilinearized via the Doi-Peliti-Janssen 

transformation [14–16,27–29]: ψi = ηiexp −ηi , ψi = exp ηi − 1, resulting in

Sψ = ∑
i
∫ dθ dt ψi(θ, t) ∂tψi(θ, t) + ∂θF θ, ui ψi(θ, t)

+ ∑
i

ln 1 − ∫ dθρi
0(θ)ψi θ, t0 ,

(4.10)

Su = ∑
i
∫ dt ui(t) u̇i(t) + βui − δ t − t0 ui

0 − 2β
L

N
∑

j

wij[ψj(π, t) + 1]ψj(π, t)

,

(4.11)

where we have not included the noncontributing terms that arise after integration by parts.

We now make the coarse-graining transformation i → zN/L, ui (t) → u(z, t), ψi (θ, t) → 
ψ(z, θ, t), ρi (θ, t) → ρ(z, θ, t), Ii → I (z), ∑i (N /L)∫Ωdz, and wij → w(z – z′), which 

yields

Sψ =
N

L ∫ dzdθdt ψ(z, θ, t) ∂tψ(z, θ, t) + ∂θF (θ, u)ψ(z, θ, t)

+
N

L ∫ dzln 1 − ∫ dθρ0(z, θ)ψ z, θ, t0 ,
(4.12)

Su =
N

L ∫ dzdt u(z, t) u̇ + βu − δ t − t0 u0(z) − 2β∫ dz′w z − z′ [ψ z′, π, t

+ 1]ψ z′, π, t .
(4.13)

We examine perturbations around the mean-field solutions a(z, t) and ρ(z, θ, t) of (3.20) with 

u → a(z, t)H(t − t0) + v(z, t), u v, ψ → ρ(z, θ, t)H(t − t0) + φ(z, θ, t), and ψ φ, where 

ρ(z, θ, t = t0) = ρ0(z, θ) and H(t − t0) is the Heaviside function. We then obtain
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Sφ =
N

L ∫ dθdtdz φ ∂tφ + ∂θ[1 − cosθ + [I + a + v](1 + cosθ)]φ + ∂θv(1

+ cosθ)ρ

+
N

L ∫ dzln 1 − ∫ dθρ0(z, θ)φ z, θ, t0

+
N

L ∫ dz∫ dθ′φ z, θ′, t0 ρ0 z, θ′

=
N

L ∫ dθdtdz φ ∂tφ + ∂θ[1 − cosθ + [I + a + v](1 + cosθ)]φ + ∂θv(1

+ cosθ)ρ

+
N

2L∫ dz∫ dθ′φ z, θ′, t0 ρ0 z, θ′ ∫ dθφ z, θ, t0 ρ0(z, θ),

(4.14)

Sv =
N

L ∫ dtdzv
d

dt
+ β v − 2β∫

Ω
dz′ w z − z′ φ z′, π, t + 1 φ z′, π, t

−2β∫
Ω

dz′ w z − z′ φ z′, π, t ρ z′, π − δ t − t0 u0(z) − a z, t0 .
(4.15)

We have only included the quadratic term of the initial condition since it is the only one that 

plays a role at first-order perturbation theory (tree level). Finally, if we set the mean-field 

solutions to the stationary solutions ρ(z, θ) and a(z), then we obtain

Sφ =
N

L ∫ dθdtdz φ ∂tφ + ∂θ[1 − cosθ + [I + a + v](1 + cosθ)]φ + ∂θv(1

+ cosθ)ρ

+
N

2L∫ dz∫ dθ′φ z, θ′, t0 ρ0 z, θ′ ∫ dθφ z, θ, t0 ρ0(z, θ),

(4.16)

Sv =
N

L ∫ dtdzv
d

dt
+ β v − 2β∫

Ω
dz′w z − z′ φ z′, π, t + 1 φ z′, π, t

−2β∫
Ω

dz′w z − z′ φ z′, π, t ρ z′, π .
(4.17)

Without loss of generality, we set L = 1. In the limit of N → ∞, the dominant term in the 

probability density functional for the fields will be the extrema of the action, which defines 

mean-field theory. Moments of the fields can be computed perturbatively as an expansion in 

1/N by using Laplace’s method around mean field (i.e., a loop expansion). The bilinear 

terms in the action (comprising of a product of a field and a response field) are the linear 

response functions or propagators. All the other terms are vertices. Each vertex contributes a 

factor of N while each propagator contributes 1/N. To make the scaling more transparent, we 

make the rescaling transformation where v v/N and φ φ/N. This change will rescale 

the propagators to order unity and the vertices to order 1 or higher depending on how many 

response fields they possess. The resulting action is

Qiu and Chow Page 10

Phys Rev E. Author manuscript; available in PMC 2020 May 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Sφ = ∫ dθdtdz φ ∂tφ + ∂θ[1 − cosθ + I(z) + [a(z) + v] (1 + cosθ)]φ

+ ∂θv(1 + cosθ)ρ +
1

2N∫ dz∫ dθ′φ z, θ′, t0 ρ0 z, θ′ ∫ dθφ z, θ, t0 ρ0

(z, θ)

Sv = ∫ dtdz v
d

dt
+ β v − 2β∫

Ω
dz′w z − z′ φ z′, π, t /N + 1 φ z′, π, t

−
2β

N ∫
Ω

dz′w z − z′ φ z′, π, t ρ z′, π .

(4.18)

The propagators and vertices can be represented by Feynman graphs or diagrams (see Fig. 

2). Each response field corresponds to an outgoing branch (branch on the left) and each field 

corresponds to an incoming branch (branch on the right). Time flows from right to left and 

causality is respected by the propagators. To each branch is attached a corresponding 

propagator.

The propagators are defined by

G
−1 ≡

Δv
v

x; x′ Δv
φ

x; y′

Δφ
v

y; x′ Δφ
φ

y; y′

−1

=

δ
2
S

δv(x)δv x′
δ

2
S

δv(x)δφ y′

δ
2
S

δφ(y)δv x′
δ

2
S

δφ(y)δφ y′ v, φ, v, φ = 0

(4.19)

=

(d/dt + β)δ x − x′ −2βw z − z′ δ π − θ′ δ t − t′

∂θ(1 + cosθ)ρ(z, θ)δ x − x′ ∂t + ∂θ[1 − cosθ + (I + a)(1 + cosθ)] δ y − y′

,

(4.20)

where x = (z, t), and y = (z, θ, t). The propagator Δa
b

x; x′  is the response of field a at the 

nonprimed location to field b at the primed location. The propagator satisfies the condition

∫ dq″G
−1

q, q″ G q″, q′ =
δ x − x′ 0

0 δ y − y′
, (4.21)

where q is x or y as appropriate. Inserting (4.20) into (4.21) yields

(d/dt + β)Δv
v

x; x′ − 2β∫ dz″w z − z″ Δφ
v

z″, π, t; x′ = δ x − x′ , (4.22)

(d/dt + β)Δv
φ

x; y′ − 2β∫ dz″w z − z″ Δφ
φ

z″, π, t; y′ = 0, (4.23)
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∂t + ∂θ 1 − cosθ + [I(z) + a(z)](1 + cosθ) Δφ
v

y; x′ + ∂θ(1 + cosθ)ρ(z, θ

)Δv
v

x; x′ = 0,
(4.24)

∂t + ∂θ 1 − cosθ + [I(z) + a(z)](1 + cosθ) Δφ
φ

y; y′ + ∂θ(1 + cosθ)ρ(z, θ

)Δv
φ

x; y′ = δ y − y′ .
(4.25)

A. Computation of propagators

In order to perform perturbation theory we must compute the Green’s functions or 

propagators. There are four types of propagators at each spatial location. The propagator 

equations are comprised of two sets of 2N coupled integro-partial-differential equations. 

They can be simplified to ordinary differential equations, which greatly reduces the 

computational complexity. The solutions of the equations change qualitatively depending on 

whether I + a > 0, suprathreshold regime, and I + a ⩽ 0, subthreshold regime. Given that the 

propagators depend on two coordinates, there are four separate cases. However, the 

subthreshold neurons are by definition silent so propagators with the second variable in the 

subthreshold regime are zero, which leaves two cases for the first variable being supra- or 

subthreshold.

1. Suprathreshold regime—In the suprathreshold regime, z ϵ {ζ : I + a(ζ) > 0}, we 

make the following transformation φ> : θ → ϕ, where:

ϕ = ϑ>(θ) = 2 tan−1
tanθ

2

I(z) + a(z)
, (4.26)

which obeys

dϕ

dθ
=

dϑ>(θ)
dθ

=
2 I + a

(1 − cosθ) + (I + a)(1 + cosθ)
= 2πρ(z, θ), (4.27)

where the last equality comes from (3.23). This transformation has the nice property that 

ϑ>(π) = π.

Equations (4.22) and (4.23) transform to

(d/dt + β)Δv
v

z, t; z′, t′ − 2β∫
>

dz″w z − z″ I z″ + a z″ Δφ
v

z″, π, t; z′, t′

= δ z − z′ δ t − t′ ,
(4.28)

(d/dt + β)Δv
φ

z, t; z′, θ′, t′ − 2β∫
>

dz″w z − z″ I z″ + a z″ Δφ
φ

z″, π, t; z′, θ′, t′ = 0,
(4.29)
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where we set Δφ
.

(z, ϕ, t; ⋅ ) = Δφ
⋅

z, ϑ>
−1(ϕ), t; ⋅ (dθ/dϕ) ≡ Δφ

· (z, ϕ, t, ; ⋅ ), where dθ/dϕ is the 

Jacobian of the transformation.

Equation (4.25) transforms to

∂t + ∂ϕ(dϕ/dθ)[1 − cosθ + (I + a)(1 + cosθ)] Δφ
φ

z, ϕ, t; z′, θ′, t′ (dϕ/dθ)

+ ∂ϕ(dϕ/dθ)(1 + cosθ)ρ(z, θ)Δv
φ

z, t; z′, θ′, t′
= δ z − z′ δ t − t′ δ ϕ − ϑ> θ′ (dϕ/dθ) .

(4.30)

Now consider

(1 + cosθ)ρ(z, θ) =
1
π

I + a(z)(1 + cosθ)
(1 − cosθ) + [I + a(z)](1 + cosθ)

=
1
π

I + a

tan2(θ/2) + (I + a)

=
1
π

I + a

(I + a)tan2(ϕ/2) + (I + a)

=
1

2π

1 + cosϕ

I + a(z)
,

(4.31)

where we have used (4.26) and the tangent half-angle formula

tan2 θ

2
=

1 − cosθ

1 + cosθ
. (4.32)

Inserting (4.31) back into (4.30) gives

∂t + 2 I + a ∂ϕΔφ
φ

z, ϕ, t; z′, θ′, t′ −
sinϕ

2π I + a
Δv

φ
z, t; z′, θ′, t′

= δ x − x′ δ ϕ − ϑ> θ′ δ t − t′ .
(4.33)

Similarly, we obtain

∂t + 2 I + a∂ϕ Δφ
v

z, ϕ, t; z′, t′ −
sinϕ

2π I + a
Δv

v
z, t; z′, t′ = 0. (4.34)

The transformed propagator equations are given by Eqs. (4.28), (4.29), (4.33), and (4.34). 

Equations (4.33) and (4.34) are advection equations in ϕ, which can be integrated to

Δφ
v

z, ϕ, t; z′, t′ = C(z)∫
t′

t

dτsin ϕ − v>(z)(t − τ) Δv
v

z, τ; z′, t′

Δφ
φ

z, ϕ, t; z′, θ′, t′ = C(z)∫
t′

t

dτsin ϕ − v>(z)(t − τ) Δv
φ

z, τ; z′, θ′, t′

+ δ ϕ − ϑ> θ′ − v>(z) t − t′ δ z − z′ ,

(4.35)

where
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C(z) ≡
1

2π I(z) + a(z)
v>(z) ≡ 2 I(z) + a(z) .

(4.36)

We then define the following variables:

rv z, t; z′, t′ = Δφ
v

z, π, t; z′, t′ = C(z)∫
t′

t

dτsin v>(z)(t − τ) Δv
v

z, τ; z′, t′ , (4.37)

rφ z, t; z′, θ′, t′ = Δφ
φ

z, π, t; z′, θ′, t′ − δ π − ϑ> θ′ − v>(z) t − t′ δ z − z′

= C(z)∫
t′

t

dτsin v>(z)(t − τ) Δv
φ

z, τ; z′, θ′, t′ .
(4.38)

We thus obtain after repeated derivatives and using the propagator equations (4.28), (4.29), 

(4.33), and (4.34):

d
2

dt2rv z, t; z′, t′ =
1
π

Δv
v

z, t; z′, t′ − v>
2 (z)rv z, t; z′, t′ , (4.39)

d

dt
+ β Δv

v
z, t; z′, t′ − β∫ dz″w z − z″ v> z″ rv z″, t″; z′, t′

= δ z − z′ δ t − t′ ,
(4.40)

d
2

dt2rφ z, t; z′, θ′, t′ =
1
π

Δv
φ

z, t; z′, θ′, t′ − v>
2 (z)rφ z, t; z′, θ′, t′ , (4.41)

d

dt
+ β Δv

φ
z, t; z′, θ′, t′ − β∫ dz″w z − z″ v> z″ rφ z″, t″; z′, θ′, t′

= βw z − z′ v> z′ δ π − ϑ> θ′ − v> z′ t − t′ .
(4.42)

The covariance function (4.72) involves the integral quantity

U z, t; z′, t0 = ∫ dθ′Δv
φ

z, t; z′, t0, θ′ ρ0 z′, θ′ (4.43)

by our choice of transformation convention. However, instead of computing the propagator 

at all values of θ′, we create another pair of ordinary differential equation (ODE) for U. 

Applying the integral operator ∫ dθ′ρ0 z′, θ′  to (4.41) and (4.42) gives

d
2

dt2r z, t; z′, t′ =
1
π

U z, t; z′, t′ − v>
2 (z)r z, t; z′, t′ (4.44)
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d

dt
+ β U z, t; z′, , t′ − β∫

>
dz″w z − z″ v> z″ r z″, t″; z′, t′

= βw z − z′ v> z′ ∫ dθ′ρ0 z′, θ′ δ

π − ϑ θ′ − v> z′ t − t′

= βw z − z′ v> z′ ρ0 z′, θ0
dθ

dϕ θ′ = θ0

=
β

2π
w z − z′ v> z′

ρ0 z′, θ0
ρ z′, θ0

,

(4.45)

where r z, t; z′, t′ = ∫ rφ z, t; z′, θ′, t′ ρ0 z′, θ′ dθ′ and θ0 = −ϑ−1[v>(z′)(t – t′)]. Hence, we 

need to numerically integrate the following equations:

d
2

dt2r z, t; z′, t′ =
1
π

U z, t; z′, t′ − v>
2 (z)r z, t; z′, t′ , (4.46)

d

dt
+ β U z, t; z′, , t′ − β∫

>
dz″w z − z″ v> z″ r z″, t″; z′, t′

=
1

2π
βw z − z′ v> z′ ,

(4.47)

d
2

dt2rv z, t; z′, t′ =
1
π

Δv
v

z, t; z′, t′ − v>
2 (z)rv z, t; z′, t′ , (4.48)

d

dt
+ β Δv

v
z, t; z′, t′ − β∫

>
dz″w z − z″ v> z″ rv z″, t″; z′, t′

= δ z − z′ δ t − t′ ,
(4.49)

d
2

dt2rφ z, t; z′, π, t′ =
1
π

Δv
φ

z, t; z′, π, t′ − v>
2 (z)rφ z, t; z′, π, t′ , (4.50)

d

dt
+ β Δv

φ
z, t; z′, π, t′ − β∫

>
dz″w z − z″ v> z″ rφ z″, t″; z′, π, t′

=
β

2
w z − z′ δ t − t′ + β ∑

l = 1

∞

w z − z′ δ t − t′ − T l z′ ,
(4.51)

where Tl(z′) = {s|v(z)s = 2π} marks the time intervals from t′ such that 2πl – v>(z′)Tl(z′) = 

0. The source at t = t′ in (4.51) has a factor of one half because because it comes form the θ 
delta function, which is symmetric about θ = θ′ since the propagator is symmetric at θ = θ′, 

unlike the contribution from the time delta function, which is one sided due to causality.

2. Subthreshold regime—In the subthreshold regime, namely I + a ⩽ 0, the mean-field 

solution for the density ρ is a point mass, and this will change the form of the propagators. 

The propagator equations are
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(d/dt + β)Δv
v

x; x′ − 2β∫ dz″w z − z″ Δφ
v

z″, π, t; x′ = δ x − x′ , (4.52)

(d/dt + β)Δv
φ

x; y′ − 2β∫ dz″w z − z″ Δφ
φ

z″, π, t; y′ = 0, (4.53)

∂t + ∂θ 1 − cosθ + [I(z) + a(z)](1 + cosθ) Δφ
v

y; x′ + ∂θ(1 + cosθ

)δ θ − θ−(z) Δv
v

x; x′ = 0,
(4.54)

∂t + ∂θ 1 − cosθ + [I(z) + a(z)](1 + cosθ) Δφ
φ

y; y′ + ∂θ(1 + cosθ

)δ θ − θ−(z) Δv
φ

x; y′ = δ y − y′ ,
(4.55)

where the equations are defined on I(z) + a(z) < 0, and θ± are the mean-field fixed points, 

where sinθ± = ± 2 |I + a|/(1 + |I + a|). However, note that the primed variables are defined 

over the entire z domain since subthreshold neurons can receive input from suprathreshold 

neurons.

We simplify these equations by breaking the domain of θ into two pieces: D1 = (θ+, θ−) and 

D2 = (θ−, θ+). In the two advection equations, there will be a clockwise advection of the 

propagators towards θ− in D1 and in a counterclockwise advection towards θ− in D2. π is in 

D1 but not D2 so neurons starting in D2 will never fire. In D1, we make the transformation 

ϑ< : θ → χ:

χ = ϑ<(θ) = ln
sinθ − I + a (1 + cosθ)
sinθ + I + a (1 + cosθ)

, (4.56)

χ = 2 coth−1
tanθ

2

I(z) + a(z)
, (4.57)

dχ

dθ
=

2 I + a

(1 − cosθ) − I + a (1 + cosθ)
, (4.58)

dθ

dχ
=

I + a

(|I + a |2 + 1)cosh2(χ /2) − 1
, (4.59)

dθ

dχ
=

2 I + a

(|I + a |2 + 1)[cosh(χ) + 1] − 2
, (4.60)
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1 + cosθ =
2

1 + I + a coth2
χ /2

, (4.61)

which maps D1 to the real line where −∞ corresponds to θ+ and ∞ corresponds to θ−.

We then have the following propagator equations in the χ representation:

(d/dt + β)Δv
v

z, t; z′, t′ − β∫
>

dz″w z − z″ v> z″ Δφ
v

z″, π, t; z′, t′

= δ z − z′ δ t − t′ ,
(4.62)

∂t + v<∂χ Δφ
v

z, χ, t; z′, t′ = Q(z, χ)Δv
v

z, t; z′, t′ , (4.63)

(d/dt + β)Δv
φ

z, t; z′, θ′, t′ − β∫
>

dz″w z − z″ v> z″ Δφ
φ

z″, π, t; z, θ′, t′ = 0, (4.64)

∂t + v<∂χ Δφ
φ

z, χ, t; z′, θ′, t′ = Q(z, χ)Δv
φ

z, t; z′, θ′, t′
+ δ z − z′ δ χ − ϑ< θ′ δ t − t′ ,

(4.65)

where

Q(z, χ) = − ∂χ
2

1 + I + a coth2
χ /2

δ ϑ
−1(χ) − θ−(z)

and v<(z) = 2 |I(z) + a(z)|. Integrating yields

Δφ
v

z, χ, t; w′ = ∫
t′

t

Q z, χ − v<(z)(t − τ) Δv
v

z, τ; z′, t′ dτ, (4.66)

Δφ
φ

z, χ, t; w′ = ∫
t′

t

Q z, χ − v<(z)(t − τ) Δv
φ

z, τ; z′, θ′, t′ dτ

+ δ z − z′ δ χ − ϑs θ′ − v<(z) t − t′ .
(4.67)

Hence, the only contribution from the subthreshold neurons are from any neuron that is 

initially in D1, which for uniformly distributed phases the probability will be [1 − (θ+ − θ
−]/2π. The subthreshold propagators are thus passively driven by the superthreshold 

propagators. Hence, for z in the subthreshold regime, the relevant propagator equations are

(d/dt + β)Δv
v

z, t; z′, t′ − β∫
>

dz″w z − z″ v> z″ rv z″, t; z′, t′ , (4.68)

= δ z − z′ δ t − t′ , (4.69)
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(d/dt + β)Δv
φ

z, t; z′, π, t′ − β∫
>

dz″w z − z″ v> z″ rφ z″, t; z′, π, t′

=
β

2
w z − z′ δ t − t′

+ β ∑
l = 1

∞

w z − z′ δ t − t′ − T l z′ ,

(4.70)

(d/dt + β)U z, t; z′, t′ − β∫
>

dz″w z − z″ v> z″ r z″, t; z′, t′

=
β

2π
w z − z′ v> z′ .

(4.71)

B. Covariance functions

1. Drive covariance—As described previously [16], the covariances between the fields 

to order 1/N are comprised of vertices with two outgoing branches. Using the diagrams in 

Figs. 2 and 3, we obtain

N δv(z, t)δv z′, t′

= 2β∫ dz1dz2dτΔv
v

z, t; z1, τ Δv
φ

z′, t′; z2, π, τ

× w z1 − z2 ρ z2, π

+ x x′ − ∫ dz1 ∫ dθΔv
φ

z, t; z1, t0, θ ρ z1, θ, t0

× ∫ dθ′Δv
φ

z′, t′; z1, t0, θ′ ρ z1, θ′, t0 .

(4.72)

Evaluating the covariance function in (4.72) requires computing the propagators using the 

equations derived in the previous section. Our numerical methods for integrating these 

equations are in the Appendix. We compared the theory to microscopic simulations of (2.4) 

with fixed initial condition of u(z) set to the mean-field solution a(z), and the initial 

condition of θ(z) is sampled from the probability distribution obeying the mean-field 

solution ρ(z, θ). For the suprathreshold region, the cumulative distribution function for ρ(z, 

θ) is

P (z, θ) =
1
π

tan−1 sinθ

I(z) + a(z)(1 + cosθ)
+

1
2 (4.73)

from which we can sample θ by applying the inverse of (4.73) to a uniform random number. 

For the subthreshold region, all the samples are taken to be at the stable solution 

θ−(z) = − 2 tan−1{ I(z) + a(z) }.

A comparison between the variance of synaptic drive fluctuations for the microscopic 

simulation as a function of space at a fixed time for two values of N and the theory is shown 

in Fig. 4(a) for external input and synaptic coupling weight as in Fig. 1. This is a case where 

all neurons are in the suprathreshold region. We see that the theory starts to break down for 
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smaller system sizes at the local maxima and minima of the variance. This is expected since 

the theory is valid to order N−1 in perturbation theory and the maxima and minima are where 

the effective local population is smallest. Figure 4(b) shows the variance near a maximum as 

a function of N, showing an accurate prediction after N = 800. The sample size for these 

microscopic simulations is 5 × 105, and we estimate the error of the variance using 

bootstrap. The error is of order 10−2. A segment of the spatio-temporal dynamics is shown in 

Fig. 5. The theory matches the simulation quite well with the greatest deviation near the 

maxima and minima.

Figure 6 shows the two-time and two-space covariances of the synaptic drive for the same 

network parameters. The spatial covariance mirrors the coupling function as expected.

Figure 7 shows a comparison between the theory and the microscopic simulation when 

subthreshold neurons are included. There is a good match when N is large. As N decreases 

the theory starts to fail at the edges of the bump first. This is likely due to the fact that the 

location of the edge could move and this is not captured by the theory since it assumes 

fluctuations around a stationary mean-field solution. However, the spontaneous firing of 

subthreshold neurons due to either the initial conditions or from the fluctuating inputs of 

suprathreshold neurons can cause the edge of the bump to move and this is a nonperturbative 

effect.

2. Rate covariance—The firing rate is defined as ν = 2η(z, π, t) with mean

v(z, π, t) = 2ρ(z, π, t) (4.74)

and covariance

δv(z, t)δv z′, t′ = (v(z, π, t) − v(z, π, t) ) v z′, π, t′ − v z′, π, t′ , (4.75)

= v(z, π, t)v z′, π, t′ − v(z, π, t) v z′, π, t′ (4.76)

= 4 η(z, π, t)η z′, π, t′ − 4ρ(z, π, t)ρ z′, π, t′ ,
= 4 (φ(z, t)φ(z, t) + φ(z, t)) φ z′, t′ φ z′, t′ + φ z′, t′ , (4.77)

= 4 φ(z, t)φ z′, t′ + 4 φ(z, t)φ z′, t′ φ z′, t′ , (4.78)

= 4 φ(z, t)φ z′, t′ +
4
N

Δφ
φ

z, π, t; z′, π, t′ ρ z′, π, t′ . (4.79)

At tree level, from the diagrams in Fig. 3(b),
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N φ(z, t)φ z′, t′ = 2β∫ dz1dz2dτΔφ
v

z, t; z1, τ Δφ
φ

z′, π, t′; z2, π, τ w z1 − z2

ρ z2, π, τ

+ x x′ − ∫ dz1

∫ dθΔφ
φ

z, t; z1, t0, θ ρ z1, θ, t0 ∫ dθ′Δφ
φ

z′, t′; z1, t0, θ′ ρ z1, θ′, t0 .

(4.80)

We rewrite as

N φ(z, t)φ z′, t′ = 2β∫ dz1dz2dτ rv z, t; z1, τ {rφ z′, t′; z2, π, τ

+ δ π − ϑ>(π) + v> z′ t′ − τ δ z′ − z2 }w z1 − z2 ρ z2, π, τ ) + x x′

− ∫ dz1 ∫ dθ rφ z, t; z1, θ, t0 + δ π − ϑ>(θ) + v>(z) t − t0 δ z − z1 ρ z1, θ, t0

× ∫ dθ′ rφ z′, t′; z1, θ′, t0 + δ π − ϑ> θ′ + v>(z) t′ − t0 δ z′ − z1 ρ z1, θ′, t0

= 2β∫ dτ∫ dz1dz2rv z, t; z1, τ rφ z′, t′; z2, π, τ w z1 − z2 ρ z2, π, τ

+
2β

v> z′ ∑
l
∫ dz1rv z, t; z1, t′ − 2πl/v w z1 − z′ ρ z′, π, τ

+ x x′ − ∫ dz1dθrφ z, t; z1, θ, t0 ρ z1, θ, t0 ∫ dθ′rφ z′, t′; z1, θ′, t0 ρ z1, θ′, t0

−
1

2π∫ dθrφ z, t; z′, θ, t0 ρ z′, θ, t0 −
1

2π∫ dθ′rφ z′, t′; z, θ′, t0 ρ z, θ′, t0

−
1

4π2∫ dz1δ z − z1 δ z′ − z1 ,

where

Δφ
v

z, π, t; z′, t′ = rv z, t; z′, t′

Δφ
φ

z, π, t; z′, θ′, t′ = rφ z, t; z′, θ′, t′ + δ π − ϑ> θ′ + v>(z) t − t′ δ z − z′

r z, t; z′, t′ = ∫ rφ z, t; z′, θ′, t′ ρ0 z′, θ′ dθ′ .

Hence

δv(z, t)δv z′, t′ = v>(z)v> z′
8β

N ∫ dτ∫ dz1dz2rv z, t; z1, τ rφ z′, t′; z2, π, τ w z1 − z2 ρ z2, π, τ

+
8β

v> z′ N
∑
l
∫ dz1rv z, t; z1, t′ − 2πl/v> z′ w z1 − z′ ρ z′, π, τ + x x′

−
4
N∫ dz1r z, t; z1, t0 r(z′, t′; z1, t0)

−
2

πN
r z, t; z′, t0 −

2
πN

r z′, t′; z, t0 −
1

π2N
∫ dz1δ z − z1 δ z′ − z1

+
4
N

Δφ
φ

z, π, t; z′, π, t′ ρ z′, π, t′ .

This quantity is well behaved for t ≠ t′ and z ≠ z′. However, in the limit of t′ → t−, the rate 

covariance is singular since
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lim
t′ t−

Δφ
φ

z, π, t; z′, π, t′ ρ z′, π, t′ = δ z − z′ δ v>(z) t − t′
dϕ

dθ θ = π
ρ z′, π, t′

,
(4.81)

=
v>(z)
2v>(z)

δ z − z′ δ(0)ρ z′, π, t′ . (4.82)

We regularize the singularity at t = t′ by considering the time integral over a small interval:

Δv(z, t) = ∫
t − Δt/2

t + Δt/2
δv(z, s)ds,

giving

Δv(z, t)Δv z′, t′
Δt2 = v>(z)v> z′

8β

N ∫ dτ∫ dz1dz2rv z, t; z1, τ rφ

z′, t′; z2, π, τ w z1 − z2 ρ z2, π, τ

+
8β

v> z′ N
∑

l
∫ dz1rv z, t; z1, t′ − 2πl/v> z′ w z1 − z′ ρ

z′, π, t′ − 2πl/v> z′

+ x x′ −
4
N∫ dz1r z, t; z1, t0 r(z′, t′; z1, t0)

−
2

πN
r z, t; z′, t0 −

2
πN

r z′, t′; z, t0

−
1

π2N
∫ dz1δ z − z1 δ z′ − z1

+
2

NΔt
ρ z′, π, t′ δ z − z′ .

(4.83)

We regularize the singularity at z = z′ by taking a local spatial average over [−cN/2 + z, 

cN/2 + z]. We make the approximation that within this local region, the propagator is 

constant on space, which is valid under the large-N limit. This results in

Δv(z, t)Δv z′, t′

Δt2 = v>(z)v> z′
8β

N ∫ dτ∫ dz1dz2rv z, t; z1, τ rφ

z′, t′; z2, π, τ w z1 − z2 ρ z2, π, τ

+
8β

v> z′ N
∑

l
∫ dz1rv z, t; z1, t′ − 2πl/v> z′ w z1 − z′ ρ

z′, π, t′ − 2πl/v> z′

+ x x′ −
4
N∫ dz1r z, t; z1, t0 r(z′, t′; z1, t0)

−
2

πN
r z, t; z′, t0 −

2
πN

r z′, t′; z, t0 −
1

π2Nc

+
2

ΔtcN
ρ z′, π, t′ .

(4.84)
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Figure 8 shows a comparison of the theory in (4.84) to the microscopic simulations. As 

shown in Fig. 8(a), at N = 1200, the theory predicts the mean firing rate well. In Fig. 8(c), 

we show the variance of the firing rate at fixed location. In Fig. 8(d), we show the spatial 

structure of the variance. Again, the theory captures the simulations.

V. DISCUSSION

Our goal was to understand the dynamics of a large but finite network of deterministic 

synaptically coupled neurons with nonuniform coupling. In particular, we wanted to quantify 

the dynamics of individual neurons within the network. We first showed that a self-

consistent local mean-field theory can describe the dynamics of a single network if the 

external input and coupling weight are continuous functions. This imposes a spatial metric 

on the network where neurons within a local neighborhood experience similar inputs and 

can thus be averaged over locally. This local continuity does not impose any conditions on 

long range interactions, which can still be random. We thus propose a new kind of network 

to study, continuous randomly coupled spiking networks, where the coupling is continuous 

but irregular at longer scales.

We show that corrections to mean-field theory can be computed as an expansion in the 

number of neurons in a local neighborhood. In this paper, we have chosen to scale the local 

neighborhood to the total number of neurons but this is not necessary. We do this by first 

writing down a formal and complete statistical description of the theory, mirroring the 

Klimontovich approach used in the kinetic theory of plasmas [14,25,26]. This formal theory 

is regularized by averaging, which leads to a BBGKY moment hierarchy. As in previous 

works [14–16,27–29], we showed that the Klimontovich description can be mapped to an 

equivalent Doi-Peliti-Jansen path-integral description from which a perturbation expansion 

in terms of Feynman diagrams can be derived. The path-integral formalism is a convenient 

tool for calculations. Although we only computed covariances to first order (tree level) it is 

straightforward (although computationally intensive) to continue to higher order as well as 

compute higher-order moments. We only considered a deterministic network for clarity but 

our method can easily incorporate stochastic effects, which would just add a new vertex to 

the action.

We showed that the theory works quite well for largeenough network size, which can be 

quite small if all neurons receive suprathreshold input. However, the expansion works less 

well for neurons with critical input such as neurons at the edge of a bump where 

infinitesimally small perturbations can produce qualitatively different behavior. 

Quantitatively capturing the dynamics at the edge may require renormalization. The 

formalism could be a systematic means to understanding randomly connected networks [30] 

and the so-called balanced network [31,32], where the mean inputs from excitatory and 

inhibitory synapses are attracted to a fixed point near zero and the neuron dynamics is 

dominated by the fluctuations.
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APPENDIX: NUMERICAL METHODS

Discretization schemes

We use full backward’s Euler for green function calculation for propagators,

drij

dt
= sij, (A1)

dsij

dt
=

1
π

Uij − vi
2rij, (A2)

∂tUij = − βUij +
β

N
∑

j

wijvjrjk +
β

2π
wijvj, (A3)

rij
t = rij

t − 1 + ℎsij
t , (A4)

sij
t = sij

t − 1 + ℎ
1
π

Uij
t − vi

2rij
t , (A5)

Uij
t = Uij

t − 1 + ℎ −βUij
t +

β

N
∑

j

wijvjrjk
t +

β

2π
wijvj , (A6)

rij
t − ℎsij

t = rij
t − 1, (A7)

sij
t + ℎvi

2rij
t − ℎ

1
π

Uij
t = sij

t − 1, (A8)

Uij
t − ℎ

β

N
∑

j

wijvjrjk
t + ℎβUij

t = Uij
t − 1 + ℎ

β

2π
wijvj, (A9)

I −ℎI 0

ℎv2 . ∗ I I −ℎ/πI

−ℎβ /Nw . ∗ v′ 0 I + ℎβI

r ⋅ j
t

s ⋅ j
t

U ⋅ j
t

=

r ⋅ j
t − 1

s ⋅ j
t − 1

U ⋅ j
t − 1 + ℎβ /2πw . jvj

.

(A10)
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We add the spike terms in Eq. (4.51) directly to the propagator Δv
φ

z, t; z′, π, t′  for all 

possible l when t − Tl(z′) = t′. These spike terms add stiffness to the differential equation 

and explicit differential equation solvers like Runge-Kutta have poor stability properties.
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FIG. 1. 
(a) Mean-field theory synaptic drive for (b) connectivity weight w(z) = −J0 + J2 cos(2π/Lz), 

J0 = 0.2, and J2 = 0.8, and (c) external input I(z) = I0 + sin[2π/L(z − z0)], I0 = 1, z0 = 0.25.
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FIG. 2. 

(a) Propagators, Δv
v

z, t; z′, t′  (upper left), Δv
φ

z, t; z′, θ′, t′  (lower left), Δφ
v

z, θ, t; z′, t′  (upper 

right), and Δφ
φ

z, θ, t; z′, θ′, t′  (lower right). (b) Vertices for action in (4.18). From left to right, 

they are ∂θ (1 + cos θ), 0, ρ0(z, θ)ρ0(z, θ), − 2β

N
w z − z′ ρ z′, π , − 2β

N
w z − z′ .
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FIG. 3. 
Tree level diagrams for (a) drive covariance 〈υυ〉 and (b) rate covariance 〈φφ〉. The lower 

two diagrams are zero for (a) and (b). For the upper three diagrams in (a) and (b), the first 

diagram corresponds to the third term, while the second and third diagrams correspond to 

the first and second terms of Eq. (4.72) and Eq. (4.80), respectively.
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FIG. 4. 
Variance times N at time t = 10 for parameters in Fig. 1. (a) Comparison between 

microscopic simulation and theory calculation for N = 200 and N = 800. (b) The N 

dependence of N〈δu(z)u(z)〉 at z = 0.2. Standard errors for the microscopic simulation are 

estimated by bootstrap.
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FIG. 5. 
Spatial-temporal dynamics of the synaptic drive variance for the microscopic simulation for 

N = 800 in (a) and (c) and the theory in (b) and (d). Parameters are as in Fig. 1.
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FIG. 6. 
Spatiotemporal plot of covariance 〈δu(z, 20)δu(z, 20 − τ)〉 for (a) theory and (b) 

microscopic simulation using parameters from Figure 1. (c) Covariance at a single spatial 

location, 〈δu(0.5, 20)δu(0.5, 20 − τ)〉. (d) Covariance at a single time, 〈δu(z = .005, 20)δu(z

′, 20)〉. Standard errors are estimated by jackknife.
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FIG. 7. 
(a) Variance multiplied by N and (b) mean of the synaptic drive with subthreshold neurons 

for constant stimulus I = −1 and (c) coupling weight w(z) = A exp(−az) − exp(−bz) + A 

exp[−a(L − z)] − exp[−b(L − z)] with A = 150, a = 30, and b = 20. The suprathreshold edge 

of bump is at u = 1. (a) Evaluated at time 10. Standard errors are estimated by bootstrap.
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FIG. 8. 
(a) Comparison between theory and microscopic simulations of time dependence of mean 

firing rate at one spatial location. (b) Spatial dependence of mean firing rate at time 3. [(c) 

and (d)] The same comparisons for the variance given in Eq. (4.84). Parameters are from 

Fig. 1 and N = 1200. Standard errors are estimated by bootstrap.
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